MachineRegisterInfo.h revision a2a98fd0ddd2ae277be7cdd62aae92f6c5155e07
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/IndexedMap.h"
20#include <vector>
21
22namespace llvm {
23
24/// MachineRegisterInfo - Keep track of information for virtual and physical
25/// registers, including vreg register classes, use/def chains for registers,
26/// etc.
27class MachineRegisterInfo {
28  const TargetRegisterInfo *const TRI;
29
30  /// IsSSA - True when the machine function is in SSA form and virtual
31  /// registers have a single def.
32  bool IsSSA;
33
34  /// VRegInfo - Information we keep for each virtual register.
35  ///
36  /// Each element in this list contains the register class of the vreg and the
37  /// start of the use/def list for the register.
38  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
39             VirtReg2IndexFunctor> VRegInfo;
40
41  /// RegAllocHints - This vector records register allocation hints for virtual
42  /// registers. For each virtual register, it keeps a register and hint type
43  /// pair making up the allocation hint. Hint type is target specific except
44  /// for the value 0 which means the second value of the pair is the preferred
45  /// register for allocation. For example, if the hint is <0, 1024>, it means
46  /// the allocator should prefer the physical register allocated to the virtual
47  /// register of the hint.
48  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
49
50  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
51  /// physical registers.
52  MachineOperand **PhysRegUseDefLists;
53
54  /// UsedPhysRegs - This is a bit vector that is computed and set by the
55  /// register allocator, and must be kept up to date by passes that run after
56  /// register allocation (though most don't modify this).  This is used
57  /// so that the code generator knows which callee save registers to save and
58  /// for other target specific uses.
59  BitVector UsedPhysRegs;
60
61  /// LiveIns/LiveOuts - Keep track of the physical registers that are
62  /// livein/liveout of the function.  Live in values are typically arguments in
63  /// registers, live out values are typically return values in registers.
64  /// LiveIn values are allowed to have virtual registers associated with them,
65  /// stored in the second element.
66  std::vector<std::pair<unsigned, unsigned> > LiveIns;
67  std::vector<unsigned> LiveOuts;
68
69  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
70  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
71public:
72  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
73  ~MachineRegisterInfo();
74
75  //===--------------------------------------------------------------------===//
76  // Function State
77  //===--------------------------------------------------------------------===//
78
79  // isSSA - Returns true when the machine function is in SSA form. Early
80  // passes require the machine function to be in SSA form where every virtual
81  // register has a single defining instruction.
82  //
83  // The TwoAddressInstructionPass and PHIElimination passes take the machine
84  // function out of SSA form when they introduce multiple defs per virtual
85  // register.
86  bool isSSA() const { return IsSSA; }
87
88  // leaveSSA - Indicates that the machine function is no longer in SSA form.
89  void leaveSSA() { IsSSA = false; }
90
91  //===--------------------------------------------------------------------===//
92  // Register Info
93  //===--------------------------------------------------------------------===//
94
95  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
96  /// and uses of a register within the MachineFunction that corresponds to this
97  /// MachineRegisterInfo object.
98  template<bool Uses, bool Defs, bool SkipDebug>
99  class defusechain_iterator;
100
101  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
102  /// register.
103  typedef defusechain_iterator<true,true,false> reg_iterator;
104  reg_iterator reg_begin(unsigned RegNo) const {
105    return reg_iterator(getRegUseDefListHead(RegNo));
106  }
107  static reg_iterator reg_end() { return reg_iterator(0); }
108
109  /// reg_empty - Return true if there are no instructions using or defining the
110  /// specified register (it may be live-in).
111  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
112
113  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
114  /// of the specified register, skipping those marked as Debug.
115  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
116  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
117    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
118  }
119  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
120
121  /// reg_nodbg_empty - Return true if the only instructions using or defining
122  /// Reg are Debug instructions.
123  bool reg_nodbg_empty(unsigned RegNo) const {
124    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
125  }
126
127  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
128  typedef defusechain_iterator<false,true,false> def_iterator;
129  def_iterator def_begin(unsigned RegNo) const {
130    return def_iterator(getRegUseDefListHead(RegNo));
131  }
132  static def_iterator def_end() { return def_iterator(0); }
133
134  /// def_empty - Return true if there are no instructions defining the
135  /// specified register (it may be live-in).
136  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
137
138  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
139  typedef defusechain_iterator<true,false,false> use_iterator;
140  use_iterator use_begin(unsigned RegNo) const {
141    return use_iterator(getRegUseDefListHead(RegNo));
142  }
143  static use_iterator use_end() { return use_iterator(0); }
144
145  /// use_empty - Return true if there are no instructions using the specified
146  /// register.
147  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
148
149  /// hasOneUse - Return true if there is exactly one instruction using the
150  /// specified register.
151  bool hasOneUse(unsigned RegNo) const;
152
153  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
154  /// specified register, skipping those marked as Debug.
155  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
156  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
157    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
158  }
159  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
160
161  /// use_nodbg_empty - Return true if there are no non-Debug instructions
162  /// using the specified register.
163  bool use_nodbg_empty(unsigned RegNo) const {
164    return use_nodbg_begin(RegNo) == use_nodbg_end();
165  }
166
167  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
168  /// instruction using the specified register.
169  bool hasOneNonDBGUse(unsigned RegNo) const;
170
171  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
172  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
173  /// except that it also changes any definitions of the register as well.
174  ///
175  /// Note that it is usually necessary to first constrain ToReg's register
176  /// class to match the FromReg constraints using:
177  ///
178  ///   constrainRegClass(ToReg, getRegClass(FromReg))
179  ///
180  /// That function will return NULL if the virtual registers have incompatible
181  /// constraints.
182  void replaceRegWith(unsigned FromReg, unsigned ToReg);
183
184  /// getRegUseDefListHead - Return the head pointer for the register use/def
185  /// list for the specified virtual or physical register.
186  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
187    if (TargetRegisterInfo::isVirtualRegister(RegNo))
188      return VRegInfo[RegNo].second;
189    return PhysRegUseDefLists[RegNo];
190  }
191
192  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
193    if (TargetRegisterInfo::isVirtualRegister(RegNo))
194      return VRegInfo[RegNo].second;
195    return PhysRegUseDefLists[RegNo];
196  }
197
198  /// getVRegDef - Return the machine instr that defines the specified virtual
199  /// register or null if none is found.  This assumes that the code is in SSA
200  /// form, so there should only be one definition.
201  MachineInstr *getVRegDef(unsigned Reg) const;
202
203  /// clearKillFlags - Iterate over all the uses of the given register and
204  /// clear the kill flag from the MachineOperand. This function is used by
205  /// optimization passes which extend register lifetimes and need only
206  /// preserve conservative kill flag information.
207  void clearKillFlags(unsigned Reg) const;
208
209#ifndef NDEBUG
210  void dumpUses(unsigned RegNo) const;
211#endif
212
213  //===--------------------------------------------------------------------===//
214  // Virtual Register Info
215  //===--------------------------------------------------------------------===//
216
217  /// getRegClass - Return the register class of the specified virtual register.
218  ///
219  const TargetRegisterClass *getRegClass(unsigned Reg) const {
220    return VRegInfo[Reg].first;
221  }
222
223  /// setRegClass - Set the register class of the specified virtual register.
224  ///
225  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
226
227  /// constrainRegClass - Constrain the register class of the specified virtual
228  /// register to be a common subclass of RC and the current register class,
229  /// but only if the new class has at least MinNumRegs registers.  Return the
230  /// new register class, or NULL if no such class exists.
231  /// This should only be used when the constraint is known to be trivial, like
232  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
233  ///
234  const TargetRegisterClass *constrainRegClass(unsigned Reg,
235                                               const TargetRegisterClass *RC,
236                                               unsigned MinNumRegs = 0);
237
238  /// recomputeRegClass - Try to find a legal super-class of Reg's register
239  /// class that still satisfies the constraints from the instructions using
240  /// Reg.  Returns true if Reg was upgraded.
241  ///
242  /// This method can be used after constraints have been removed from a
243  /// virtual register, for example after removing instructions or splitting
244  /// the live range.
245  ///
246  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
247
248  /// createVirtualRegister - Create and return a new virtual register in the
249  /// function with the specified register class.
250  ///
251  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
252
253  /// getNumVirtRegs - Return the number of virtual registers created.
254  ///
255  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
256
257  /// setRegAllocationHint - Specify a register allocation hint for the
258  /// specified virtual register.
259  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
260    RegAllocHints[Reg].first  = Type;
261    RegAllocHints[Reg].second = PrefReg;
262  }
263
264  /// getRegAllocationHint - Return the register allocation hint for the
265  /// specified virtual register.
266  std::pair<unsigned, unsigned>
267  getRegAllocationHint(unsigned Reg) const {
268    return RegAllocHints[Reg];
269  }
270
271  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
272  /// standard simple hint (Type == 0) is not set.
273  unsigned getSimpleHint(unsigned Reg) const {
274    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
275    return Hint.first ? 0 : Hint.second;
276  }
277
278
279  //===--------------------------------------------------------------------===//
280  // Physical Register Use Info
281  //===--------------------------------------------------------------------===//
282
283  /// isPhysRegUsed - Return true if the specified register is used in this
284  /// function.  This only works after register allocation.
285  bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
286
287  /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
288  /// is used in this function.
289  bool isPhysRegOrOverlapUsed(unsigned Reg) const {
290    for (const unsigned *AI = TRI->getOverlaps(Reg); *AI; ++AI)
291      if (isPhysRegUsed(*AI))
292        return true;
293    return false;
294  }
295
296  /// setPhysRegUsed - Mark the specified register used in this function.
297  /// This should only be called during and after register allocation.
298  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
299
300  /// addPhysRegsUsed - Mark the specified registers used in this function.
301  /// This should only be called during and after register allocation.
302  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
303
304  /// setPhysRegUnused - Mark the specified register unused in this function.
305  /// This should only be called during and after register allocation.
306  void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
307
308  /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
309  /// subregisters. That means that if R is used, so are all subregisters.
310  void closePhysRegsUsed(const TargetRegisterInfo&);
311
312  //===--------------------------------------------------------------------===//
313  // LiveIn/LiveOut Management
314  //===--------------------------------------------------------------------===//
315
316  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
317  /// is an error to add the same register to the same set more than once.
318  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
319    LiveIns.push_back(std::make_pair(Reg, vreg));
320  }
321  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
322
323  // Iteration support for live in/out sets.  These sets are kept in sorted
324  // order by their register number.
325  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
326  livein_iterator;
327  typedef std::vector<unsigned>::const_iterator liveout_iterator;
328  livein_iterator livein_begin() const { return LiveIns.begin(); }
329  livein_iterator livein_end()   const { return LiveIns.end(); }
330  bool            livein_empty() const { return LiveIns.empty(); }
331  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
332  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
333  bool             liveout_empty() const { return LiveOuts.empty(); }
334
335  bool isLiveIn(unsigned Reg) const;
336  bool isLiveOut(unsigned Reg) const;
337
338  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
339  /// corresponding live-in physical register.
340  unsigned getLiveInPhysReg(unsigned VReg) const;
341
342  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
343  /// corresponding live-in physical register.
344  unsigned getLiveInVirtReg(unsigned PReg) const;
345
346  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
347  /// into the given entry block.
348  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
349                        const TargetRegisterInfo &TRI,
350                        const TargetInstrInfo &TII);
351
352private:
353  void HandleVRegListReallocation();
354
355public:
356  /// defusechain_iterator - This class provides iterator support for machine
357  /// operands in the function that use or define a specific register.  If
358  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
359  /// returns defs.  If neither are true then you are silly and it always
360  /// returns end().  If SkipDebug is true it skips uses marked Debug
361  /// when incrementing.
362  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
363  class defusechain_iterator
364    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
365    MachineOperand *Op;
366    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
367      // If the first node isn't one we're interested in, advance to one that
368      // we are interested in.
369      if (op) {
370        if ((!ReturnUses && op->isUse()) ||
371            (!ReturnDefs && op->isDef()) ||
372            (SkipDebug && op->isDebug()))
373          ++*this;
374      }
375    }
376    friend class MachineRegisterInfo;
377  public:
378    typedef std::iterator<std::forward_iterator_tag,
379                          MachineInstr, ptrdiff_t>::reference reference;
380    typedef std::iterator<std::forward_iterator_tag,
381                          MachineInstr, ptrdiff_t>::pointer pointer;
382
383    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
384    defusechain_iterator() : Op(0) {}
385
386    bool operator==(const defusechain_iterator &x) const {
387      return Op == x.Op;
388    }
389    bool operator!=(const defusechain_iterator &x) const {
390      return !operator==(x);
391    }
392
393    /// atEnd - return true if this iterator is equal to reg_end() on the value.
394    bool atEnd() const { return Op == 0; }
395
396    // Iterator traversal: forward iteration only
397    defusechain_iterator &operator++() {          // Preincrement
398      assert(Op && "Cannot increment end iterator!");
399      Op = Op->getNextOperandForReg();
400
401      // If this is an operand we don't care about, skip it.
402      while (Op && ((!ReturnUses && Op->isUse()) ||
403                    (!ReturnDefs && Op->isDef()) ||
404                    (SkipDebug && Op->isDebug())))
405        Op = Op->getNextOperandForReg();
406
407      return *this;
408    }
409    defusechain_iterator operator++(int) {        // Postincrement
410      defusechain_iterator tmp = *this; ++*this; return tmp;
411    }
412
413    /// skipInstruction - move forward until reaching a different instruction.
414    /// Return the skipped instruction that is no longer pointed to, or NULL if
415    /// already pointing to end().
416    MachineInstr *skipInstruction() {
417      if (!Op) return 0;
418      MachineInstr *MI = Op->getParent();
419      do ++*this;
420      while (Op && Op->getParent() == MI);
421      return MI;
422    }
423
424    MachineOperand &getOperand() const {
425      assert(Op && "Cannot dereference end iterator!");
426      return *Op;
427    }
428
429    /// getOperandNo - Return the operand # of this MachineOperand in its
430    /// MachineInstr.
431    unsigned getOperandNo() const {
432      assert(Op && "Cannot dereference end iterator!");
433      return Op - &Op->getParent()->getOperand(0);
434    }
435
436    // Retrieve a reference to the current operand.
437    MachineInstr &operator*() const {
438      assert(Op && "Cannot dereference end iterator!");
439      return *Op->getParent();
440    }
441
442    MachineInstr *operator->() const {
443      assert(Op && "Cannot dereference end iterator!");
444      return Op->getParent();
445    }
446  };
447
448};
449
450} // End llvm namespace
451
452#endif
453