MachineRegisterInfo.h revision aba6559370c3d453588103fb667ffa3b11b76652
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/CodeGen/MachineInstrBundle.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/IndexedMap.h"
21#include <vector>
22
23namespace llvm {
24
25/// MachineRegisterInfo - Keep track of information for virtual and physical
26/// registers, including vreg register classes, use/def chains for registers,
27/// etc.
28class MachineRegisterInfo {
29  const TargetRegisterInfo *const TRI;
30
31  /// IsSSA - True when the machine function is in SSA form and virtual
32  /// registers have a single def.
33  bool IsSSA;
34
35  /// TracksLiveness - True while register liveness is being tracked accurately.
36  /// Basic block live-in lists, kill flags, and implicit defs may not be
37  /// accurate when after this flag is cleared.
38  bool TracksLiveness;
39
40  /// VRegInfo - Information we keep for each virtual register.
41  ///
42  /// Each element in this list contains the register class of the vreg and the
43  /// start of the use/def list for the register.
44  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45             VirtReg2IndexFunctor> VRegInfo;
46
47  /// RegAllocHints - This vector records register allocation hints for virtual
48  /// registers. For each virtual register, it keeps a register and hint type
49  /// pair making up the allocation hint. Hint type is target specific except
50  /// for the value 0 which means the second value of the pair is the preferred
51  /// register for allocation. For example, if the hint is <0, 1024>, it means
52  /// the allocator should prefer the physical register allocated to the virtual
53  /// register of the hint.
54  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55
56  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57  /// physical registers.
58  MachineOperand **PhysRegUseDefLists;
59
60  /// UsedPhysRegs - This is a bit vector that is computed and set by the
61  /// register allocator, and must be kept up to date by passes that run after
62  /// register allocation (though most don't modify this).  This is used
63  /// so that the code generator knows which callee save registers to save and
64  /// for other target specific uses.
65  /// This vector only has bits set for registers explicitly used, not their
66  /// aliases.
67  BitVector UsedPhysRegs;
68
69  /// UsedPhysRegMask - Additional used physregs, but including aliases.
70  BitVector UsedPhysRegMask;
71
72  /// ReservedRegs - This is a bit vector of reserved registers.  The target
73  /// may change its mind about which registers should be reserved.  This
74  /// vector is the frozen set of reserved registers when register allocation
75  /// started.
76  BitVector ReservedRegs;
77
78  /// AllocatableRegs - From TRI->getAllocatableSet.
79  mutable BitVector AllocatableRegs;
80
81  /// LiveIns/LiveOuts - Keep track of the physical registers that are
82  /// livein/liveout of the function.  Live in values are typically arguments in
83  /// registers, live out values are typically return values in registers.
84  /// LiveIn values are allowed to have virtual registers associated with them,
85  /// stored in the second element.
86  std::vector<std::pair<unsigned, unsigned> > LiveIns;
87  std::vector<unsigned> LiveOuts;
88
89  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
90  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
91public:
92  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
93  ~MachineRegisterInfo();
94
95  //===--------------------------------------------------------------------===//
96  // Function State
97  //===--------------------------------------------------------------------===//
98
99  // isSSA - Returns true when the machine function is in SSA form. Early
100  // passes require the machine function to be in SSA form where every virtual
101  // register has a single defining instruction.
102  //
103  // The TwoAddressInstructionPass and PHIElimination passes take the machine
104  // function out of SSA form when they introduce multiple defs per virtual
105  // register.
106  bool isSSA() const { return IsSSA; }
107
108  // leaveSSA - Indicates that the machine function is no longer in SSA form.
109  void leaveSSA() { IsSSA = false; }
110
111  /// tracksLiveness - Returns true when tracking register liveness accurately.
112  ///
113  /// While this flag is true, register liveness information in basic block
114  /// live-in lists and machine instruction operands is accurate. This means it
115  /// can be used to change the code in ways that affect the values in
116  /// registers, for example by the register scavenger.
117  ///
118  /// When this flag is false, liveness is no longer reliable.
119  bool tracksLiveness() const { return TracksLiveness; }
120
121  /// invalidateLiveness - Indicates that register liveness is no longer being
122  /// tracked accurately.
123  ///
124  /// This should be called by late passes that invalidate the liveness
125  /// information.
126  void invalidateLiveness() { TracksLiveness = false; }
127
128  //===--------------------------------------------------------------------===//
129  // Register Info
130  //===--------------------------------------------------------------------===//
131
132  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
133  /// and uses of a register within the MachineFunction that corresponds to this
134  /// MachineRegisterInfo object.
135  template<bool Uses, bool Defs, bool SkipDebug>
136  class defusechain_iterator;
137
138  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
139  /// register.
140  typedef defusechain_iterator<true,true,false> reg_iterator;
141  reg_iterator reg_begin(unsigned RegNo) const {
142    return reg_iterator(getRegUseDefListHead(RegNo));
143  }
144  static reg_iterator reg_end() { return reg_iterator(0); }
145
146  /// reg_empty - Return true if there are no instructions using or defining the
147  /// specified register (it may be live-in).
148  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
149
150  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
151  /// of the specified register, skipping those marked as Debug.
152  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
153  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
154    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
155  }
156  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
157
158  /// reg_nodbg_empty - Return true if the only instructions using or defining
159  /// Reg are Debug instructions.
160  bool reg_nodbg_empty(unsigned RegNo) const {
161    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
162  }
163
164  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
165  typedef defusechain_iterator<false,true,false> def_iterator;
166  def_iterator def_begin(unsigned RegNo) const {
167    return def_iterator(getRegUseDefListHead(RegNo));
168  }
169  static def_iterator def_end() { return def_iterator(0); }
170
171  /// def_empty - Return true if there are no instructions defining the
172  /// specified register (it may be live-in).
173  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
174
175  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
176  typedef defusechain_iterator<true,false,false> use_iterator;
177  use_iterator use_begin(unsigned RegNo) const {
178    return use_iterator(getRegUseDefListHead(RegNo));
179  }
180  static use_iterator use_end() { return use_iterator(0); }
181
182  /// use_empty - Return true if there are no instructions using the specified
183  /// register.
184  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
185
186  /// hasOneUse - Return true if there is exactly one instruction using the
187  /// specified register.
188  bool hasOneUse(unsigned RegNo) const;
189
190  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
191  /// specified register, skipping those marked as Debug.
192  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
193  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
194    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
195  }
196  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
197
198  /// use_nodbg_empty - Return true if there are no non-Debug instructions
199  /// using the specified register.
200  bool use_nodbg_empty(unsigned RegNo) const {
201    return use_nodbg_begin(RegNo) == use_nodbg_end();
202  }
203
204  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
205  /// instruction using the specified register.
206  bool hasOneNonDBGUse(unsigned RegNo) const;
207
208  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
209  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
210  /// except that it also changes any definitions of the register as well.
211  ///
212  /// Note that it is usually necessary to first constrain ToReg's register
213  /// class to match the FromReg constraints using:
214  ///
215  ///   constrainRegClass(ToReg, getRegClass(FromReg))
216  ///
217  /// That function will return NULL if the virtual registers have incompatible
218  /// constraints.
219  void replaceRegWith(unsigned FromReg, unsigned ToReg);
220
221  /// getRegUseDefListHead - Return the head pointer for the register use/def
222  /// list for the specified virtual or physical register.
223  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
224    if (TargetRegisterInfo::isVirtualRegister(RegNo))
225      return VRegInfo[RegNo].second;
226    return PhysRegUseDefLists[RegNo];
227  }
228
229  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
230    if (TargetRegisterInfo::isVirtualRegister(RegNo))
231      return VRegInfo[RegNo].second;
232    return PhysRegUseDefLists[RegNo];
233  }
234
235  /// getVRegDef - Return the machine instr that defines the specified virtual
236  /// register or null if none is found.  This assumes that the code is in SSA
237  /// form, so there should only be one definition.
238  MachineInstr *getVRegDef(unsigned Reg) const;
239
240  /// clearKillFlags - Iterate over all the uses of the given register and
241  /// clear the kill flag from the MachineOperand. This function is used by
242  /// optimization passes which extend register lifetimes and need only
243  /// preserve conservative kill flag information.
244  void clearKillFlags(unsigned Reg) const;
245
246#ifndef NDEBUG
247  void dumpUses(unsigned RegNo) const;
248#endif
249
250  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
251  /// throughout the function.  It is safe to move instructions that read such
252  /// a physreg.
253  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
254
255  //===--------------------------------------------------------------------===//
256  // Virtual Register Info
257  //===--------------------------------------------------------------------===//
258
259  /// getRegClass - Return the register class of the specified virtual register.
260  ///
261  const TargetRegisterClass *getRegClass(unsigned Reg) const {
262    return VRegInfo[Reg].first;
263  }
264
265  /// setRegClass - Set the register class of the specified virtual register.
266  ///
267  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
268
269  /// constrainRegClass - Constrain the register class of the specified virtual
270  /// register to be a common subclass of RC and the current register class,
271  /// but only if the new class has at least MinNumRegs registers.  Return the
272  /// new register class, or NULL if no such class exists.
273  /// This should only be used when the constraint is known to be trivial, like
274  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
275  ///
276  const TargetRegisterClass *constrainRegClass(unsigned Reg,
277                                               const TargetRegisterClass *RC,
278                                               unsigned MinNumRegs = 0);
279
280  /// recomputeRegClass - Try to find a legal super-class of Reg's register
281  /// class that still satisfies the constraints from the instructions using
282  /// Reg.  Returns true if Reg was upgraded.
283  ///
284  /// This method can be used after constraints have been removed from a
285  /// virtual register, for example after removing instructions or splitting
286  /// the live range.
287  ///
288  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
289
290  /// createVirtualRegister - Create and return a new virtual register in the
291  /// function with the specified register class.
292  ///
293  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
294
295  /// getNumVirtRegs - Return the number of virtual registers created.
296  ///
297  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
298
299  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
300  void clearVirtRegs();
301
302  /// setRegAllocationHint - Specify a register allocation hint for the
303  /// specified virtual register.
304  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
305    RegAllocHints[Reg].first  = Type;
306    RegAllocHints[Reg].second = PrefReg;
307  }
308
309  /// getRegAllocationHint - Return the register allocation hint for the
310  /// specified virtual register.
311  std::pair<unsigned, unsigned>
312  getRegAllocationHint(unsigned Reg) const {
313    return RegAllocHints[Reg];
314  }
315
316  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
317  /// standard simple hint (Type == 0) is not set.
318  unsigned getSimpleHint(unsigned Reg) const {
319    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
320    return Hint.first ? 0 : Hint.second;
321  }
322
323
324  //===--------------------------------------------------------------------===//
325  // Physical Register Use Info
326  //===--------------------------------------------------------------------===//
327
328  /// isPhysRegUsed - Return true if the specified register is used in this
329  /// function.  This only works after register allocation.
330  bool isPhysRegUsed(unsigned Reg) const {
331    return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
332  }
333
334  /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
335  /// is used in this function.
336  bool isPhysRegOrOverlapUsed(unsigned Reg) const {
337    if (UsedPhysRegMask.test(Reg))
338      return true;
339    for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI)
340      if (UsedPhysRegs.test(*AI))
341        return true;
342    return false;
343  }
344
345  /// setPhysRegUsed - Mark the specified register used in this function.
346  /// This should only be called during and after register allocation.
347  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
348
349  /// addPhysRegsUsed - Mark the specified registers used in this function.
350  /// This should only be called during and after register allocation.
351  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
352
353  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
354  /// This corresponds to the bit mask attached to register mask operands.
355  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
356    UsedPhysRegMask.setBitsNotInMask(RegMask);
357  }
358
359  /// setPhysRegUnused - Mark the specified register unused in this function.
360  /// This should only be called during and after register allocation.
361  void setPhysRegUnused(unsigned Reg) {
362    UsedPhysRegs.reset(Reg);
363    UsedPhysRegMask.reset(Reg);
364  }
365
366
367  //===--------------------------------------------------------------------===//
368  // Reserved Register Info
369  //===--------------------------------------------------------------------===//
370  //
371  // The set of reserved registers must be invariant during register
372  // allocation.  For example, the target cannot suddenly decide it needs a
373  // frame pointer when the register allocator has already used the frame
374  // pointer register for something else.
375  //
376  // These methods can be used by target hooks like hasFP() to avoid changing
377  // the reserved register set during register allocation.
378
379  /// freezeReservedRegs - Called by the register allocator to freeze the set
380  /// of reserved registers before allocation begins.
381  void freezeReservedRegs(const MachineFunction&);
382
383  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
384  /// to ensure the set of reserved registers stays constant.
385  bool reservedRegsFrozen() const {
386    return !ReservedRegs.empty();
387  }
388
389  /// canReserveReg - Returns true if PhysReg can be used as a reserved
390  /// register.  Any register can be reserved before freezeReservedRegs() is
391  /// called.
392  bool canReserveReg(unsigned PhysReg) const {
393    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
394  }
395
396
397  //===--------------------------------------------------------------------===//
398  // LiveIn/LiveOut Management
399  //===--------------------------------------------------------------------===//
400
401  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
402  /// is an error to add the same register to the same set more than once.
403  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
404    LiveIns.push_back(std::make_pair(Reg, vreg));
405  }
406  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
407
408  // Iteration support for live in/out sets.  These sets are kept in sorted
409  // order by their register number.
410  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
411  livein_iterator;
412  typedef std::vector<unsigned>::const_iterator liveout_iterator;
413  livein_iterator livein_begin() const { return LiveIns.begin(); }
414  livein_iterator livein_end()   const { return LiveIns.end(); }
415  bool            livein_empty() const { return LiveIns.empty(); }
416  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
417  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
418  bool             liveout_empty() const { return LiveOuts.empty(); }
419
420  bool isLiveIn(unsigned Reg) const;
421  bool isLiveOut(unsigned Reg) const;
422
423  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
424  /// corresponding live-in physical register.
425  unsigned getLiveInPhysReg(unsigned VReg) const;
426
427  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
428  /// corresponding live-in physical register.
429  unsigned getLiveInVirtReg(unsigned PReg) const;
430
431  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
432  /// into the given entry block.
433  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
434                        const TargetRegisterInfo &TRI,
435                        const TargetInstrInfo &TII);
436
437private:
438  void HandleVRegListReallocation();
439
440public:
441  /// defusechain_iterator - This class provides iterator support for machine
442  /// operands in the function that use or define a specific register.  If
443  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
444  /// returns defs.  If neither are true then you are silly and it always
445  /// returns end().  If SkipDebug is true it skips uses marked Debug
446  /// when incrementing.
447  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
448  class defusechain_iterator
449    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
450    MachineOperand *Op;
451    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
452      // If the first node isn't one we're interested in, advance to one that
453      // we are interested in.
454      if (op) {
455        if ((!ReturnUses && op->isUse()) ||
456            (!ReturnDefs && op->isDef()) ||
457            (SkipDebug && op->isDebug()))
458          ++*this;
459      }
460    }
461    friend class MachineRegisterInfo;
462  public:
463    typedef std::iterator<std::forward_iterator_tag,
464                          MachineInstr, ptrdiff_t>::reference reference;
465    typedef std::iterator<std::forward_iterator_tag,
466                          MachineInstr, ptrdiff_t>::pointer pointer;
467
468    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
469    defusechain_iterator() : Op(0) {}
470
471    bool operator==(const defusechain_iterator &x) const {
472      return Op == x.Op;
473    }
474    bool operator!=(const defusechain_iterator &x) const {
475      return !operator==(x);
476    }
477
478    /// atEnd - return true if this iterator is equal to reg_end() on the value.
479    bool atEnd() const { return Op == 0; }
480
481    // Iterator traversal: forward iteration only
482    defusechain_iterator &operator++() {          // Preincrement
483      assert(Op && "Cannot increment end iterator!");
484      Op = Op->getNextOperandForReg();
485
486      // If this is an operand we don't care about, skip it.
487      while (Op && ((!ReturnUses && Op->isUse()) ||
488                    (!ReturnDefs && Op->isDef()) ||
489                    (SkipDebug && Op->isDebug())))
490        Op = Op->getNextOperandForReg();
491
492      return *this;
493    }
494    defusechain_iterator operator++(int) {        // Postincrement
495      defusechain_iterator tmp = *this; ++*this; return tmp;
496    }
497
498    /// skipInstruction - move forward until reaching a different instruction.
499    /// Return the skipped instruction that is no longer pointed to, or NULL if
500    /// already pointing to end().
501    MachineInstr *skipInstruction() {
502      if (!Op) return 0;
503      MachineInstr *MI = Op->getParent();
504      do ++*this;
505      while (Op && Op->getParent() == MI);
506      return MI;
507    }
508
509    MachineInstr *skipBundle() {
510      if (!Op) return 0;
511      MachineInstr *MI = getBundleStart(Op->getParent());
512      do ++*this;
513      while (Op && getBundleStart(Op->getParent()) == MI);
514      return MI;
515    }
516
517    MachineOperand &getOperand() const {
518      assert(Op && "Cannot dereference end iterator!");
519      return *Op;
520    }
521
522    /// getOperandNo - Return the operand # of this MachineOperand in its
523    /// MachineInstr.
524    unsigned getOperandNo() const {
525      assert(Op && "Cannot dereference end iterator!");
526      return Op - &Op->getParent()->getOperand(0);
527    }
528
529    // Retrieve a reference to the current operand.
530    MachineInstr &operator*() const {
531      assert(Op && "Cannot dereference end iterator!");
532      return *Op->getParent();
533    }
534
535    MachineInstr *operator->() const {
536      assert(Op && "Cannot dereference end iterator!");
537      return Op->getParent();
538    }
539  };
540
541};
542
543} // End llvm namespace
544
545#endif
546