TargetInstrInfo.h revision 2457f2c66184e978d4ed8fa9e2128effff26cb0b
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class LiveVariables;
24class MCAsmInfo;
25class MachineMemOperand;
26class MDNode;
27class MCInst;
28class SDNode;
29class SelectionDAG;
30class TargetRegisterClass;
31class TargetRegisterInfo;
32
33template<class T> class SmallVectorImpl;
34
35
36//---------------------------------------------------------------------------
37///
38/// TargetInstrInfo - Interface to description of machine instruction set
39///
40class TargetInstrInfo {
41  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
42  unsigned NumOpcodes;                // Number of entries in the desc array
43
44  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
45  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
46public:
47  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
48  virtual ~TargetInstrInfo();
49
50  unsigned getNumOpcodes() const { return NumOpcodes; }
51
52  /// get - Return the machine instruction descriptor that corresponds to the
53  /// specified instruction opcode.
54  ///
55  const TargetInstrDesc &get(unsigned Opcode) const {
56    assert(Opcode < NumOpcodes && "Invalid opcode!");
57    return Descriptors[Opcode];
58  }
59
60  /// isTriviallyReMaterializable - Return true if the instruction is trivially
61  /// rematerializable, meaning it has no side effects and requires no operands
62  /// that aren't always available.
63  bool isTriviallyReMaterializable(const MachineInstr *MI,
64                                   AliasAnalysis *AA = 0) const {
65    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
66           (MI->getDesc().isRematerializable() &&
67            (isReallyTriviallyReMaterializable(MI, AA) ||
68             isReallyTriviallyReMaterializableGeneric(MI, AA)));
69  }
70
71protected:
72  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
73  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
74  /// specify whether the instruction is actually trivially rematerializable,
75  /// taking into consideration its operands. This predicate must return false
76  /// if the instruction has any side effects other than producing a value, or
77  /// if it requres any address registers that are not always available.
78  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
79                                                 AliasAnalysis *AA) const {
80    return false;
81  }
82
83private:
84  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
85  /// for which the M_REMATERIALIZABLE flag is set and the target hook
86  /// isReallyTriviallyReMaterializable returns false, this function does
87  /// target-independent tests to determine if the instruction is really
88  /// trivially rematerializable.
89  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
90                                                AliasAnalysis *AA) const;
91
92public:
93  /// isMoveInstr - Return true if the instruction is a register to register
94  /// move and return the source and dest operands and their sub-register
95  /// indices by reference.
96  virtual bool isMoveInstr(const MachineInstr& MI,
97                           unsigned& SrcReg, unsigned& DstReg,
98                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
99    return false;
100  }
101
102  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
103  /// extension instruction. That is, it's like a copy where it's legal for the
104  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
105  /// true, then it's expected the pre-extension value is available as a subreg
106  /// of the result register. This also returns the sub-register index in
107  /// SubIdx.
108  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
109                                     unsigned &SrcReg, unsigned &DstReg,
110                                     unsigned &SubIdx) const {
111    return false;
112  }
113
114  /// isIdentityCopy - Return true if the instruction is a copy (or
115  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
116  /// destination registers are the same.
117  bool isIdentityCopy(const MachineInstr &MI) const {
118    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
119    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
120        SrcReg == DstReg)
121      return true;
122
123    if (MI.getOpcode() == TargetOpcode::EXTRACT_SUBREG &&
124        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
125    return true;
126
127    if ((MI.getOpcode() == TargetOpcode::INSERT_SUBREG ||
128         MI.getOpcode() == TargetOpcode::SUBREG_TO_REG) &&
129        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
130      return true;
131    return false;
132  }
133
134  /// isLoadFromStackSlot - If the specified machine instruction is a direct
135  /// load from a stack slot, return the virtual or physical register number of
136  /// the destination along with the FrameIndex of the loaded stack slot.  If
137  /// not, return 0.  This predicate must return 0 if the instruction has
138  /// any side effects other than loading from the stack slot.
139  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
140                                       int &FrameIndex) const {
141    return 0;
142  }
143
144  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
145  /// stack locations as well.  This uses a heuristic so it isn't
146  /// reliable for correctness.
147  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
148                                             int &FrameIndex) const {
149    return 0;
150  }
151
152  /// hasLoadFromStackSlot - If the specified machine instruction has
153  /// a load from a stack slot, return true along with the FrameIndex
154  /// of the loaded stack slot and the machine mem operand containing
155  /// the reference.  If not, return false.  Unlike
156  /// isLoadFromStackSlot, this returns true for any instructions that
157  /// loads from the stack.  This is just a hint, as some cases may be
158  /// missed.
159  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
160                                    const MachineMemOperand *&MMO,
161                                    int &FrameIndex) const {
162    return 0;
163  }
164
165  /// isStoreToStackSlot - If the specified machine instruction is a direct
166  /// store to a stack slot, return the virtual or physical register number of
167  /// the source reg along with the FrameIndex of the loaded stack slot.  If
168  /// not, return 0.  This predicate must return 0 if the instruction has
169  /// any side effects other than storing to the stack slot.
170  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
171                                      int &FrameIndex) const {
172    return 0;
173  }
174
175  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
176  /// stack locations as well.  This uses a heuristic so it isn't
177  /// reliable for correctness.
178  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
179                                            int &FrameIndex) const {
180    return 0;
181  }
182
183  /// hasStoreToStackSlot - If the specified machine instruction has a
184  /// store to a stack slot, return true along with the FrameIndex of
185  /// the loaded stack slot and the machine mem operand containing the
186  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
187  /// this returns true for any instructions that stores to the
188  /// stack.  This is just a hint, as some cases may be missed.
189  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
190                                   const MachineMemOperand *&MMO,
191                                   int &FrameIndex) const {
192    return 0;
193  }
194
195  /// reMaterialize - Re-issue the specified 'original' instruction at the
196  /// specific location targeting a new destination register.
197  virtual void reMaterialize(MachineBasicBlock &MBB,
198                             MachineBasicBlock::iterator MI,
199                             unsigned DestReg, unsigned SubIdx,
200                             const MachineInstr *Orig,
201                             const TargetRegisterInfo *TRI) const = 0;
202
203  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
204  /// MachineFunction::CloneMachineInstr(), but the target may update operands
205  /// that are required to be unique.
206  ///
207  /// The instruction must be duplicable as indicated by isNotDuplicable().
208  virtual MachineInstr *duplicate(MachineInstr *Orig,
209                                  MachineFunction &MF) const = 0;
210
211  /// convertToThreeAddress - This method must be implemented by targets that
212  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
213  /// may be able to convert a two-address instruction into one or more true
214  /// three-address instructions on demand.  This allows the X86 target (for
215  /// example) to convert ADD and SHL instructions into LEA instructions if they
216  /// would require register copies due to two-addressness.
217  ///
218  /// This method returns a null pointer if the transformation cannot be
219  /// performed, otherwise it returns the last new instruction.
220  ///
221  virtual MachineInstr *
222  convertToThreeAddress(MachineFunction::iterator &MFI,
223                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
224    return 0;
225  }
226
227  /// commuteInstruction - If a target has any instructions that are commutable,
228  /// but require converting to a different instruction or making non-trivial
229  /// changes to commute them, this method can overloaded to do this.  The
230  /// default implementation of this method simply swaps the first two operands
231  /// of MI and returns it.
232  ///
233  /// If a target wants to make more aggressive changes, they can construct and
234  /// return a new machine instruction.  If an instruction cannot commute, it
235  /// can also return null.
236  ///
237  /// If NewMI is true, then a new machine instruction must be created.
238  ///
239  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
240                                           bool NewMI = false) const = 0;
241
242  /// findCommutedOpIndices - If specified MI is commutable, return the two
243  /// operand indices that would swap value. Return true if the instruction
244  /// is not in a form which this routine understands.
245  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
246                                     unsigned &SrcOpIdx2) const = 0;
247
248  /// produceSameValue - Return true if two machine instructions would produce
249  /// identical values. By default, this is only true when the two instructions
250  /// are deemed identical except for defs.
251  virtual bool produceSameValue(const MachineInstr *MI0,
252                                const MachineInstr *MI1) const = 0;
253
254  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
255  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
256  /// implemented for a target).  Upon success, this returns false and returns
257  /// with the following information in various cases:
258  ///
259  /// 1. If this block ends with no branches (it just falls through to its succ)
260  ///    just return false, leaving TBB/FBB null.
261  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
262  ///    the destination block.
263  /// 3. If this block ends with a conditional branch and it falls through to a
264  ///    successor block, it sets TBB to be the branch destination block and a
265  ///    list of operands that evaluate the condition. These operands can be
266  ///    passed to other TargetInstrInfo methods to create new branches.
267  /// 4. If this block ends with a conditional branch followed by an
268  ///    unconditional branch, it returns the 'true' destination in TBB, the
269  ///    'false' destination in FBB, and a list of operands that evaluate the
270  ///    condition.  These operands can be passed to other TargetInstrInfo
271  ///    methods to create new branches.
272  ///
273  /// Note that RemoveBranch and InsertBranch must be implemented to support
274  /// cases where this method returns success.
275  ///
276  /// If AllowModify is true, then this routine is allowed to modify the basic
277  /// block (e.g. delete instructions after the unconditional branch).
278  ///
279  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
280                             MachineBasicBlock *&FBB,
281                             SmallVectorImpl<MachineOperand> &Cond,
282                             bool AllowModify = false) const {
283    return true;
284  }
285
286  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
287  /// This is only invoked in cases where AnalyzeBranch returns success. It
288  /// returns the number of instructions that were removed.
289  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
290    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
291    return 0;
292  }
293
294  /// InsertBranch - Insert branch code into the end of the specified
295  /// MachineBasicBlock.  The operands to this method are the same as those
296  /// returned by AnalyzeBranch.  This is only invoked in cases where
297  /// AnalyzeBranch returns success. It returns the number of instructions
298  /// inserted.
299  ///
300  /// It is also invoked by tail merging to add unconditional branches in
301  /// cases where AnalyzeBranch doesn't apply because there was no original
302  /// branch to analyze.  At least this much must be implemented, else tail
303  /// merging needs to be disabled.
304  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
305                            MachineBasicBlock *FBB,
306                            const SmallVectorImpl<MachineOperand> &Cond) const {
307    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
308    return 0;
309  }
310
311  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
312  /// returns false if the target does not how to copy between the specified
313  /// registers.
314  virtual bool copyRegToReg(MachineBasicBlock &MBB,
315                            MachineBasicBlock::iterator MI,
316                            unsigned DestReg, unsigned SrcReg,
317                            const TargetRegisterClass *DestRC,
318                            const TargetRegisterClass *SrcRC,
319                            DebugLoc DL) const {
320    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
321    return false;
322  }
323
324  /// storeRegToStackSlot - Store the specified register of the given register
325  /// class to the specified stack frame index. The store instruction is to be
326  /// added to the given machine basic block before the specified machine
327  /// instruction. If isKill is true, the register operand is the last use and
328  /// must be marked kill.
329  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
330                                   MachineBasicBlock::iterator MI,
331                                   unsigned SrcReg, bool isKill, int FrameIndex,
332                                   const TargetRegisterClass *RC,
333                                   const TargetRegisterInfo *TRI) const {
334    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
335  }
336
337  /// loadRegFromStackSlot - Load the specified register of the given register
338  /// class from the specified stack frame index. The load instruction is to be
339  /// added to the given machine basic block before the specified machine
340  /// instruction.
341  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
342                                    MachineBasicBlock::iterator MI,
343                                    unsigned DestReg, int FrameIndex,
344                                    const TargetRegisterClass *RC,
345                                    const TargetRegisterInfo *TRI) const {
346    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
347  }
348
349  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
350  /// saved registers and returns true if it isn't possible / profitable to do
351  /// so by issuing a series of store instructions via
352  /// storeRegToStackSlot(). Returns false otherwise.
353  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
354                                         MachineBasicBlock::iterator MI,
355                                         const std::vector<CalleeSavedInfo> &CSI,
356                                         const TargetRegisterInfo *TRI) const {
357    return false;
358  }
359
360  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
361  /// saved registers and returns true if it isn't possible / profitable to do
362  /// so by issuing a series of load instructions via loadRegToStackSlot().
363  /// Returns false otherwise.
364  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
365                                           MachineBasicBlock::iterator MI,
366                                        const std::vector<CalleeSavedInfo> &CSI,
367                                        const TargetRegisterInfo *TRI) const {
368    return false;
369  }
370
371  /// emitFrameIndexDebugValue - Emit a target-dependent form of
372  /// DBG_VALUE encoding the address of a frame index.  Addresses would
373  /// normally be lowered the same way as other addresses on the target,
374  /// e.g. in load instructions.  For targets that do not support this
375  /// the debug info is simply lost.
376  /// If you add this for a target you should handle this DBG_VALUE in the
377  /// target-specific AsmPrinter code as well; you will probably get invalid
378  /// assembly output if you don't.
379  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
380                                                 int FrameIx,
381                                                 uint64_t Offset,
382                                                 const MDNode *MDPtr,
383                                                 DebugLoc dl) const {
384    return 0;
385  }
386
387  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
388  /// slot into the specified machine instruction for the specified operand(s).
389  /// If this is possible, a new instruction is returned with the specified
390  /// operand folded, otherwise NULL is returned. The client is responsible for
391  /// removing the old instruction and adding the new one in the instruction
392  /// stream.
393  MachineInstr* foldMemoryOperand(MachineFunction &MF,
394                                  MachineInstr* MI,
395                                  const SmallVectorImpl<unsigned> &Ops,
396                                  int FrameIndex) const;
397
398  /// foldMemoryOperand - Same as the previous version except it allows folding
399  /// of any load and store from / to any address, not just from a specific
400  /// stack slot.
401  MachineInstr* foldMemoryOperand(MachineFunction &MF,
402                                  MachineInstr* MI,
403                                  const SmallVectorImpl<unsigned> &Ops,
404                                  MachineInstr* LoadMI) const;
405
406protected:
407  /// foldMemoryOperandImpl - Target-dependent implementation for
408  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
409  /// take care of adding a MachineMemOperand to the newly created instruction.
410  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
411                                          MachineInstr* MI,
412                                          const SmallVectorImpl<unsigned> &Ops,
413                                          int FrameIndex) const {
414    return 0;
415  }
416
417  /// foldMemoryOperandImpl - Target-dependent implementation for
418  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
419  /// take care of adding a MachineMemOperand to the newly created instruction.
420  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
421                                              MachineInstr* MI,
422                                              const SmallVectorImpl<unsigned> &Ops,
423                                              MachineInstr* LoadMI) const {
424    return 0;
425  }
426
427public:
428  /// canFoldMemoryOperand - Returns true for the specified load / store if
429  /// folding is possible.
430  virtual
431  bool canFoldMemoryOperand(const MachineInstr *MI,
432                            const SmallVectorImpl<unsigned> &Ops) const {
433    return false;
434  }
435
436  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
437  /// a store or a load and a store into two or more instruction. If this is
438  /// possible, returns true as well as the new instructions by reference.
439  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
440                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
441                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
442    return false;
443  }
444
445  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
446                                   SmallVectorImpl<SDNode*> &NewNodes) const {
447    return false;
448  }
449
450  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
451  /// instruction after load / store are unfolded from an instruction of the
452  /// specified opcode. It returns zero if the specified unfolding is not
453  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
454  /// index of the operand which will hold the register holding the loaded
455  /// value.
456  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
457                                      bool UnfoldLoad, bool UnfoldStore,
458                                      unsigned *LoadRegIndex = 0) const {
459    return 0;
460  }
461
462  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
463  /// to determine if two loads are loading from the same base address. It
464  /// should only return true if the base pointers are the same and the
465  /// only differences between the two addresses are the offset. It also returns
466  /// the offsets by reference.
467  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
468                                       int64_t &Offset1, int64_t &Offset2) const {
469    return false;
470  }
471
472  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
473  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
474  /// be scheduled togther. On some targets if two loads are loading from
475  /// addresses in the same cache line, it's better if they are scheduled
476  /// together. This function takes two integers that represent the load offsets
477  /// from the common base address. It returns true if it decides it's desirable
478  /// to schedule the two loads together. "NumLoads" is the number of loads that
479  /// have already been scheduled after Load1.
480  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
481                                       int64_t Offset1, int64_t Offset2,
482                                       unsigned NumLoads) const {
483    return false;
484  }
485
486  /// ReverseBranchCondition - Reverses the branch condition of the specified
487  /// condition list, returning false on success and true if it cannot be
488  /// reversed.
489  virtual
490  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
491    return true;
492  }
493
494  /// insertNoop - Insert a noop into the instruction stream at the specified
495  /// point.
496  virtual void insertNoop(MachineBasicBlock &MBB,
497                          MachineBasicBlock::iterator MI) const;
498
499
500  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
501  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
502    // Default to just using 'nop' string.
503  }
504
505
506  /// isPredicated - Returns true if the instruction is already predicated.
507  ///
508  virtual bool isPredicated(const MachineInstr *MI) const {
509    return false;
510  }
511
512  /// isUnpredicatedTerminator - Returns true if the instruction is a
513  /// terminator instruction that has not been predicated.
514  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
515
516  /// PredicateInstruction - Convert the instruction into a predicated
517  /// instruction. It returns true if the operation was successful.
518  virtual
519  bool PredicateInstruction(MachineInstr *MI,
520                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
521
522  /// SubsumesPredicate - Returns true if the first specified predicate
523  /// subsumes the second, e.g. GE subsumes GT.
524  virtual
525  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
526                         const SmallVectorImpl<MachineOperand> &Pred2) const {
527    return false;
528  }
529
530  /// DefinesPredicate - If the specified instruction defines any predicate
531  /// or condition code register(s) used for predication, returns true as well
532  /// as the definition predicate(s) by reference.
533  virtual bool DefinesPredicate(MachineInstr *MI,
534                                std::vector<MachineOperand> &Pred) const {
535    return false;
536  }
537
538  /// isPredicable - Return true if the specified instruction can be predicated.
539  /// By default, this returns true for every instruction with a
540  /// PredicateOperand.
541  virtual bool isPredicable(MachineInstr *MI) const {
542    return MI->getDesc().isPredicable();
543  }
544
545  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
546  /// instruction that defines the specified register class.
547  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
548    return true;
549  }
550
551  /// GetInstSize - Returns the size of the specified Instruction.
552  ///
553  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
554    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
555    return 0;
556  }
557
558  /// GetFunctionSizeInBytes - Returns the size of the specified
559  /// MachineFunction.
560  ///
561  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
562
563  /// Measure the specified inline asm to determine an approximation of its
564  /// length.
565  virtual unsigned getInlineAsmLength(const char *Str,
566                                      const MCAsmInfo &MAI) const;
567};
568
569/// TargetInstrInfoImpl - This is the default implementation of
570/// TargetInstrInfo, which just provides a couple of default implementations
571/// for various methods.  This separated out because it is implemented in
572/// libcodegen, not in libtarget.
573class TargetInstrInfoImpl : public TargetInstrInfo {
574protected:
575  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
576  : TargetInstrInfo(desc, NumOpcodes) {}
577public:
578  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
579                                           bool NewMI = false) const;
580  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
581                                     unsigned &SrcOpIdx2) const;
582  virtual bool PredicateInstruction(MachineInstr *MI,
583                            const SmallVectorImpl<MachineOperand> &Pred) const;
584  virtual void reMaterialize(MachineBasicBlock &MBB,
585                             MachineBasicBlock::iterator MI,
586                             unsigned DestReg, unsigned SubReg,
587                             const MachineInstr *Orig,
588                             const TargetRegisterInfo *TRI) const;
589  virtual MachineInstr *duplicate(MachineInstr *Orig,
590                                  MachineFunction &MF) const;
591  virtual bool produceSameValue(const MachineInstr *MI0,
592                                const MachineInstr *MI1) const;
593  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
594};
595
596} // End llvm namespace
597
598#endif
599