TargetInstrInfo.h revision 12749db1503c2beed58ddcfba5f1b323611fb2ce
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class LiveVariables;
25class CalleeSavedInfo;
26class SDNode;
27class SelectionDAG;
28
29template<class T> class SmallVectorImpl;
30
31
32//---------------------------------------------------------------------------
33///
34/// TargetInstrInfo - Interface to description of machine instruction set
35///
36class TargetInstrInfo {
37  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
38  unsigned NumOpcodes;                // Number of entries in the desc array
39
40  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
41  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
42public:
43  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
44  virtual ~TargetInstrInfo();
45
46  // Invariant opcodes: All instruction sets have these as their low opcodes.
47  enum {
48    PHI = 0,
49    INLINEASM = 1,
50    DBG_LABEL = 2,
51    EH_LABEL = 3,
52    GC_LABEL = 4,
53
54    /// KILL - This instruction is a noop that is used only to adjust the liveness
55    /// of registers. This can be useful when dealing with sub-registers.
56    KILL = 5,
57
58    /// EXTRACT_SUBREG - This instruction takes two operands: a register
59    /// that has subregisters, and a subregister index. It returns the
60    /// extracted subregister value. This is commonly used to implement
61    /// truncation operations on target architectures which support it.
62    EXTRACT_SUBREG = 6,
63
64    /// INSERT_SUBREG - This instruction takes three operands: a register
65    /// that has subregisters, a register providing an insert value, and a
66    /// subregister index. It returns the value of the first register with
67    /// the value of the second register inserted. The first register is
68    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
69    /// anyext operations on target architectures which support it.
70    INSERT_SUBREG = 7,
71
72    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
73    IMPLICIT_DEF = 8,
74
75    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
76    /// that the first operand is an immediate integer constant. This constant
77    /// is often zero, as is commonly used to implement zext operations on
78    /// target architectures which support it, such as with x86-64 (with
79    /// zext from i32 to i64 via implicit zero-extension).
80    SUBREG_TO_REG = 9,
81
82    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
83    /// register-to-register copy into a specific register class. This is only
84    /// used between instruction selection and MachineInstr creation, before
85    /// virtual registers have been created for all the instructions, and it's
86    /// only needed in cases where the register classes implied by the
87    /// instructions are insufficient. The actual MachineInstrs to perform
88    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
89    COPY_TO_REGCLASS = 10
90  };
91
92  unsigned getNumOpcodes() const { return NumOpcodes; }
93
94  /// get - Return the machine instruction descriptor that corresponds to the
95  /// specified instruction opcode.
96  ///
97  const TargetInstrDesc &get(unsigned Opcode) const {
98    assert(Opcode < NumOpcodes && "Invalid opcode!");
99    return Descriptors[Opcode];
100  }
101
102  /// isTriviallyReMaterializable - Return true if the instruction is trivially
103  /// rematerializable, meaning it has no side effects and requires no operands
104  /// that aren't always available.
105  bool isTriviallyReMaterializable(const MachineInstr *MI,
106                                   AliasAnalysis *AA = 0) const {
107    return MI->getOpcode() == IMPLICIT_DEF ||
108           (MI->getDesc().isRematerializable() &&
109            (isReallyTriviallyReMaterializable(MI, AA) ||
110             isReallyTriviallyReMaterializableGeneric(MI, AA)));
111  }
112
113protected:
114  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
115  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
116  /// specify whether the instruction is actually trivially rematerializable,
117  /// taking into consideration its operands. This predicate must return false
118  /// if the instruction has any side effects other than producing a value, or
119  /// if it requres any address registers that are not always available.
120  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
121                                                 AliasAnalysis *AA) const {
122    return false;
123  }
124
125private:
126  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
127  /// for which the M_REMATERIALIZABLE flag is set and the target hook
128  /// isReallyTriviallyReMaterializable returns false, this function does
129  /// target-independent tests to determine if the instruction is really
130  /// trivially rematerializable.
131  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
132                                                AliasAnalysis *AA) const;
133
134public:
135  /// isMoveInstr - Return true if the instruction is a register to register
136  /// move and return the source and dest operands and their sub-register
137  /// indices by reference.
138  virtual bool isMoveInstr(const MachineInstr& MI,
139                           unsigned& SrcReg, unsigned& DstReg,
140                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
141    return false;
142  }
143
144  /// isIdentityCopy - Return true if the instruction is a copy (or
145  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
146  /// destination registers are the same.
147  bool isIdentityCopy(const MachineInstr &MI) const {
148    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
149    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
150        SrcReg == DstReg)
151      return true;
152
153    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
154        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
155    return true;
156
157    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
158         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
159        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
160      return true;
161    return false;
162  }
163
164  /// isLoadFromStackSlot - If the specified machine instruction is a direct
165  /// load from a stack slot, return the virtual or physical register number of
166  /// the destination along with the FrameIndex of the loaded stack slot.  If
167  /// not, return 0.  This predicate must return 0 if the instruction has
168  /// any side effects other than loading from the stack slot.
169  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
170                                       int &FrameIndex) const {
171    return 0;
172  }
173
174  /// isStoreToStackSlot - If the specified machine instruction is a direct
175  /// store to a stack slot, return the virtual or physical register number of
176  /// the source reg along with the FrameIndex of the loaded stack slot.  If
177  /// not, return 0.  This predicate must return 0 if the instruction has
178  /// any side effects other than storing to the stack slot.
179  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
180                                      int &FrameIndex) const {
181    return 0;
182  }
183
184  /// reMaterialize - Re-issue the specified 'original' instruction at the
185  /// specific location targeting a new destination register.
186  virtual void reMaterialize(MachineBasicBlock &MBB,
187                             MachineBasicBlock::iterator MI,
188                             unsigned DestReg, unsigned SubIdx,
189                             const MachineInstr *Orig) const = 0;
190
191  /// convertToThreeAddress - This method must be implemented by targets that
192  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
193  /// may be able to convert a two-address instruction into one or more true
194  /// three-address instructions on demand.  This allows the X86 target (for
195  /// example) to convert ADD and SHL instructions into LEA instructions if they
196  /// would require register copies due to two-addressness.
197  ///
198  /// This method returns a null pointer if the transformation cannot be
199  /// performed, otherwise it returns the last new instruction.
200  ///
201  virtual MachineInstr *
202  convertToThreeAddress(MachineFunction::iterator &MFI,
203                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
204    return 0;
205  }
206
207  /// commuteInstruction - If a target has any instructions that are commutable,
208  /// but require converting to a different instruction or making non-trivial
209  /// changes to commute them, this method can overloaded to do this.  The
210  /// default implementation of this method simply swaps the first two operands
211  /// of MI and returns it.
212  ///
213  /// If a target wants to make more aggressive changes, they can construct and
214  /// return a new machine instruction.  If an instruction cannot commute, it
215  /// can also return null.
216  ///
217  /// If NewMI is true, then a new machine instruction must be created.
218  ///
219  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                           bool NewMI = false) const = 0;
221
222  /// findCommutedOpIndices - If specified MI is commutable, return the two
223  /// operand indices that would swap value. Return true if the instruction
224  /// is not in a form which this routine understands.
225  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                     unsigned &SrcOpIdx2) const = 0;
227
228  /// isIdentical - Return true if two instructions are identical. This differs
229  /// from MachineInstr::isIdenticalTo() in that it does not require the
230  /// virtual destination registers to be the same. This is used by MachineLICM
231  /// and other MI passes to perform CSE.
232  virtual bool isIdentical(const MachineInstr *MI,
233                           const MachineInstr *Other,
234                           const MachineRegisterInfo *MRI) const = 0;
235
236  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
237  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
238  /// implemented for a target).  Upon success, this returns false and returns
239  /// with the following information in various cases:
240  ///
241  /// 1. If this block ends with no branches (it just falls through to its succ)
242  ///    just return false, leaving TBB/FBB null.
243  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
244  ///    the destination block.
245  /// 3. If this block ends with an conditional branch and it falls through to
246  ///    a successor block, it sets TBB to be the branch destination block and
247  ///    a list of operands that evaluate the condition. These
248  ///    operands can be passed to other TargetInstrInfo methods to create new
249  ///    branches.
250  /// 4. If this block ends with a conditional branch followed by an
251  ///    unconditional branch, it returns the 'true' destination in TBB, the
252  ///    'false' destination in FBB, and a list of operands that evaluate the
253  ///    condition.  These operands can be passed to other TargetInstrInfo
254  ///    methods to create new branches.
255  ///
256  /// Note that RemoveBranch and InsertBranch must be implemented to support
257  /// cases where this method returns success.
258  ///
259  /// If AllowModify is true, then this routine is allowed to modify the basic
260  /// block (e.g. delete instructions after the unconditional branch).
261  ///
262  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
263                             MachineBasicBlock *&FBB,
264                             SmallVectorImpl<MachineOperand> &Cond,
265                             bool AllowModify = false) const {
266    return true;
267  }
268
269  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
270  /// This is only invoked in cases where AnalyzeBranch returns success. It
271  /// returns the number of instructions that were removed.
272  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
273    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
274    return 0;
275  }
276
277  /// InsertBranch - Insert branch code into the end of the specified
278  /// MachineBasicBlock.  The operands to this method are the same as those
279  /// returned by AnalyzeBranch.  This is only invoked in cases where
280  /// AnalyzeBranch returns success. It returns the number of instructions
281  /// inserted.
282  ///
283  /// It is also invoked by tail merging to add unconditional branches in
284  /// cases where AnalyzeBranch doesn't apply because there was no original
285  /// branch to analyze.  At least this much must be implemented, else tail
286  /// merging needs to be disabled.
287  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
288                            MachineBasicBlock *FBB,
289                            const SmallVectorImpl<MachineOperand> &Cond) const {
290    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
291    return 0;
292  }
293
294  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
295  /// returns false if the target does not how to copy between the specified
296  /// registers.
297  virtual bool copyRegToReg(MachineBasicBlock &MBB,
298                            MachineBasicBlock::iterator MI,
299                            unsigned DestReg, unsigned SrcReg,
300                            const TargetRegisterClass *DestRC,
301                            const TargetRegisterClass *SrcRC) const {
302    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
303    return false;
304  }
305
306  /// storeRegToStackSlot - Store the specified register of the given register
307  /// class to the specified stack frame index. The store instruction is to be
308  /// added to the given machine basic block before the specified machine
309  /// instruction. If isKill is true, the register operand is the last use and
310  /// must be marked kill.
311  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
312                                   MachineBasicBlock::iterator MI,
313                                   unsigned SrcReg, bool isKill, int FrameIndex,
314                                   const TargetRegisterClass *RC) const {
315    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
316  }
317
318  /// loadRegFromStackSlot - Load the specified register of the given register
319  /// class from the specified stack frame index. The load instruction is to be
320  /// added to the given machine basic block before the specified machine
321  /// instruction.
322  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
323                                    MachineBasicBlock::iterator MI,
324                                    unsigned DestReg, int FrameIndex,
325                                    const TargetRegisterClass *RC) const {
326    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
327  }
328
329  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
330  /// saved registers and returns true if it isn't possible / profitable to do
331  /// so by issuing a series of store instructions via
332  /// storeRegToStackSlot(). Returns false otherwise.
333  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
334                                         MachineBasicBlock::iterator MI,
335                                const std::vector<CalleeSavedInfo> &CSI) const {
336    return false;
337  }
338
339  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
340  /// saved registers and returns true if it isn't possible / profitable to do
341  /// so by issuing a series of load instructions via loadRegToStackSlot().
342  /// Returns false otherwise.
343  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
344                                           MachineBasicBlock::iterator MI,
345                                const std::vector<CalleeSavedInfo> &CSI) const {
346    return false;
347  }
348
349  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
350  /// slot into the specified machine instruction for the specified operand(s).
351  /// If this is possible, a new instruction is returned with the specified
352  /// operand folded, otherwise NULL is returned. The client is responsible for
353  /// removing the old instruction and adding the new one in the instruction
354  /// stream.
355  MachineInstr* foldMemoryOperand(MachineFunction &MF,
356                                  MachineInstr* MI,
357                                  const SmallVectorImpl<unsigned> &Ops,
358                                  int FrameIndex) const;
359
360  /// foldMemoryOperand - Same as the previous version except it allows folding
361  /// of any load and store from / to any address, not just from a specific
362  /// stack slot.
363  MachineInstr* foldMemoryOperand(MachineFunction &MF,
364                                  MachineInstr* MI,
365                                  const SmallVectorImpl<unsigned> &Ops,
366                                  MachineInstr* LoadMI) const;
367
368protected:
369  /// foldMemoryOperandImpl - Target-dependent implementation for
370  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
371  /// take care of adding a MachineMemOperand to the newly created instruction.
372  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
373                                          MachineInstr* MI,
374                                          const SmallVectorImpl<unsigned> &Ops,
375                                          int FrameIndex) const {
376    return 0;
377  }
378
379  /// foldMemoryOperandImpl - Target-dependent implementation for
380  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
381  /// take care of adding a MachineMemOperand to the newly created instruction.
382  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
383                                              MachineInstr* MI,
384                                              const SmallVectorImpl<unsigned> &Ops,
385                                              MachineInstr* LoadMI) const {
386    return 0;
387  }
388
389public:
390  /// canFoldMemoryOperand - Returns true for the specified load / store if
391  /// folding is possible.
392  virtual
393  bool canFoldMemoryOperand(const MachineInstr *MI,
394                            const SmallVectorImpl<unsigned> &Ops) const {
395    return false;
396  }
397
398  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
399  /// a store or a load and a store into two or more instruction. If this is
400  /// possible, returns true as well as the new instructions by reference.
401  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
402                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
403                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
404    return false;
405  }
406
407  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
408                                   SmallVectorImpl<SDNode*> &NewNodes) const {
409    return false;
410  }
411
412  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
413  /// instruction after load / store are unfolded from an instruction of the
414  /// specified opcode. It returns zero if the specified unfolding is not
415  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
416  /// index of the operand which will hold the register holding the loaded
417  /// value.
418  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
419                                      bool UnfoldLoad, bool UnfoldStore,
420                                      unsigned *LoadRegIndex = 0) const {
421    return 0;
422  }
423
424  /// BlockHasNoFallThrough - Return true if the specified block does not
425  /// fall-through into its successor block.  This is primarily used when a
426  /// branch is unanalyzable.  It is useful for things like unconditional
427  /// indirect branches (jump tables).
428  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
429    return false;
430  }
431
432  /// ReverseBranchCondition - Reverses the branch condition of the specified
433  /// condition list, returning false on success and true if it cannot be
434  /// reversed.
435  virtual
436  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
437    return true;
438  }
439
440  /// insertNoop - Insert a noop into the instruction stream at the specified
441  /// point.
442  virtual void insertNoop(MachineBasicBlock &MBB,
443                          MachineBasicBlock::iterator MI) const;
444
445  /// isPredicated - Returns true if the instruction is already predicated.
446  ///
447  virtual bool isPredicated(const MachineInstr *MI) const {
448    return false;
449  }
450
451  /// isUnpredicatedTerminator - Returns true if the instruction is a
452  /// terminator instruction that has not been predicated.
453  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
454
455  /// PredicateInstruction - Convert the instruction into a predicated
456  /// instruction. It returns true if the operation was successful.
457  virtual
458  bool PredicateInstruction(MachineInstr *MI,
459                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
460
461  /// SubsumesPredicate - Returns true if the first specified predicate
462  /// subsumes the second, e.g. GE subsumes GT.
463  virtual
464  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
465                         const SmallVectorImpl<MachineOperand> &Pred2) const {
466    return false;
467  }
468
469  /// DefinesPredicate - If the specified instruction defines any predicate
470  /// or condition code register(s) used for predication, returns true as well
471  /// as the definition predicate(s) by reference.
472  virtual bool DefinesPredicate(MachineInstr *MI,
473                                std::vector<MachineOperand> &Pred) const {
474    return false;
475  }
476
477  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
478  /// instruction that defines the specified register class.
479  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
480    return true;
481  }
482
483  /// GetInstSize - Returns the size of the specified Instruction.
484  ///
485  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
486    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
487    return 0;
488  }
489
490  /// GetFunctionSizeInBytes - Returns the size of the specified
491  /// MachineFunction.
492  ///
493  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
494
495  /// Measure the specified inline asm to determine an approximation of its
496  /// length.
497  virtual unsigned getInlineAsmLength(const char *Str,
498                                      const MCAsmInfo &MAI) const;
499};
500
501/// TargetInstrInfoImpl - This is the default implementation of
502/// TargetInstrInfo, which just provides a couple of default implementations
503/// for various methods.  This separated out because it is implemented in
504/// libcodegen, not in libtarget.
505class TargetInstrInfoImpl : public TargetInstrInfo {
506protected:
507  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
508  : TargetInstrInfo(desc, NumOpcodes) {}
509public:
510  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
511                                           bool NewMI = false) const;
512  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
513                                     unsigned &SrcOpIdx2) const;
514  virtual bool PredicateInstruction(MachineInstr *MI,
515                            const SmallVectorImpl<MachineOperand> &Pred) const;
516  virtual void reMaterialize(MachineBasicBlock &MBB,
517                             MachineBasicBlock::iterator MI,
518                             unsigned DestReg, unsigned SubReg,
519                             const MachineInstr *Orig) const;
520  virtual bool isIdentical(const MachineInstr *MI,
521                           const MachineInstr *Other,
522                           const MachineRegisterInfo *MRI) const;
523
524  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
525};
526
527} // End llvm namespace
528
529#endif
530