MCAssembler.h revision fa8de2403078353fe3c7ae160bec22fa23d4d315
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/ilist_node.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/Casting.h"
21#include "llvm/Support/DataTypes.h"
22#include <vector> // FIXME: Shouldn't be needed.
23
24namespace llvm {
25class raw_ostream;
26class MCAsmLayout;
27class MCAssembler;
28class MCContext;
29class MCCodeEmitter;
30class MCExpr;
31class MCFragment;
32class MCObjectWriter;
33class MCSection;
34class MCSectionData;
35class MCSymbol;
36class MCSymbolData;
37class MCValue;
38class MCAsmBackend;
39
40class MCFragment : public ilist_node<MCFragment> {
41  friend class MCAsmLayout;
42
43  MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
44  void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
45
46public:
47  enum FragmentType {
48    FT_Align,
49    FT_Data,
50    FT_Fill,
51    FT_Inst,
52    FT_Org,
53    FT_Dwarf,
54    FT_DwarfFrame,
55    FT_LEB
56  };
57
58private:
59  FragmentType Kind;
60
61  /// Parent - The data for the section this fragment is in.
62  MCSectionData *Parent;
63
64  /// Atom - The atom this fragment is in, as represented by it's defining
65  /// symbol. Atom's are only used by backends which set
66  /// \see MCAsmBackend::hasReliableSymbolDifference().
67  MCSymbolData *Atom;
68
69  /// @name Assembler Backend Data
70  /// @{
71  //
72  // FIXME: This could all be kept private to the assembler implementation.
73
74  /// Offset - The offset of this fragment in its section. This is ~0 until
75  /// initialized.
76  uint64_t Offset;
77
78  /// LayoutOrder - The layout order of this fragment.
79  unsigned LayoutOrder;
80
81  /// @}
82
83protected:
84  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
85
86public:
87  // Only for sentinel.
88  MCFragment();
89  virtual ~MCFragment();
90
91  FragmentType getKind() const { return Kind; }
92
93  MCSectionData *getParent() const { return Parent; }
94  void setParent(MCSectionData *Value) { Parent = Value; }
95
96  MCSymbolData *getAtom() const { return Atom; }
97  void setAtom(MCSymbolData *Value) { Atom = Value; }
98
99  unsigned getLayoutOrder() const { return LayoutOrder; }
100  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
101
102  void dump();
103};
104
105class MCDataFragment : public MCFragment {
106  virtual void anchor();
107  SmallString<32> Contents;
108
109  /// Fixups - The list of fixups in this fragment.
110  std::vector<MCFixup> Fixups;
111
112public:
113  typedef std::vector<MCFixup>::const_iterator const_fixup_iterator;
114  typedef std::vector<MCFixup>::iterator fixup_iterator;
115
116public:
117  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
118
119  /// @name Accessors
120  /// @{
121
122  SmallString<32> &getContents() { return Contents; }
123  const SmallString<32> &getContents() const { return Contents; }
124
125  /// @}
126  /// @name Fixup Access
127  /// @{
128
129  void addFixup(MCFixup Fixup) {
130    // Enforce invariant that fixups are in offset order.
131    assert((Fixups.empty() || Fixup.getOffset() >= Fixups.back().getOffset()) &&
132           "Fixups must be added in order!");
133    Fixups.push_back(Fixup);
134  }
135
136  std::vector<MCFixup> &getFixups() { return Fixups; }
137  const std::vector<MCFixup> &getFixups() const { return Fixups; }
138
139  fixup_iterator fixup_begin() { return Fixups.begin(); }
140  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
141
142  fixup_iterator fixup_end() {return Fixups.end();}
143  const_fixup_iterator fixup_end() const {return Fixups.end();}
144
145  /// @}
146
147  static bool classof(const MCFragment *F) {
148    return F->getKind() == MCFragment::FT_Data;
149  }
150};
151
152// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
153// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
154// with this approach (as opposed to making MCInstFragment a very light weight
155// object with just the MCInst and a code size, then we should just change
156// MCDataFragment to have an optional MCInst at its end.
157class MCInstFragment : public MCFragment {
158  virtual void anchor();
159
160  /// Inst - The instruction this is a fragment for.
161  MCInst Inst;
162
163  /// Code - Binary data for the currently encoded instruction.
164  SmallString<8> Code;
165
166  /// Fixups - The list of fixups in this fragment.
167  SmallVector<MCFixup, 1> Fixups;
168
169public:
170  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
171  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
172
173public:
174  MCInstFragment(const MCInst &_Inst, MCSectionData *SD = 0)
175    : MCFragment(FT_Inst, SD), Inst(_Inst) {
176  }
177
178  /// @name Accessors
179  /// @{
180
181  SmallVectorImpl<char> &getCode() { return Code; }
182  const SmallVectorImpl<char> &getCode() const { return Code; }
183
184  unsigned getInstSize() const { return Code.size(); }
185  const MCInst &getInst() const { return Inst; }
186  void setInst(const MCInst& Value) { Inst = Value; }
187
188  /// @}
189  /// @name Fixup Access
190  /// @{
191
192  SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
193  const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
194
195  fixup_iterator fixup_begin() { return Fixups.begin(); }
196  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
197
198  fixup_iterator fixup_end() {return Fixups.end();}
199  const_fixup_iterator fixup_end() const {return Fixups.end();}
200
201  /// @}
202
203  static bool classof(const MCFragment *F) {
204    return F->getKind() == MCFragment::FT_Inst;
205  }
206};
207
208class MCAlignFragment : public MCFragment {
209  virtual void anchor();
210
211  /// Alignment - The alignment to ensure, in bytes.
212  unsigned Alignment;
213
214  /// Value - Value to use for filling padding bytes.
215  int64_t Value;
216
217  /// ValueSize - The size of the integer (in bytes) of \p Value.
218  unsigned ValueSize;
219
220  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
221  /// cannot be satisfied in this width then this fragment is ignored.
222  unsigned MaxBytesToEmit;
223
224  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
225  /// of using the provided value. The exact interpretation of this flag is
226  /// target dependent.
227  bool EmitNops : 1;
228
229public:
230  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
231                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
232    : MCFragment(FT_Align, SD), Alignment(_Alignment),
233      Value(_Value),ValueSize(_ValueSize),
234      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
235
236  /// @name Accessors
237  /// @{
238
239  unsigned getAlignment() const { return Alignment; }
240
241  int64_t getValue() const { return Value; }
242
243  unsigned getValueSize() const { return ValueSize; }
244
245  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
246
247  bool hasEmitNops() const { return EmitNops; }
248  void setEmitNops(bool Value) { EmitNops = Value; }
249
250  /// @}
251
252  static bool classof(const MCFragment *F) {
253    return F->getKind() == MCFragment::FT_Align;
254  }
255};
256
257class MCFillFragment : public MCFragment {
258  virtual void anchor();
259
260  /// Value - Value to use for filling bytes.
261  int64_t Value;
262
263  /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
264  /// this is a virtual fill fragment.
265  unsigned ValueSize;
266
267  /// Size - The number of bytes to insert.
268  uint64_t Size;
269
270public:
271  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
272                 MCSectionData *SD = 0)
273    : MCFragment(FT_Fill, SD),
274      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
275    assert((!ValueSize || (Size % ValueSize) == 0) &&
276           "Fill size must be a multiple of the value size!");
277  }
278
279  /// @name Accessors
280  /// @{
281
282  int64_t getValue() const { return Value; }
283
284  unsigned getValueSize() const { return ValueSize; }
285
286  uint64_t getSize() const { return Size; }
287
288  /// @}
289
290  static bool classof(const MCFragment *F) {
291    return F->getKind() == MCFragment::FT_Fill;
292  }
293};
294
295class MCOrgFragment : public MCFragment {
296  virtual void anchor();
297
298  /// Offset - The offset this fragment should start at.
299  const MCExpr *Offset;
300
301  /// Value - Value to use for filling bytes.
302  int8_t Value;
303
304public:
305  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
306    : MCFragment(FT_Org, SD),
307      Offset(&_Offset), Value(_Value) {}
308
309  /// @name Accessors
310  /// @{
311
312  const MCExpr &getOffset() const { return *Offset; }
313
314  uint8_t getValue() const { return Value; }
315
316  /// @}
317
318  static bool classof(const MCFragment *F) {
319    return F->getKind() == MCFragment::FT_Org;
320  }
321};
322
323class MCLEBFragment : public MCFragment {
324  virtual void anchor();
325
326  /// Value - The value this fragment should contain.
327  const MCExpr *Value;
328
329  /// IsSigned - True if this is a sleb128, false if uleb128.
330  bool IsSigned;
331
332  SmallString<8> Contents;
333public:
334  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
335    : MCFragment(FT_LEB, SD),
336      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
337
338  /// @name Accessors
339  /// @{
340
341  const MCExpr &getValue() const { return *Value; }
342
343  bool isSigned() const { return IsSigned; }
344
345  SmallString<8> &getContents() { return Contents; }
346  const SmallString<8> &getContents() const { return Contents; }
347
348  /// @}
349
350  static bool classof(const MCFragment *F) {
351    return F->getKind() == MCFragment::FT_LEB;
352  }
353};
354
355class MCDwarfLineAddrFragment : public MCFragment {
356  virtual void anchor();
357
358  /// LineDelta - the value of the difference between the two line numbers
359  /// between two .loc dwarf directives.
360  int64_t LineDelta;
361
362  /// AddrDelta - The expression for the difference of the two symbols that
363  /// make up the address delta between two .loc dwarf directives.
364  const MCExpr *AddrDelta;
365
366  SmallString<8> Contents;
367
368public:
369  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
370                      MCSectionData *SD)
371    : MCFragment(FT_Dwarf, SD),
372      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
373
374  /// @name Accessors
375  /// @{
376
377  int64_t getLineDelta() const { return LineDelta; }
378
379  const MCExpr &getAddrDelta() const { return *AddrDelta; }
380
381  SmallString<8> &getContents() { return Contents; }
382  const SmallString<8> &getContents() const { return Contents; }
383
384  /// @}
385
386  static bool classof(const MCFragment *F) {
387    return F->getKind() == MCFragment::FT_Dwarf;
388  }
389};
390
391class MCDwarfCallFrameFragment : public MCFragment {
392  virtual void anchor();
393
394  /// AddrDelta - The expression for the difference of the two symbols that
395  /// make up the address delta between two .cfi_* dwarf directives.
396  const MCExpr *AddrDelta;
397
398  SmallString<8> Contents;
399
400public:
401  MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD)
402    : MCFragment(FT_DwarfFrame, SD),
403      AddrDelta(&_AddrDelta) { Contents.push_back(0); }
404
405  /// @name Accessors
406  /// @{
407
408  const MCExpr &getAddrDelta() const { return *AddrDelta; }
409
410  SmallString<8> &getContents() { return Contents; }
411  const SmallString<8> &getContents() const { return Contents; }
412
413  /// @}
414
415  static bool classof(const MCFragment *F) {
416    return F->getKind() == MCFragment::FT_DwarfFrame;
417  }
418};
419
420// FIXME: Should this be a separate class, or just merged into MCSection? Since
421// we anticipate the fast path being through an MCAssembler, the only reason to
422// keep it out is for API abstraction.
423class MCSectionData : public ilist_node<MCSectionData> {
424  friend class MCAsmLayout;
425
426  MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
427  void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
428
429public:
430  typedef iplist<MCFragment> FragmentListType;
431
432  typedef FragmentListType::const_iterator const_iterator;
433  typedef FragmentListType::iterator iterator;
434
435  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
436  typedef FragmentListType::reverse_iterator reverse_iterator;
437
438private:
439  FragmentListType Fragments;
440  const MCSection *Section;
441
442  /// Ordinal - The section index in the assemblers section list.
443  unsigned Ordinal;
444
445  /// LayoutOrder - The index of this section in the layout order.
446  unsigned LayoutOrder;
447
448  /// Alignment - The maximum alignment seen in this section.
449  unsigned Alignment;
450
451  /// @name Assembler Backend Data
452  /// @{
453  //
454  // FIXME: This could all be kept private to the assembler implementation.
455
456  /// HasInstructions - Whether this section has had instructions emitted into
457  /// it.
458  unsigned HasInstructions : 1;
459
460  /// @}
461
462public:
463  // Only for use as sentinel.
464  MCSectionData();
465  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
466
467  const MCSection &getSection() const { return *Section; }
468
469  unsigned getAlignment() const { return Alignment; }
470  void setAlignment(unsigned Value) { Alignment = Value; }
471
472  bool hasInstructions() const { return HasInstructions; }
473  void setHasInstructions(bool Value) { HasInstructions = Value; }
474
475  unsigned getOrdinal() const { return Ordinal; }
476  void setOrdinal(unsigned Value) { Ordinal = Value; }
477
478  unsigned getLayoutOrder() const { return LayoutOrder; }
479  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
480
481  /// @name Fragment Access
482  /// @{
483
484  const FragmentListType &getFragmentList() const { return Fragments; }
485  FragmentListType &getFragmentList() { return Fragments; }
486
487  iterator begin() { return Fragments.begin(); }
488  const_iterator begin() const { return Fragments.begin(); }
489
490  iterator end() { return Fragments.end(); }
491  const_iterator end() const { return Fragments.end(); }
492
493  reverse_iterator rbegin() { return Fragments.rbegin(); }
494  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
495
496  reverse_iterator rend() { return Fragments.rend(); }
497  const_reverse_iterator rend() const { return Fragments.rend(); }
498
499  size_t size() const { return Fragments.size(); }
500
501  bool empty() const { return Fragments.empty(); }
502
503  void dump();
504
505  /// @}
506};
507
508// FIXME: Same concerns as with SectionData.
509class MCSymbolData : public ilist_node<MCSymbolData> {
510public:
511  const MCSymbol *Symbol;
512
513  /// Fragment - The fragment this symbol's value is relative to, if any.
514  MCFragment *Fragment;
515
516  /// Offset - The offset to apply to the fragment address to form this symbol's
517  /// value.
518  uint64_t Offset;
519
520  /// IsExternal - True if this symbol is visible outside this translation
521  /// unit.
522  unsigned IsExternal : 1;
523
524  /// IsPrivateExtern - True if this symbol is private extern.
525  unsigned IsPrivateExtern : 1;
526
527  /// CommonSize - The size of the symbol, if it is 'common', or 0.
528  //
529  // FIXME: Pack this in with other fields? We could put it in offset, since a
530  // common symbol can never get a definition.
531  uint64_t CommonSize;
532
533  /// SymbolSize - An expression describing how to calculate the size of
534  /// a symbol. If a symbol has no size this field will be NULL.
535  const MCExpr *SymbolSize;
536
537  /// CommonAlign - The alignment of the symbol, if it is 'common'.
538  //
539  // FIXME: Pack this in with other fields?
540  unsigned CommonAlign;
541
542  /// Flags - The Flags field is used by object file implementations to store
543  /// additional per symbol information which is not easily classified.
544  uint32_t Flags;
545
546  /// Index - Index field, for use by the object file implementation.
547  uint64_t Index;
548
549public:
550  // Only for use as sentinel.
551  MCSymbolData();
552  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
553               MCAssembler *A = 0);
554
555  /// @name Accessors
556  /// @{
557
558  const MCSymbol &getSymbol() const { return *Symbol; }
559
560  MCFragment *getFragment() const { return Fragment; }
561  void setFragment(MCFragment *Value) { Fragment = Value; }
562
563  uint64_t getOffset() const { return Offset; }
564  void setOffset(uint64_t Value) { Offset = Value; }
565
566  /// @}
567  /// @name Symbol Attributes
568  /// @{
569
570  bool isExternal() const { return IsExternal; }
571  void setExternal(bool Value) { IsExternal = Value; }
572
573  bool isPrivateExtern() const { return IsPrivateExtern; }
574  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
575
576  /// isCommon - Is this a 'common' symbol.
577  bool isCommon() const { return CommonSize != 0; }
578
579  /// setCommon - Mark this symbol as being 'common'.
580  ///
581  /// \param Size - The size of the symbol.
582  /// \param Align - The alignment of the symbol.
583  void setCommon(uint64_t Size, unsigned Align) {
584    CommonSize = Size;
585    CommonAlign = Align;
586  }
587
588  /// getCommonSize - Return the size of a 'common' symbol.
589  uint64_t getCommonSize() const {
590    assert(isCommon() && "Not a 'common' symbol!");
591    return CommonSize;
592  }
593
594  void setSize(const MCExpr *SS) {
595    SymbolSize = SS;
596  }
597
598  const MCExpr *getSize() const {
599    return SymbolSize;
600  }
601
602
603  /// getCommonAlignment - Return the alignment of a 'common' symbol.
604  unsigned getCommonAlignment() const {
605    assert(isCommon() && "Not a 'common' symbol!");
606    return CommonAlign;
607  }
608
609  /// getFlags - Get the (implementation defined) symbol flags.
610  uint32_t getFlags() const { return Flags; }
611
612  /// setFlags - Set the (implementation defined) symbol flags.
613  void setFlags(uint32_t Value) { Flags = Value; }
614
615  /// modifyFlags - Modify the flags via a mask
616  void modifyFlags(uint32_t Value, uint32_t Mask) {
617    Flags = (Flags & ~Mask) | Value;
618  }
619
620  /// getIndex - Get the (implementation defined) index.
621  uint64_t getIndex() const { return Index; }
622
623  /// setIndex - Set the (implementation defined) index.
624  void setIndex(uint64_t Value) { Index = Value; }
625
626  /// @}
627
628  void dump();
629};
630
631// FIXME: This really doesn't belong here. See comments below.
632struct IndirectSymbolData {
633  MCSymbol *Symbol;
634  MCSectionData *SectionData;
635};
636
637// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
638// to one another.
639struct DataRegionData {
640  // This enum should be kept in sync w/ the mach-o definition in
641  // llvm/Object/MachOFormat.h.
642  enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
643  MCSymbol *Start;
644  MCSymbol *End;
645};
646
647class MCAssembler {
648  friend class MCAsmLayout;
649
650public:
651  typedef iplist<MCSectionData> SectionDataListType;
652  typedef iplist<MCSymbolData> SymbolDataListType;
653
654  typedef SectionDataListType::const_iterator const_iterator;
655  typedef SectionDataListType::iterator iterator;
656
657  typedef SymbolDataListType::const_iterator const_symbol_iterator;
658  typedef SymbolDataListType::iterator symbol_iterator;
659
660  typedef std::vector<IndirectSymbolData>::const_iterator
661    const_indirect_symbol_iterator;
662  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
663
664  typedef std::vector<DataRegionData>::const_iterator
665    const_data_region_iterator;
666  typedef std::vector<DataRegionData>::iterator data_region_iterator;
667
668private:
669  MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
670  void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
671
672  MCContext &Context;
673
674  MCAsmBackend &Backend;
675
676  MCCodeEmitter &Emitter;
677
678  MCObjectWriter &Writer;
679
680  raw_ostream &OS;
681
682  iplist<MCSectionData> Sections;
683
684  iplist<MCSymbolData> Symbols;
685
686  /// The map of sections to their associated assembler backend data.
687  //
688  // FIXME: Avoid this indirection?
689  DenseMap<const MCSection*, MCSectionData*> SectionMap;
690
691  /// The map of symbols to their associated assembler backend data.
692  //
693  // FIXME: Avoid this indirection?
694  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
695
696  std::vector<IndirectSymbolData> IndirectSymbols;
697
698  std::vector<DataRegionData> DataRegions;
699  /// The set of function symbols for which a .thumb_func directive has
700  /// been seen.
701  //
702  // FIXME: We really would like this in target specific code rather than
703  // here. Maybe when the relocation stuff moves to target specific,
704  // this can go with it? The streamer would need some target specific
705  // refactoring too.
706  SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
707
708  unsigned RelaxAll : 1;
709  unsigned NoExecStack : 1;
710  unsigned SubsectionsViaSymbols : 1;
711
712private:
713  /// Evaluate a fixup to a relocatable expression and the value which should be
714  /// placed into the fixup.
715  ///
716  /// \param Layout The layout to use for evaluation.
717  /// \param Fixup The fixup to evaluate.
718  /// \param DF The fragment the fixup is inside.
719  /// \param Target [out] On return, the relocatable expression the fixup
720  /// evaluates to.
721  /// \param Value [out] On return, the value of the fixup as currently laid
722  /// out.
723  /// \return Whether the fixup value was fully resolved. This is true if the
724  /// \p Value result is fixed, otherwise the value may change due to
725  /// relocation.
726  bool evaluateFixup(const MCAsmLayout &Layout,
727                     const MCFixup &Fixup, const MCFragment *DF,
728                     MCValue &Target, uint64_t &Value) const;
729
730  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
731  /// (increased in size, in order to hold its value correctly).
732  bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCInstFragment *DF,
733                            const MCAsmLayout &Layout) const;
734
735  /// Check whether the given fragment needs relaxation.
736  bool fragmentNeedsRelaxation(const MCInstFragment *IF,
737                               const MCAsmLayout &Layout) const;
738
739  /// layoutOnce - Perform one layout iteration and return true if any offsets
740  /// were adjusted.
741  bool layoutOnce(MCAsmLayout &Layout);
742
743  bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
744
745  bool relaxInstruction(MCAsmLayout &Layout, MCInstFragment &IF);
746
747  bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
748
749  bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
750  bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
751                                   MCDwarfCallFrameFragment &DF);
752
753  /// finishLayout - Finalize a layout, including fragment lowering.
754  void finishLayout(MCAsmLayout &Layout);
755
756  uint64_t handleFixup(const MCAsmLayout &Layout,
757                       MCFragment &F, const MCFixup &Fixup);
758
759public:
760  /// Compute the effective fragment size assuming it is laid out at the given
761  /// \p SectionAddress and \p FragmentOffset.
762  uint64_t computeFragmentSize(const MCAsmLayout &Layout,
763                               const MCFragment &F) const;
764
765  /// Find the symbol which defines the atom containing the given symbol, or
766  /// null if there is no such symbol.
767  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
768
769  /// Check whether a particular symbol is visible to the linker and is required
770  /// in the symbol table, or whether it can be discarded by the assembler. This
771  /// also effects whether the assembler treats the label as potentially
772  /// defining a separate atom.
773  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
774
775  /// Emit the section contents using the given object writer.
776  void writeSectionData(const MCSectionData *Section,
777                        const MCAsmLayout &Layout) const;
778
779  /// Check whether a given symbol has been flagged with .thumb_func.
780  bool isThumbFunc(const MCSymbol *Func) const {
781    return ThumbFuncs.count(Func);
782  }
783
784  /// Flag a function symbol as the target of a .thumb_func directive.
785  void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
786
787public:
788  /// Construct a new assembler instance.
789  ///
790  /// \param OS The stream to output to.
791  //
792  // FIXME: How are we going to parameterize this? Two obvious options are stay
793  // concrete and require clients to pass in a target like object. The other
794  // option is to make this abstract, and have targets provide concrete
795  // implementations as we do with AsmParser.
796  MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
797              MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
798              raw_ostream &OS);
799  ~MCAssembler();
800
801  MCContext &getContext() const { return Context; }
802
803  MCAsmBackend &getBackend() const { return Backend; }
804
805  MCCodeEmitter &getEmitter() const { return Emitter; }
806
807  MCObjectWriter &getWriter() const { return Writer; }
808
809  /// Finish - Do final processing and write the object to the output stream.
810  /// \p Writer is used for custom object writer (as the MCJIT does),
811  /// if not specified it is automatically created from backend.
812  void Finish();
813
814  // FIXME: This does not belong here.
815  bool getSubsectionsViaSymbols() const {
816    return SubsectionsViaSymbols;
817  }
818  void setSubsectionsViaSymbols(bool Value) {
819    SubsectionsViaSymbols = Value;
820  }
821
822  bool getRelaxAll() const { return RelaxAll; }
823  void setRelaxAll(bool Value) { RelaxAll = Value; }
824
825  bool getNoExecStack() const { return NoExecStack; }
826  void setNoExecStack(bool Value) { NoExecStack = Value; }
827
828  /// @name Section List Access
829  /// @{
830
831  const SectionDataListType &getSectionList() const { return Sections; }
832  SectionDataListType &getSectionList() { return Sections; }
833
834  iterator begin() { return Sections.begin(); }
835  const_iterator begin() const { return Sections.begin(); }
836
837  iterator end() { return Sections.end(); }
838  const_iterator end() const { return Sections.end(); }
839
840  size_t size() const { return Sections.size(); }
841
842  /// @}
843  /// @name Symbol List Access
844  /// @{
845
846  const SymbolDataListType &getSymbolList() const { return Symbols; }
847  SymbolDataListType &getSymbolList() { return Symbols; }
848
849  symbol_iterator symbol_begin() { return Symbols.begin(); }
850  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
851
852  symbol_iterator symbol_end() { return Symbols.end(); }
853  const_symbol_iterator symbol_end() const { return Symbols.end(); }
854
855  size_t symbol_size() const { return Symbols.size(); }
856
857  /// @}
858  /// @name Indirect Symbol List Access
859  /// @{
860
861  // FIXME: This is a total hack, this should not be here. Once things are
862  // factored so that the streamer has direct access to the .o writer, it can
863  // disappear.
864  std::vector<IndirectSymbolData> &getIndirectSymbols() {
865    return IndirectSymbols;
866  }
867
868  indirect_symbol_iterator indirect_symbol_begin() {
869    return IndirectSymbols.begin();
870  }
871  const_indirect_symbol_iterator indirect_symbol_begin() const {
872    return IndirectSymbols.begin();
873  }
874
875  indirect_symbol_iterator indirect_symbol_end() {
876    return IndirectSymbols.end();
877  }
878  const_indirect_symbol_iterator indirect_symbol_end() const {
879    return IndirectSymbols.end();
880  }
881
882  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
883
884  /// @}
885  /// @name Data Region List Access
886  /// @{
887
888  // FIXME: This is a total hack, this should not be here. Once things are
889  // factored so that the streamer has direct access to the .o writer, it can
890  // disappear.
891  std::vector<DataRegionData> &getDataRegions() {
892    return DataRegions;
893  }
894
895  data_region_iterator data_region_begin() {
896    return DataRegions.begin();
897  }
898  const_data_region_iterator data_region_begin() const {
899    return DataRegions.begin();
900  }
901
902  data_region_iterator data_region_end() {
903    return DataRegions.end();
904  }
905  const_data_region_iterator data_region_end() const {
906    return DataRegions.end();
907  }
908
909  size_t data_region_size() const { return DataRegions.size(); }
910
911  /// @}
912  /// @name Backend Data Access
913  /// @{
914
915  MCSectionData &getSectionData(const MCSection &Section) const {
916    MCSectionData *Entry = SectionMap.lookup(&Section);
917    assert(Entry && "Missing section data!");
918    return *Entry;
919  }
920
921  MCSectionData &getOrCreateSectionData(const MCSection &Section,
922                                        bool *Created = 0) {
923    MCSectionData *&Entry = SectionMap[&Section];
924
925    if (Created) *Created = !Entry;
926    if (!Entry)
927      Entry = new MCSectionData(Section, this);
928
929    return *Entry;
930  }
931
932  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
933    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
934    assert(Entry && "Missing symbol data!");
935    return *Entry;
936  }
937
938  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
939                                      bool *Created = 0) {
940    MCSymbolData *&Entry = SymbolMap[&Symbol];
941
942    if (Created) *Created = !Entry;
943    if (!Entry)
944      Entry = new MCSymbolData(Symbol, 0, 0, this);
945
946    return *Entry;
947  }
948
949  /// @}
950
951  void dump();
952};
953
954} // end namespace llvm
955
956#endif
957