MachineRegisterInfo.h revision f46e7e3d7ff56d91572350c45ade83f4deea0139
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/IndexedMap.h"
20#include <vector>
21
22namespace llvm {
23
24/// MachineRegisterInfo - Keep track of information for virtual and physical
25/// registers, including vreg register classes, use/def chains for registers,
26/// etc.
27class MachineRegisterInfo {
28  /// VRegInfo - Information we keep for each virtual register.
29  ///
30  /// Each element in this list contains the register class of the vreg and the
31  /// start of the use/def list for the register.
32  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
33             VirtReg2IndexFunctor> VRegInfo;
34
35  /// RegAllocHints - This vector records register allocation hints for virtual
36  /// registers. For each virtual register, it keeps a register and hint type
37  /// pair making up the allocation hint. Hint type is target specific except
38  /// for the value 0 which means the second value of the pair is the preferred
39  /// register for allocation. For example, if the hint is <0, 1024>, it means
40  /// the allocator should prefer the physical register allocated to the virtual
41  /// register of the hint.
42  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
43
44  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
45  /// physical registers.
46  MachineOperand **PhysRegUseDefLists;
47
48  /// UsedPhysRegs - This is a bit vector that is computed and set by the
49  /// register allocator, and must be kept up to date by passes that run after
50  /// register allocation (though most don't modify this).  This is used
51  /// so that the code generator knows which callee save registers to save and
52  /// for other target specific uses.
53  BitVector UsedPhysRegs;
54
55  /// LiveIns/LiveOuts - Keep track of the physical registers that are
56  /// livein/liveout of the function.  Live in values are typically arguments in
57  /// registers, live out values are typically return values in registers.
58  /// LiveIn values are allowed to have virtual registers associated with them,
59  /// stored in the second element.
60  std::vector<std::pair<unsigned, unsigned> > LiveIns;
61  std::vector<unsigned> LiveOuts;
62
63  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
64  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
65public:
66  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
67  ~MachineRegisterInfo();
68
69  //===--------------------------------------------------------------------===//
70  // Register Info
71  //===--------------------------------------------------------------------===//
72
73  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
74  /// and uses of a register within the MachineFunction that corresponds to this
75  /// MachineRegisterInfo object.
76  template<bool Uses, bool Defs, bool SkipDebug>
77  class defusechain_iterator;
78
79  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
80  /// register.
81  typedef defusechain_iterator<true,true,false> reg_iterator;
82  reg_iterator reg_begin(unsigned RegNo) const {
83    return reg_iterator(getRegUseDefListHead(RegNo));
84  }
85  static reg_iterator reg_end() { return reg_iterator(0); }
86
87  /// reg_empty - Return true if there are no instructions using or defining the
88  /// specified register (it may be live-in).
89  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
90
91  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
92  /// of the specified register, skipping those marked as Debug.
93  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
94  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
95    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
96  }
97  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
98
99  /// reg_nodbg_empty - Return true if the only instructions using or defining
100  /// Reg are Debug instructions.
101  bool reg_nodbg_empty(unsigned RegNo) const {
102    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
103  }
104
105  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
106  typedef defusechain_iterator<false,true,false> def_iterator;
107  def_iterator def_begin(unsigned RegNo) const {
108    return def_iterator(getRegUseDefListHead(RegNo));
109  }
110  static def_iterator def_end() { return def_iterator(0); }
111
112  /// def_empty - Return true if there are no instructions defining the
113  /// specified register (it may be live-in).
114  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
115
116  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
117  typedef defusechain_iterator<true,false,false> use_iterator;
118  use_iterator use_begin(unsigned RegNo) const {
119    return use_iterator(getRegUseDefListHead(RegNo));
120  }
121  static use_iterator use_end() { return use_iterator(0); }
122
123  /// use_empty - Return true if there are no instructions using the specified
124  /// register.
125  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
126
127  /// hasOneUse - Return true if there is exactly one instruction using the
128  /// specified register.
129  bool hasOneUse(unsigned RegNo) const;
130
131  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
132  /// specified register, skipping those marked as Debug.
133  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
134  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
135    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
136  }
137  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
138
139  /// use_nodbg_empty - Return true if there are no non-Debug instructions
140  /// using the specified register.
141  bool use_nodbg_empty(unsigned RegNo) const {
142    return use_nodbg_begin(RegNo) == use_nodbg_end();
143  }
144
145  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
146  /// instruction using the specified register.
147  bool hasOneNonDBGUse(unsigned RegNo) const;
148
149  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
150  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
151  /// except that it also changes any definitions of the register as well.
152  void replaceRegWith(unsigned FromReg, unsigned ToReg);
153
154  /// getRegUseDefListHead - Return the head pointer for the register use/def
155  /// list for the specified virtual or physical register.
156  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
157    if (TargetRegisterInfo::isVirtualRegister(RegNo))
158      return VRegInfo[RegNo].second;
159    return PhysRegUseDefLists[RegNo];
160  }
161
162  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
163    if (TargetRegisterInfo::isVirtualRegister(RegNo))
164      return VRegInfo[RegNo].second;
165    return PhysRegUseDefLists[RegNo];
166  }
167
168  /// getVRegDef - Return the machine instr that defines the specified virtual
169  /// register or null if none is found.  This assumes that the code is in SSA
170  /// form, so there should only be one definition.
171  MachineInstr *getVRegDef(unsigned Reg) const;
172
173  /// clearKillFlags - Iterate over all the uses of the given register and
174  /// clear the kill flag from the MachineOperand. This function is used by
175  /// optimization passes which extend register lifetimes and need only
176  /// preserve conservative kill flag information.
177  void clearKillFlags(unsigned Reg) const;
178
179#ifndef NDEBUG
180  void dumpUses(unsigned RegNo) const;
181#endif
182
183  //===--------------------------------------------------------------------===//
184  // Virtual Register Info
185  //===--------------------------------------------------------------------===//
186
187  /// getRegClass - Return the register class of the specified virtual register.
188  ///
189  const TargetRegisterClass *getRegClass(unsigned Reg) const {
190    return VRegInfo[Reg].first;
191  }
192
193  /// setRegClass - Set the register class of the specified virtual register.
194  ///
195  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
196
197  /// constrainRegClass - Constrain the register class of the specified virtual
198  /// register to be a common subclass of RC and the current register class.
199  /// Return the new register class, or NULL if no such class exists.
200  /// This should only be used when the constraint is known to be trivial, like
201  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
202  const TargetRegisterClass *constrainRegClass(unsigned Reg,
203                                               const TargetRegisterClass *RC);
204
205  /// createVirtualRegister - Create and return a new virtual register in the
206  /// function with the specified register class.
207  ///
208  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
209
210  /// getNumVirtRegs - Return the number of virtual registers created.
211  ///
212  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
213
214  /// setRegAllocationHint - Specify a register allocation hint for the
215  /// specified virtual register.
216  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
217    RegAllocHints[Reg].first  = Type;
218    RegAllocHints[Reg].second = PrefReg;
219  }
220
221  /// getRegAllocationHint - Return the register allocation hint for the
222  /// specified virtual register.
223  std::pair<unsigned, unsigned>
224  getRegAllocationHint(unsigned Reg) const {
225    return RegAllocHints[Reg];
226  }
227
228  //===--------------------------------------------------------------------===//
229  // Physical Register Use Info
230  //===--------------------------------------------------------------------===//
231
232  /// isPhysRegUsed - Return true if the specified register is used in this
233  /// function.  This only works after register allocation.
234  bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
235
236  /// setPhysRegUsed - Mark the specified register used in this function.
237  /// This should only be called during and after register allocation.
238  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
239
240  /// addPhysRegsUsed - Mark the specified registers used in this function.
241  /// This should only be called during and after register allocation.
242  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
243
244  /// setPhysRegUnused - Mark the specified register unused in this function.
245  /// This should only be called during and after register allocation.
246  void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
247
248  /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
249  /// subregisters. That means that if R is used, so are all subregisters.
250  void closePhysRegsUsed(const TargetRegisterInfo&);
251
252  //===--------------------------------------------------------------------===//
253  // LiveIn/LiveOut Management
254  //===--------------------------------------------------------------------===//
255
256  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
257  /// is an error to add the same register to the same set more than once.
258  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
259    LiveIns.push_back(std::make_pair(Reg, vreg));
260  }
261  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
262
263  // Iteration support for live in/out sets.  These sets are kept in sorted
264  // order by their register number.
265  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
266  livein_iterator;
267  typedef std::vector<unsigned>::const_iterator liveout_iterator;
268  livein_iterator livein_begin() const { return LiveIns.begin(); }
269  livein_iterator livein_end()   const { return LiveIns.end(); }
270  bool            livein_empty() const { return LiveIns.empty(); }
271  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
272  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
273  bool             liveout_empty() const { return LiveOuts.empty(); }
274
275  bool isLiveIn(unsigned Reg) const;
276  bool isLiveOut(unsigned Reg) const;
277
278  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
279  /// corresponding live-in physical register.
280  unsigned getLiveInPhysReg(unsigned VReg) const;
281
282  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
283  /// corresponding live-in physical register.
284  unsigned getLiveInVirtReg(unsigned PReg) const;
285
286  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
287  /// into the given entry block.
288  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
289                        const TargetRegisterInfo &TRI,
290                        const TargetInstrInfo &TII);
291
292private:
293  void HandleVRegListReallocation();
294
295public:
296  /// defusechain_iterator - This class provides iterator support for machine
297  /// operands in the function that use or define a specific register.  If
298  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
299  /// returns defs.  If neither are true then you are silly and it always
300  /// returns end().  If SkipDebug is true it skips uses marked Debug
301  /// when incrementing.
302  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
303  class defusechain_iterator
304    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
305    MachineOperand *Op;
306    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
307      // If the first node isn't one we're interested in, advance to one that
308      // we are interested in.
309      if (op) {
310        if ((!ReturnUses && op->isUse()) ||
311            (!ReturnDefs && op->isDef()) ||
312            (SkipDebug && op->isDebug()))
313          ++*this;
314      }
315    }
316    friend class MachineRegisterInfo;
317  public:
318    typedef std::iterator<std::forward_iterator_tag,
319                          MachineInstr, ptrdiff_t>::reference reference;
320    typedef std::iterator<std::forward_iterator_tag,
321                          MachineInstr, ptrdiff_t>::pointer pointer;
322
323    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
324    defusechain_iterator() : Op(0) {}
325
326    bool operator==(const defusechain_iterator &x) const {
327      return Op == x.Op;
328    }
329    bool operator!=(const defusechain_iterator &x) const {
330      return !operator==(x);
331    }
332
333    /// atEnd - return true if this iterator is equal to reg_end() on the value.
334    bool atEnd() const { return Op == 0; }
335
336    // Iterator traversal: forward iteration only
337    defusechain_iterator &operator++() {          // Preincrement
338      assert(Op && "Cannot increment end iterator!");
339      Op = Op->getNextOperandForReg();
340
341      // If this is an operand we don't care about, skip it.
342      while (Op && ((!ReturnUses && Op->isUse()) ||
343                    (!ReturnDefs && Op->isDef()) ||
344                    (SkipDebug && Op->isDebug())))
345        Op = Op->getNextOperandForReg();
346
347      return *this;
348    }
349    defusechain_iterator operator++(int) {        // Postincrement
350      defusechain_iterator tmp = *this; ++*this; return tmp;
351    }
352
353    /// skipInstruction - move forward until reaching a different instruction.
354    /// Return the skipped instruction that is no longer pointed to, or NULL if
355    /// already pointing to end().
356    MachineInstr *skipInstruction() {
357      if (!Op) return 0;
358      MachineInstr *MI = Op->getParent();
359      do ++*this;
360      while (Op && Op->getParent() == MI);
361      return MI;
362    }
363
364    MachineOperand &getOperand() const {
365      assert(Op && "Cannot dereference end iterator!");
366      return *Op;
367    }
368
369    /// getOperandNo - Return the operand # of this MachineOperand in its
370    /// MachineInstr.
371    unsigned getOperandNo() const {
372      assert(Op && "Cannot dereference end iterator!");
373      return Op - &Op->getParent()->getOperand(0);
374    }
375
376    // Retrieve a reference to the current operand.
377    MachineInstr &operator*() const {
378      assert(Op && "Cannot dereference end iterator!");
379      return *Op->getParent();
380    }
381
382    MachineInstr *operator->() const {
383      assert(Op && "Cannot dereference end iterator!");
384      return Op->getParent();
385    }
386  };
387
388};
389
390} // End llvm namespace
391
392#endif
393