ScheduleDAG.h revision 2da8bc8a5f7705ac131184cd247f48500da0d74e
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/PointerIntPair.h"
25
26namespace llvm {
27  class AliasAnalysis;
28  class SUnit;
29  class MachineConstantPool;
30  class MachineFunction;
31  class MachineRegisterInfo;
32  class MachineInstr;
33  class TargetRegisterInfo;
34  class ScheduleDAG;
35  class SDNode;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetMachine;
39  class TargetRegisterClass;
40  template<class Graph> class GraphWriter;
41
42  /// SDep - Scheduling dependency. This represents one direction of an
43  /// edge in the scheduling DAG.
44  class SDep {
45  public:
46    /// Kind - These are the different kinds of scheduling dependencies.
47    enum Kind {
48      Data,        ///< Regular data dependence (aka true-dependence).
49      Anti,        ///< A register anti-dependedence (aka WAR).
50      Output,      ///< A register output-dependence (aka WAW).
51      Order        ///< Any other ordering dependency.
52    };
53
54  private:
55    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
56    /// indicating the kind of the dependency.
57    PointerIntPair<SUnit *, 2, Kind> Dep;
58
59    /// Contents - A union discriminated by the dependence kind.
60    union {
61      /// Reg - For Data, Anti, and Output dependencies, the associated
62      /// register. For Data dependencies that don't currently have a register
63      /// assigned, this is set to zero.
64      unsigned Reg;
65
66      /// Order - Additional information about Order dependencies.
67      struct {
68        /// isNormalMemory - True if both sides of the dependence
69        /// access memory in non-volatile and fully modeled ways.
70        bool isNormalMemory : 1;
71
72        /// isMustAlias - True if both sides of the dependence are known to
73        /// access the same memory.
74        bool isMustAlias : 1;
75
76        /// isArtificial - True if this is an artificial dependency, meaning
77        /// it is not necessary for program correctness, and may be safely
78        /// deleted if necessary.
79        bool isArtificial : 1;
80      } Order;
81    } Contents;
82
83    /// Latency - The time associated with this edge. Often this is just
84    /// the value of the Latency field of the predecessor, however advanced
85    /// models may provide additional information about specific edges.
86    unsigned Latency;
87
88  public:
89    /// SDep - Construct a null SDep. This is only for use by container
90    /// classes which require default constructors. SUnits may not
91    /// have null SDep edges.
92    SDep() : Dep(0, Data) {}
93
94    /// SDep - Construct an SDep with the specified values.
95    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
96         bool isNormalMemory = false, bool isMustAlias = false,
97         bool isArtificial = false)
98      : Dep(S, kind), Contents(), Latency(latency) {
99      switch (kind) {
100      case Anti:
101      case Output:
102        assert(Reg != 0 &&
103               "SDep::Anti and SDep::Output must use a non-zero Reg!");
104        // fall through
105      case Data:
106        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
107        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
108        Contents.Reg = Reg;
109        break;
110      case Order:
111        assert(Reg == 0 && "Reg given for non-register dependence!");
112        Contents.Order.isNormalMemory = isNormalMemory;
113        Contents.Order.isMustAlias = isMustAlias;
114        Contents.Order.isArtificial = isArtificial;
115        break;
116      }
117    }
118
119    bool operator==(const SDep &Other) const {
120      if (Dep != Other.Dep || Latency != Other.Latency) return false;
121      switch (Dep.getInt()) {
122      case Data:
123      case Anti:
124      case Output:
125        return Contents.Reg == Other.Contents.Reg;
126      case Order:
127        return Contents.Order.isNormalMemory ==
128                 Other.Contents.Order.isNormalMemory &&
129               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
130               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
131      }
132      assert(0 && "Invalid dependency kind!");
133      return false;
134    }
135
136    bool operator!=(const SDep &Other) const {
137      return !operator==(Other);
138    }
139
140    /// getLatency - Return the latency value for this edge, which roughly
141    /// means the minimum number of cycles that must elapse between the
142    /// predecessor and the successor, given that they have this edge
143    /// between them.
144    unsigned getLatency() const {
145      return Latency;
146    }
147
148    /// setLatency - Set the latency for this edge.
149    void setLatency(unsigned Lat) {
150      Latency = Lat;
151    }
152
153    //// getSUnit - Return the SUnit to which this edge points.
154    SUnit *getSUnit() const {
155      return Dep.getPointer();
156    }
157
158    //// setSUnit - Assign the SUnit to which this edge points.
159    void setSUnit(SUnit *SU) {
160      Dep.setPointer(SU);
161    }
162
163    /// getKind - Return an enum value representing the kind of the dependence.
164    Kind getKind() const {
165      return Dep.getInt();
166    }
167
168    /// isCtrl - Shorthand for getKind() != SDep::Data.
169    bool isCtrl() const {
170      return getKind() != Data;
171    }
172
173    /// isNormalMemory - Test if this is an Order dependence between two
174    /// memory accesses where both sides of the dependence access memory
175    /// in non-volatile and fully modeled ways.
176    bool isNormalMemory() const {
177      return getKind() == Order && Contents.Order.isNormalMemory;
178    }
179
180    /// isMustAlias - Test if this is an Order dependence that is marked
181    /// as "must alias", meaning that the SUnits at either end of the edge
182    /// have a memory dependence on a known memory location.
183    bool isMustAlias() const {
184      return getKind() == Order && Contents.Order.isMustAlias;
185    }
186
187    /// isArtificial - Test if this is an Order dependence that is marked
188    /// as "artificial", meaning it isn't necessary for correctness.
189    bool isArtificial() const {
190      return getKind() == Order && Contents.Order.isArtificial;
191    }
192
193    /// isAssignedRegDep - Test if this is a Data dependence that is
194    /// associated with a register.
195    bool isAssignedRegDep() const {
196      return getKind() == Data && Contents.Reg != 0;
197    }
198
199    /// getReg - Return the register associated with this edge. This is
200    /// only valid on Data, Anti, and Output edges. On Data edges, this
201    /// value may be zero, meaning there is no associated register.
202    unsigned getReg() const {
203      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
204             "getReg called on non-register dependence edge!");
205      return Contents.Reg;
206    }
207
208    /// setReg - Assign the associated register for this edge. This is
209    /// only valid on Data, Anti, and Output edges. On Anti and Output
210    /// edges, this value must not be zero. On Data edges, the value may
211    /// be zero, which would mean that no specific register is associated
212    /// with this edge.
213    void setReg(unsigned Reg) {
214      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
215             "setReg called on non-register dependence edge!");
216      assert((getKind() != Anti || Reg != 0) &&
217             "SDep::Anti edge cannot use the zero register!");
218      assert((getKind() != Output || Reg != 0) &&
219             "SDep::Output edge cannot use the zero register!");
220      Contents.Reg = Reg;
221    }
222  };
223
224  template <>
225  struct isPodLike<SDep> { static const bool value = true; };
226
227  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
228  class SUnit {
229  private:
230    SDNode *Node;                       // Representative node.
231    MachineInstr *Instr;                // Alternatively, a MachineInstr.
232  public:
233    SUnit *OrigNode;                    // If not this, the node from which
234                                        // this node was cloned.
235
236    // Preds/Succs - The SUnits before/after us in the graph.
237    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
238    SmallVector<SDep, 4> Succs;  // All sunit successors.
239
240    typedef SmallVector<SDep, 4>::iterator pred_iterator;
241    typedef SmallVector<SDep, 4>::iterator succ_iterator;
242    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
243    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
244
245    unsigned NodeNum;                   // Entry # of node in the node vector.
246    unsigned NodeQueueId;               // Queue id of node.
247    unsigned NumPreds;                  // # of SDep::Data preds.
248    unsigned NumSuccs;                  // # of SDep::Data sucss.
249    unsigned NumPredsLeft;              // # of preds not scheduled.
250    unsigned NumSuccsLeft;              // # of succs not scheduled.
251    unsigned short Latency;             // Node latency.
252    bool isCall           : 1;          // Is a function call.
253    bool isTwoAddress     : 1;          // Is a two-address instruction.
254    bool isCommutable     : 1;          // Is a commutable instruction.
255    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
256    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
257    bool isPending        : 1;          // True once pending.
258    bool isAvailable      : 1;          // True once available.
259    bool isScheduled      : 1;          // True once scheduled.
260    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
261    bool isCloned         : 1;          // True if this node has been cloned.
262    Sched::Preference SchedulingPref;   // Scheduling preference.
263
264    SmallVector<MachineInstr*, 4> DbgInstrList; // dbg_values referencing this.
265  private:
266    bool isDepthCurrent   : 1;          // True if Depth is current.
267    bool isHeightCurrent  : 1;          // True if Height is current.
268    unsigned Depth;                     // Node depth.
269    unsigned Height;                    // Node height.
270  public:
271    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
272    const TargetRegisterClass *CopySrcRC;
273
274    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
275    /// an SDNode and any nodes flagged to it.
276    SUnit(SDNode *node, unsigned nodenum)
277      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
278        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
279        NumSuccsLeft(0), Latency(0),
280        isCall(false), isTwoAddress(false), isCommutable(false),
281        hasPhysRegDefs(false), hasPhysRegClobbers(false),
282        isPending(false), isAvailable(false), isScheduled(false),
283        isScheduleHigh(false), isCloned(false),
284        SchedulingPref(Sched::None),
285        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
286        CopyDstRC(NULL), CopySrcRC(NULL) {}
287
288    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
289    /// a MachineInstr.
290    SUnit(MachineInstr *instr, unsigned nodenum)
291      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
292        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
293        NumSuccsLeft(0), Latency(0),
294        isCall(false), isTwoAddress(false), isCommutable(false),
295        hasPhysRegDefs(false), hasPhysRegClobbers(false),
296        isPending(false), isAvailable(false), isScheduled(false),
297        isScheduleHigh(false), isCloned(false),
298        SchedulingPref(Sched::None),
299        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
300        CopyDstRC(NULL), CopySrcRC(NULL) {}
301
302    /// SUnit - Construct a placeholder SUnit.
303    SUnit()
304      : Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
305        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
306        NumSuccsLeft(0), Latency(0),
307        isCall(false), isTwoAddress(false), isCommutable(false),
308        hasPhysRegDefs(false), hasPhysRegClobbers(false),
309        isPending(false), isAvailable(false), isScheduled(false),
310        isScheduleHigh(false), isCloned(false),
311        SchedulingPref(Sched::None),
312        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
313        CopyDstRC(NULL), CopySrcRC(NULL) {}
314
315    /// setNode - Assign the representative SDNode for this SUnit.
316    /// This may be used during pre-regalloc scheduling.
317    void setNode(SDNode *N) {
318      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
319      Node = N;
320    }
321
322    /// getNode - Return the representative SDNode for this SUnit.
323    /// This may be used during pre-regalloc scheduling.
324    SDNode *getNode() const {
325      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
326      return Node;
327    }
328
329    /// isInstr - Return true if this SUnit refers to a machine instruction as
330    /// opposed to an SDNode.
331    bool isInstr() const { return !Node; }
332
333    /// setInstr - Assign the instruction for the SUnit.
334    /// This may be used during post-regalloc scheduling.
335    void setInstr(MachineInstr *MI) {
336      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
337      Instr = MI;
338    }
339
340    /// getInstr - Return the representative MachineInstr for this SUnit.
341    /// This may be used during post-regalloc scheduling.
342    MachineInstr *getInstr() const {
343      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
344      return Instr;
345    }
346
347    /// addPred - This adds the specified edge as a pred of the current node if
348    /// not already.  It also adds the current node as a successor of the
349    /// specified node.
350    void addPred(const SDep &D);
351
352    /// removePred - This removes the specified edge as a pred of the current
353    /// node if it exists.  It also removes the current node as a successor of
354    /// the specified node.
355    void removePred(const SDep &D);
356
357    /// getDepth - Return the depth of this node, which is the length of the
358    /// maximum path up to any node with has no predecessors.
359    unsigned getDepth() const {
360      if (!isDepthCurrent)
361        const_cast<SUnit *>(this)->ComputeDepth();
362      return Depth;
363    }
364
365    /// getHeight - Return the height of this node, which is the length of the
366    /// maximum path down to any node with has no successors.
367    unsigned getHeight() const {
368      if (!isHeightCurrent)
369        const_cast<SUnit *>(this)->ComputeHeight();
370      return Height;
371    }
372
373    /// setDepthToAtLeast - If NewDepth is greater than this node's
374    /// depth value, set it to be the new depth value. This also
375    /// recursively marks successor nodes dirty.
376    void setDepthToAtLeast(unsigned NewDepth);
377
378    /// setDepthToAtLeast - If NewDepth is greater than this node's
379    /// depth value, set it to be the new height value. This also
380    /// recursively marks predecessor nodes dirty.
381    void setHeightToAtLeast(unsigned NewHeight);
382
383    /// setDepthDirty - Set a flag in this node to indicate that its
384    /// stored Depth value will require recomputation the next time
385    /// getDepth() is called.
386    void setDepthDirty();
387
388    /// setHeightDirty - Set a flag in this node to indicate that its
389    /// stored Height value will require recomputation the next time
390    /// getHeight() is called.
391    void setHeightDirty();
392
393    /// isPred - Test if node N is a predecessor of this node.
394    bool isPred(SUnit *N) {
395      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
396        if (Preds[i].getSUnit() == N)
397          return true;
398      return false;
399    }
400
401    /// isSucc - Test if node N is a successor of this node.
402    bool isSucc(SUnit *N) {
403      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
404        if (Succs[i].getSUnit() == N)
405          return true;
406      return false;
407    }
408
409    void dump(const ScheduleDAG *G) const;
410    void dumpAll(const ScheduleDAG *G) const;
411    void print(raw_ostream &O, const ScheduleDAG *G) const;
412
413  private:
414    void ComputeDepth();
415    void ComputeHeight();
416  };
417
418  //===--------------------------------------------------------------------===//
419  /// SchedulingPriorityQueue - This interface is used to plug different
420  /// priorities computation algorithms into the list scheduler. It implements
421  /// the interface of a standard priority queue, where nodes are inserted in
422  /// arbitrary order and returned in priority order.  The computation of the
423  /// priority and the representation of the queue are totally up to the
424  /// implementation to decide.
425  ///
426  class SchedulingPriorityQueue {
427    unsigned CurCycle;
428    bool HasReadyFilter;
429  public:
430    SchedulingPriorityQueue(bool rf = false):
431      CurCycle(0), HasReadyFilter(rf) {}
432    virtual ~SchedulingPriorityQueue() {}
433
434    virtual bool isBottomUp() const = 0;
435
436    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
437    virtual void addNode(const SUnit *SU) = 0;
438    virtual void updateNode(const SUnit *SU) = 0;
439    virtual void releaseState() = 0;
440
441    virtual bool empty() const = 0;
442
443    bool hasReadyFilter() const { return HasReadyFilter; }
444
445    virtual bool isReady(SUnit *U) const {
446      assert(!HasReadyFilter && "The ready filter must override isReady()");
447      return true;
448    }
449    virtual void push(SUnit *U) = 0;
450
451    void push_all(const std::vector<SUnit *> &Nodes) {
452      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
453           E = Nodes.end(); I != E; ++I)
454        push(*I);
455    }
456
457    virtual SUnit *pop() = 0;
458
459    virtual void remove(SUnit *SU) = 0;
460
461    virtual void dump(ScheduleDAG *DAG) const {}
462
463    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
464    /// allows the priority function to adjust the priority of related
465    /// unscheduled nodes, for example.
466    ///
467    virtual void ScheduledNode(SUnit *) {}
468
469    virtual void UnscheduledNode(SUnit *) {}
470
471    void setCurCycle(unsigned Cycle) {
472      CurCycle = Cycle;
473    }
474
475    unsigned getCurCycle() const {
476      return CurCycle;
477    }
478  };
479
480  class ScheduleDAG {
481  public:
482    MachineBasicBlock *BB;          // The block in which to insert instructions
483    MachineBasicBlock::iterator InsertPos;// The position to insert instructions
484    const TargetMachine &TM;              // Target processor
485    const TargetInstrInfo *TII;           // Target instruction information
486    const TargetRegisterInfo *TRI;        // Target processor register info
487    MachineFunction &MF;                  // Machine function
488    MachineRegisterInfo &MRI;             // Virtual/real register map
489    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
490                                          // represent noop instructions.
491    std::vector<SUnit> SUnits;            // The scheduling units.
492    SUnit EntrySU;                        // Special node for the region entry.
493    SUnit ExitSU;                         // Special node for the region exit.
494
495    explicit ScheduleDAG(MachineFunction &mf);
496
497    virtual ~ScheduleDAG();
498
499    /// getInstrDesc - Return the TargetInstrDesc of this SUnit.
500    /// Return NULL for SDNodes without a machine opcode.
501    const TargetInstrDesc *getInstrDesc(const SUnit *SU) const {
502      if (SU->isInstr()) return &SU->getInstr()->getDesc();
503      return getNodeDesc(SU->getNode());
504    }
505
506    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
507    /// using 'dot'.
508    ///
509    void viewGraph();
510
511    /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
512    /// according to the order specified in Sequence.
513    ///
514    virtual MachineBasicBlock *EmitSchedule() = 0;
515
516    void dumpSchedule() const;
517
518    virtual void dumpNode(const SUnit *SU) const = 0;
519
520    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
521    /// of the ScheduleDAG.
522    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
523
524    /// addCustomGraphFeatures - Add custom features for a visualization of
525    /// the ScheduleDAG.
526    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
527
528#ifndef NDEBUG
529    /// VerifySchedule - Verify that all SUnits were scheduled and that
530    /// their state is consistent.
531    void VerifySchedule(bool isBottomUp);
532#endif
533
534  protected:
535    /// Run - perform scheduling.
536    ///
537    void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos);
538
539    /// BuildSchedGraph - Build SUnits and set up their Preds and Succs
540    /// to form the scheduling dependency graph.
541    ///
542    virtual void BuildSchedGraph(AliasAnalysis *AA) = 0;
543
544    /// ComputeLatency - Compute node latency.
545    ///
546    virtual void ComputeLatency(SUnit *SU) = 0;
547
548    /// ComputeOperandLatency - Override dependence edge latency using
549    /// operand use/def information
550    ///
551    virtual void ComputeOperandLatency(SUnit *, SUnit *,
552                                       SDep&) const { }
553
554    /// Schedule - Order nodes according to selected style, filling
555    /// in the Sequence member.
556    ///
557    virtual void Schedule() = 0;
558
559    /// ForceUnitLatencies - Return true if all scheduling edges should be given
560    /// a latency value of one.  The default is to return false; schedulers may
561    /// override this as needed.
562    virtual bool ForceUnitLatencies() const { return false; }
563
564    /// EmitNoop - Emit a noop instruction.
565    ///
566    void EmitNoop();
567
568    void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
569
570  private:
571    // Return the TargetInstrDesc of this SDNode or NULL.
572    const TargetInstrDesc *getNodeDesc(const SDNode *Node) const;
573  };
574
575  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
576                                             SUnit, ptrdiff_t> {
577    SUnit *Node;
578    unsigned Operand;
579
580    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
581  public:
582    bool operator==(const SUnitIterator& x) const {
583      return Operand == x.Operand;
584    }
585    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
586
587    const SUnitIterator &operator=(const SUnitIterator &I) {
588      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
589      Operand = I.Operand;
590      return *this;
591    }
592
593    pointer operator*() const {
594      return Node->Preds[Operand].getSUnit();
595    }
596    pointer operator->() const { return operator*(); }
597
598    SUnitIterator& operator++() {                // Preincrement
599      ++Operand;
600      return *this;
601    }
602    SUnitIterator operator++(int) { // Postincrement
603      SUnitIterator tmp = *this; ++*this; return tmp;
604    }
605
606    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
607    static SUnitIterator end  (SUnit *N) {
608      return SUnitIterator(N, (unsigned)N->Preds.size());
609    }
610
611    unsigned getOperand() const { return Operand; }
612    const SUnit *getNode() const { return Node; }
613    /// isCtrlDep - Test if this is not an SDep::Data dependence.
614    bool isCtrlDep() const {
615      return getSDep().isCtrl();
616    }
617    bool isArtificialDep() const {
618      return getSDep().isArtificial();
619    }
620    const SDep &getSDep() const {
621      return Node->Preds[Operand];
622    }
623  };
624
625  template <> struct GraphTraits<SUnit*> {
626    typedef SUnit NodeType;
627    typedef SUnitIterator ChildIteratorType;
628    static inline NodeType *getEntryNode(SUnit *N) { return N; }
629    static inline ChildIteratorType child_begin(NodeType *N) {
630      return SUnitIterator::begin(N);
631    }
632    static inline ChildIteratorType child_end(NodeType *N) {
633      return SUnitIterator::end(N);
634    }
635  };
636
637  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
638    typedef std::vector<SUnit>::iterator nodes_iterator;
639    static nodes_iterator nodes_begin(ScheduleDAG *G) {
640      return G->SUnits.begin();
641    }
642    static nodes_iterator nodes_end(ScheduleDAG *G) {
643      return G->SUnits.end();
644    }
645  };
646
647  /// ScheduleDAGTopologicalSort is a class that computes a topological
648  /// ordering for SUnits and provides methods for dynamically updating
649  /// the ordering as new edges are added.
650  ///
651  /// This allows a very fast implementation of IsReachable, for example.
652  ///
653  class ScheduleDAGTopologicalSort {
654    /// SUnits - A reference to the ScheduleDAG's SUnits.
655    std::vector<SUnit> &SUnits;
656
657    /// Index2Node - Maps topological index to the node number.
658    std::vector<int> Index2Node;
659    /// Node2Index - Maps the node number to its topological index.
660    std::vector<int> Node2Index;
661    /// Visited - a set of nodes visited during a DFS traversal.
662    BitVector Visited;
663
664    /// DFS - make a DFS traversal and mark all nodes affected by the
665    /// edge insertion. These nodes will later get new topological indexes
666    /// by means of the Shift method.
667    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
668
669    /// Shift - reassign topological indexes for the nodes in the DAG
670    /// to preserve the topological ordering.
671    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
672
673    /// Allocate - assign the topological index to the node n.
674    void Allocate(int n, int index);
675
676  public:
677    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
678
679    /// InitDAGTopologicalSorting - create the initial topological
680    /// ordering from the DAG to be scheduled.
681    void InitDAGTopologicalSorting();
682
683    /// IsReachable - Checks if SU is reachable from TargetSU.
684    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
685
686    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
687    /// will create a cycle.
688    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
689
690    /// AddPred - Updates the topological ordering to accomodate an edge
691    /// to be added from SUnit X to SUnit Y.
692    void AddPred(SUnit *Y, SUnit *X);
693
694    /// RemovePred - Updates the topological ordering to accomodate an
695    /// an edge to be removed from the specified node N from the predecessors
696    /// of the current node M.
697    void RemovePred(SUnit *M, SUnit *N);
698
699    typedef std::vector<int>::iterator iterator;
700    typedef std::vector<int>::const_iterator const_iterator;
701    iterator begin() { return Index2Node.begin(); }
702    const_iterator begin() const { return Index2Node.begin(); }
703    iterator end() { return Index2Node.end(); }
704    const_iterator end() const { return Index2Node.end(); }
705
706    typedef std::vector<int>::reverse_iterator reverse_iterator;
707    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
708    reverse_iterator rbegin() { return Index2Node.rbegin(); }
709    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
710    reverse_iterator rend() { return Index2Node.rend(); }
711    const_reverse_iterator rend() const { return Index2Node.rend(); }
712  };
713}
714
715#endif
716