TargetInstrInfo.h revision 33242fd3ed5586091e73254b58dd1825e9d53c60
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file describes the target machine instruction set to the code generator.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#ifndef LLVM_TARGET_TARGETINSTRINFO_H
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#define LLVM_TARGET_TARGETINSTRINFO_H
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/MC/MCInstrInfo.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/DFAPacketizer.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFunction.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)namespace llvm {
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class InstrItineraryData;
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class LiveVariables;
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MCAsmInfo;
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MachineMemOperand;
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MachineRegisterInfo;
285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MDNode;
295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MCInst;
305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class SDNode;
315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class ScheduleHazardRecognizer;
325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class SelectionDAG;
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class ScheduleDAG;
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class TargetRegisterClass;
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class TargetRegisterInfo;
365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class BranchProbability;
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)template<class T> class SmallVectorImpl;
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//---------------------------------------------------------------------------
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)///
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// TargetInstrInfo - Interface to description of machine instruction set
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)///
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class TargetInstrInfo : public MCInstrInfo {
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)public:
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    : CallFrameSetupOpcode(CFSetupOpcode),
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      CallFrameDestroyOpcode(CFDestroyOpcode) {
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  virtual ~TargetInstrInfo();
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  /// getRegClass - Givem a machine instruction descriptor, returns the register
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  /// class constraint for OpNum, or NULL.
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                         unsigned OpNum,
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                         const TargetRegisterInfo *TRI,
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                         const MachineFunction &MF) const;
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  /// isTriviallyReMaterializable - Return true if the instruction is trivially
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  /// rematerializable, meaning it has no side effects and requires no operands
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  /// that aren't always available.
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  bool isTriviallyReMaterializable(const MachineInstr *MI,
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                   AliasAnalysis *AA = 0) const {
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)           (MI->getDesc().isRematerializable() &&
70            (isReallyTriviallyReMaterializable(MI, AA) ||
71             isReallyTriviallyReMaterializableGeneric(MI, AA)));
72  }
73
74protected:
75  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
76  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
77  /// specify whether the instruction is actually trivially rematerializable,
78  /// taking into consideration its operands. This predicate must return false
79  /// if the instruction has any side effects other than producing a value, or
80  /// if it requres any address registers that are not always available.
81  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
82                                                 AliasAnalysis *AA) const {
83    return false;
84  }
85
86private:
87  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
88  /// for which the M_REMATERIALIZABLE flag is set and the target hook
89  /// isReallyTriviallyReMaterializable returns false, this function does
90  /// target-independent tests to determine if the instruction is really
91  /// trivially rematerializable.
92  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
93                                                AliasAnalysis *AA) const;
94
95public:
96  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
97  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
98  /// targets use pseudo instructions in order to abstract away the difference
99  /// between operating with a frame pointer and operating without, through the
100  /// use of these two instructions.
101  ///
102  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
103  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
104
105  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
106  /// extension instruction. That is, it's like a copy where it's legal for the
107  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
108  /// true, then it's expected the pre-extension value is available as a subreg
109  /// of the result register. This also returns the sub-register index in
110  /// SubIdx.
111  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
112                                     unsigned &SrcReg, unsigned &DstReg,
113                                     unsigned &SubIdx) const {
114    return false;
115  }
116
117  /// isLoadFromStackSlot - If the specified machine instruction is a direct
118  /// load from a stack slot, return the virtual or physical register number of
119  /// the destination along with the FrameIndex of the loaded stack slot.  If
120  /// not, return 0.  This predicate must return 0 if the instruction has
121  /// any side effects other than loading from the stack slot.
122  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
123                                       int &FrameIndex) const {
124    return 0;
125  }
126
127  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
128  /// stack locations as well.  This uses a heuristic so it isn't
129  /// reliable for correctness.
130  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
131                                             int &FrameIndex) const {
132    return 0;
133  }
134
135  /// hasLoadFromStackSlot - If the specified machine instruction has
136  /// a load from a stack slot, return true along with the FrameIndex
137  /// of the loaded stack slot and the machine mem operand containing
138  /// the reference.  If not, return false.  Unlike
139  /// isLoadFromStackSlot, this returns true for any instructions that
140  /// loads from the stack.  This is just a hint, as some cases may be
141  /// missed.
142  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
143                                    const MachineMemOperand *&MMO,
144                                    int &FrameIndex) const {
145    return 0;
146  }
147
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot.  If
151  /// not, return 0.  This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                      int &FrameIndex) const {
155    return 0;
156  }
157
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well.  This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                            int &FrameIndex) const {
163    return 0;
164  }
165
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack.  This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                   const MachineMemOperand *&MMO,
174                                   int &FrameIndex) const {
175    return 0;
176  }
177
178  /// reMaterialize - Re-issue the specified 'original' instruction at the
179  /// specific location targeting a new destination register.
180  /// The register in Orig->getOperand(0).getReg() will be substituted by
181  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
182  /// SubIdx.
183  virtual void reMaterialize(MachineBasicBlock &MBB,
184                             MachineBasicBlock::iterator MI,
185                             unsigned DestReg, unsigned SubIdx,
186                             const MachineInstr *Orig,
187                             const TargetRegisterInfo &TRI) const = 0;
188
189  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
190  /// two-addrss instruction inserted by two-address pass.
191  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
192                                     MachineInstr *UseMI,
193                                     const TargetRegisterInfo &TRI) const {
194    // Do nothing.
195  }
196
197  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
198  /// MachineFunction::CloneMachineInstr(), but the target may update operands
199  /// that are required to be unique.
200  ///
201  /// The instruction must be duplicable as indicated by isNotDuplicable().
202  virtual MachineInstr *duplicate(MachineInstr *Orig,
203                                  MachineFunction &MF) const = 0;
204
205  /// convertToThreeAddress - This method must be implemented by targets that
206  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
207  /// may be able to convert a two-address instruction into one or more true
208  /// three-address instructions on demand.  This allows the X86 target (for
209  /// example) to convert ADD and SHL instructions into LEA instructions if they
210  /// would require register copies due to two-addressness.
211  ///
212  /// This method returns a null pointer if the transformation cannot be
213  /// performed, otherwise it returns the last new instruction.
214  ///
215  virtual MachineInstr *
216  convertToThreeAddress(MachineFunction::iterator &MFI,
217                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
218    return 0;
219  }
220
221  /// commuteInstruction - If a target has any instructions that are
222  /// commutable but require converting to different instructions or making
223  /// non-trivial changes to commute them, this method can overloaded to do
224  /// that.  The default implementation simply swaps the commutable operands.
225  /// If NewMI is false, MI is modified in place and returned; otherwise, a
226  /// new machine instruction is created and returned.  Do not call this
227  /// method for a non-commutable instruction, but there may be some cases
228  /// where this method fails and returns null.
229  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
230                                           bool NewMI = false) const = 0;
231
232  /// findCommutedOpIndices - If specified MI is commutable, return the two
233  /// operand indices that would swap value. Return false if the instruction
234  /// is not in a form which this routine understands.
235  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
236                                     unsigned &SrcOpIdx2) const = 0;
237
238  /// produceSameValue - Return true if two machine instructions would produce
239  /// identical values. By default, this is only true when the two instructions
240  /// are deemed identical except for defs. If this function is called when the
241  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
242  /// aggressive checks.
243  virtual bool produceSameValue(const MachineInstr *MI0,
244                                const MachineInstr *MI1,
245                                const MachineRegisterInfo *MRI = 0) const = 0;
246
247  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
248  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
249  /// implemented for a target).  Upon success, this returns false and returns
250  /// with the following information in various cases:
251  ///
252  /// 1. If this block ends with no branches (it just falls through to its succ)
253  ///    just return false, leaving TBB/FBB null.
254  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
255  ///    the destination block.
256  /// 3. If this block ends with a conditional branch and it falls through to a
257  ///    successor block, it sets TBB to be the branch destination block and a
258  ///    list of operands that evaluate the condition. These operands can be
259  ///    passed to other TargetInstrInfo methods to create new branches.
260  /// 4. If this block ends with a conditional branch followed by an
261  ///    unconditional branch, it returns the 'true' destination in TBB, the
262  ///    'false' destination in FBB, and a list of operands that evaluate the
263  ///    condition.  These operands can be passed to other TargetInstrInfo
264  ///    methods to create new branches.
265  ///
266  /// Note that RemoveBranch and InsertBranch must be implemented to support
267  /// cases where this method returns success.
268  ///
269  /// If AllowModify is true, then this routine is allowed to modify the basic
270  /// block (e.g. delete instructions after the unconditional branch).
271  ///
272  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
273                             MachineBasicBlock *&FBB,
274                             SmallVectorImpl<MachineOperand> &Cond,
275                             bool AllowModify = false) const {
276    return true;
277  }
278
279  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
280  /// This is only invoked in cases where AnalyzeBranch returns success. It
281  /// returns the number of instructions that were removed.
282  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
283    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
284  }
285
286  /// InsertBranch - Insert branch code into the end of the specified
287  /// MachineBasicBlock.  The operands to this method are the same as those
288  /// returned by AnalyzeBranch.  This is only invoked in cases where
289  /// AnalyzeBranch returns success. It returns the number of instructions
290  /// inserted.
291  ///
292  /// It is also invoked by tail merging to add unconditional branches in
293  /// cases where AnalyzeBranch doesn't apply because there was no original
294  /// branch to analyze.  At least this much must be implemented, else tail
295  /// merging needs to be disabled.
296  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
297                                MachineBasicBlock *FBB,
298                                const SmallVectorImpl<MachineOperand> &Cond,
299                                DebugLoc DL) const {
300    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
301  }
302
303  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
304  /// after it, replacing it with an unconditional branch to NewDest. This is
305  /// used by the tail merging pass.
306  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
307                                       MachineBasicBlock *NewDest) const = 0;
308
309  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
310  /// block at the specified instruction (i.e. instruction would be the start
311  /// of a new basic block).
312  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
313                                   MachineBasicBlock::iterator MBBI) const {
314    return true;
315  }
316
317  /// isProfitableToIfCvt - Return true if it's profitable to predicate
318  /// instructions with accumulated instruction latency of "NumCycles"
319  /// of the specified basic block, where the probability of the instructions
320  /// being executed is given by Probability, and Confidence is a measure
321  /// of our confidence that it will be properly predicted.
322  virtual
323  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
324                           unsigned ExtraPredCycles,
325                           const BranchProbability &Probability) const {
326    return false;
327  }
328
329  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
330  /// checks for the case where two basic blocks from true and false path
331  /// of a if-then-else (diamond) are predicated on mutally exclusive
332  /// predicates, where the probability of the true path being taken is given
333  /// by Probability, and Confidence is a measure of our confidence that it
334  /// will be properly predicted.
335  virtual bool
336  isProfitableToIfCvt(MachineBasicBlock &TMBB,
337                      unsigned NumTCycles, unsigned ExtraTCycles,
338                      MachineBasicBlock &FMBB,
339                      unsigned NumFCycles, unsigned ExtraFCycles,
340                      const BranchProbability &Probability) const {
341    return false;
342  }
343
344  /// isProfitableToDupForIfCvt - Return true if it's profitable for
345  /// if-converter to duplicate instructions of specified accumulated
346  /// instruction latencies in the specified MBB to enable if-conversion.
347  /// The probability of the instructions being executed is given by
348  /// Probability, and Confidence is a measure of our confidence that it
349  /// will be properly predicted.
350  virtual bool
351  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
352                            const BranchProbability &Probability) const {
353    return false;
354  }
355
356  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
357  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
358  /// exclusive predicates.
359  /// e.g.
360  ///   subeq  r0, r1, #1
361  ///   addne  r0, r1, #1
362  /// =>
363  ///   sub    r0, r1, #1
364  ///   addne  r0, r1, #1
365  ///
366  /// This may be profitable is conditional instructions are always executed.
367  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
368                                         MachineBasicBlock &FMBB) const {
369    return false;
370  }
371
372  /// canInsertSelect - Return true if it is possible to insert a select
373  /// instruction that chooses between TrueReg and FalseReg based on the
374  /// condition code in Cond.
375  ///
376  /// When successful, also return the latency in cycles from TrueReg,
377  /// FalseReg, and Cond to the destination register. The Cond latency should
378  /// compensate for a conditional branch being removed. For example, if a
379  /// conditional branch has a 3 cycle latency from the condition code read,
380  /// and a cmov instruction has a 2 cycle latency from the condition code
381  /// read, CondCycles should be returned as -1.
382  ///
383  /// @param MBB         Block where select instruction would be inserted.
384  /// @param Cond        Condition returned by AnalyzeBranch.
385  /// @param TrueReg     Virtual register to select when Cond is true.
386  /// @param FalseReg    Virtual register to select when Cond is false.
387  /// @param CondCycles  Latency from Cond+Branch to select output.
388  /// @param TrueCycles  Latency from TrueReg to select output.
389  /// @param FalseCycles Latency from FalseReg to select output.
390  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
391                               const SmallVectorImpl<MachineOperand> &Cond,
392                               unsigned TrueReg, unsigned FalseReg,
393                               int &CondCycles,
394                               int &TrueCycles, int &FalseCycles) const {
395    return false;
396  }
397
398  /// insertSelect - Insert a select instruction into MBB before I that will
399  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
400  /// Cond is false.
401  ///
402  /// This function can only be called after canInsertSelect() returned true.
403  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
404  /// that the same flags or registers required by Cond are available at the
405  /// insertion point.
406  ///
407  /// @param MBB      Block where select instruction should be inserted.
408  /// @param I        Insertion point.
409  /// @param DL       Source location for debugging.
410  /// @param DstReg   Virtual register to be defined by select instruction.
411  /// @param Cond     Condition as computed by AnalyzeBranch.
412  /// @param TrueReg  Virtual register to copy when Cond is true.
413  /// @param FalseReg Virtual register to copy when Cons is false.
414  virtual void insertSelect(MachineBasicBlock &MBB,
415                            MachineBasicBlock::iterator I, DebugLoc DL,
416                            unsigned DstReg,
417                            const SmallVectorImpl<MachineOperand> &Cond,
418                            unsigned TrueReg, unsigned FalseReg) const {
419    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
420  }
421
422  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
423  virtual void copyPhysReg(MachineBasicBlock &MBB,
424                           MachineBasicBlock::iterator MI, DebugLoc DL,
425                           unsigned DestReg, unsigned SrcReg,
426                           bool KillSrc) const {
427    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
428  }
429
430  /// storeRegToStackSlot - Store the specified register of the given register
431  /// class to the specified stack frame index. The store instruction is to be
432  /// added to the given machine basic block before the specified machine
433  /// instruction. If isKill is true, the register operand is the last use and
434  /// must be marked kill.
435  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
436                                   MachineBasicBlock::iterator MI,
437                                   unsigned SrcReg, bool isKill, int FrameIndex,
438                                   const TargetRegisterClass *RC,
439                                   const TargetRegisterInfo *TRI) const {
440    llvm_unreachable("Target didn't implement "
441                     "TargetInstrInfo::storeRegToStackSlot!");
442  }
443
444  /// loadRegFromStackSlot - Load the specified register of the given register
445  /// class from the specified stack frame index. The load instruction is to be
446  /// added to the given machine basic block before the specified machine
447  /// instruction.
448  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
449                                    MachineBasicBlock::iterator MI,
450                                    unsigned DestReg, int FrameIndex,
451                                    const TargetRegisterClass *RC,
452                                    const TargetRegisterInfo *TRI) const {
453    llvm_unreachable("Target didn't implement "
454                     "TargetInstrInfo::loadRegFromStackSlot!");
455  }
456
457  /// expandPostRAPseudo - This function is called for all pseudo instructions
458  /// that remain after register allocation. Many pseudo instructions are
459  /// created to help register allocation. This is the place to convert them
460  /// into real instructions. The target can edit MI in place, or it can insert
461  /// new instructions and erase MI. The function should return true if
462  /// anything was changed.
463  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
464    return false;
465  }
466
467  /// emitFrameIndexDebugValue - Emit a target-dependent form of
468  /// DBG_VALUE encoding the address of a frame index.  Addresses would
469  /// normally be lowered the same way as other addresses on the target,
470  /// e.g. in load instructions.  For targets that do not support this
471  /// the debug info is simply lost.
472  /// If you add this for a target you should handle this DBG_VALUE in the
473  /// target-specific AsmPrinter code as well; you will probably get invalid
474  /// assembly output if you don't.
475  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
476                                                 int FrameIx,
477                                                 uint64_t Offset,
478                                                 const MDNode *MDPtr,
479                                                 DebugLoc dl) const {
480    return 0;
481  }
482
483  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
484  /// slot into the specified machine instruction for the specified operand(s).
485  /// If this is possible, a new instruction is returned with the specified
486  /// operand folded, otherwise NULL is returned.
487  /// The new instruction is inserted before MI, and the client is responsible
488  /// for removing the old instruction.
489  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
490                                  const SmallVectorImpl<unsigned> &Ops,
491                                  int FrameIndex) const;
492
493  /// foldMemoryOperand - Same as the previous version except it allows folding
494  /// of any load and store from / to any address, not just from a specific
495  /// stack slot.
496  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
497                                  const SmallVectorImpl<unsigned> &Ops,
498                                  MachineInstr* LoadMI) const;
499
500protected:
501  /// foldMemoryOperandImpl - Target-dependent implementation for
502  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
503  /// take care of adding a MachineMemOperand to the newly created instruction.
504  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
505                                          MachineInstr* MI,
506                                          const SmallVectorImpl<unsigned> &Ops,
507                                          int FrameIndex) const {
508    return 0;
509  }
510
511  /// foldMemoryOperandImpl - Target-dependent implementation for
512  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
513  /// take care of adding a MachineMemOperand to the newly created instruction.
514  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
515                                              MachineInstr* MI,
516                                          const SmallVectorImpl<unsigned> &Ops,
517                                              MachineInstr* LoadMI) const {
518    return 0;
519  }
520
521public:
522  /// canFoldMemoryOperand - Returns true for the specified load / store if
523  /// folding is possible.
524  virtual
525  bool canFoldMemoryOperand(const MachineInstr *MI,
526                            const SmallVectorImpl<unsigned> &Ops) const =0;
527
528  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
529  /// a store or a load and a store into two or more instruction. If this is
530  /// possible, returns true as well as the new instructions by reference.
531  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
532                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
533                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
534    return false;
535  }
536
537  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
538                                   SmallVectorImpl<SDNode*> &NewNodes) const {
539    return false;
540  }
541
542  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
543  /// instruction after load / store are unfolded from an instruction of the
544  /// specified opcode. It returns zero if the specified unfolding is not
545  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
546  /// index of the operand which will hold the register holding the loaded
547  /// value.
548  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
549                                      bool UnfoldLoad, bool UnfoldStore,
550                                      unsigned *LoadRegIndex = 0) const {
551    return 0;
552  }
553
554  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
555  /// to determine if two loads are loading from the same base address. It
556  /// should only return true if the base pointers are the same and the
557  /// only differences between the two addresses are the offset. It also returns
558  /// the offsets by reference.
559  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
560                                    int64_t &Offset1, int64_t &Offset2) const {
561    return false;
562  }
563
564  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
565  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
566  /// be scheduled togther. On some targets if two loads are loading from
567  /// addresses in the same cache line, it's better if they are scheduled
568  /// together. This function takes two integers that represent the load offsets
569  /// from the common base address. It returns true if it decides it's desirable
570  /// to schedule the two loads together. "NumLoads" is the number of loads that
571  /// have already been scheduled after Load1.
572  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
573                                       int64_t Offset1, int64_t Offset2,
574                                       unsigned NumLoads) const {
575    return false;
576  }
577
578  /// ReverseBranchCondition - Reverses the branch condition of the specified
579  /// condition list, returning false on success and true if it cannot be
580  /// reversed.
581  virtual
582  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
583    return true;
584  }
585
586  /// insertNoop - Insert a noop into the instruction stream at the specified
587  /// point.
588  virtual void insertNoop(MachineBasicBlock &MBB,
589                          MachineBasicBlock::iterator MI) const;
590
591
592  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
593  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
594    // Default to just using 'nop' string.
595  }
596
597
598  /// isPredicated - Returns true if the instruction is already predicated.
599  ///
600  virtual bool isPredicated(const MachineInstr *MI) const {
601    return false;
602  }
603
604  /// isUnpredicatedTerminator - Returns true if the instruction is a
605  /// terminator instruction that has not been predicated.
606  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
607
608  /// PredicateInstruction - Convert the instruction into a predicated
609  /// instruction. It returns true if the operation was successful.
610  virtual
611  bool PredicateInstruction(MachineInstr *MI,
612                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
613
614  /// SubsumesPredicate - Returns true if the first specified predicate
615  /// subsumes the second, e.g. GE subsumes GT.
616  virtual
617  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
618                         const SmallVectorImpl<MachineOperand> &Pred2) const {
619    return false;
620  }
621
622  /// DefinesPredicate - If the specified instruction defines any predicate
623  /// or condition code register(s) used for predication, returns true as well
624  /// as the definition predicate(s) by reference.
625  virtual bool DefinesPredicate(MachineInstr *MI,
626                                std::vector<MachineOperand> &Pred) const {
627    return false;
628  }
629
630  /// isPredicable - Return true if the specified instruction can be predicated.
631  /// By default, this returns true for every instruction with a
632  /// PredicateOperand.
633  virtual bool isPredicable(MachineInstr *MI) const {
634    return MI->getDesc().isPredicable();
635  }
636
637  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
638  /// instruction that defines the specified register class.
639  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
640    return true;
641  }
642
643  /// isSchedulingBoundary - Test if the given instruction should be
644  /// considered a scheduling boundary. This primarily includes labels and
645  /// terminators.
646  virtual bool isSchedulingBoundary(const MachineInstr *MI,
647                                    const MachineBasicBlock *MBB,
648                                    const MachineFunction &MF) const = 0;
649
650  /// Measure the specified inline asm to determine an approximation of its
651  /// length.
652  virtual unsigned getInlineAsmLength(const char *Str,
653                                      const MCAsmInfo &MAI) const;
654
655  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
656  /// use for this target when scheduling the machine instructions before
657  /// register allocation.
658  virtual ScheduleHazardRecognizer*
659  CreateTargetHazardRecognizer(const TargetMachine *TM,
660                               const ScheduleDAG *DAG) const = 0;
661
662  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
663  /// to use for this target when scheduling the machine instructions before
664  /// register allocation.
665  virtual ScheduleHazardRecognizer*
666  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
667                                 const ScheduleDAG *DAG) const = 0;
668
669  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
670  /// recognizer to use for this target when scheduling the machine instructions
671  /// after register allocation.
672  virtual ScheduleHazardRecognizer*
673  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
674                                     const ScheduleDAG *DAG) const = 0;
675
676  /// analyzeCompare - For a comparison instruction, return the source registers
677  /// in SrcReg and SrcReg2 if having two register operands, and the value it
678  /// compares against in CmpValue. Return true if the comparison instruction
679  /// can be analyzed.
680  virtual bool analyzeCompare(const MachineInstr *MI,
681                              unsigned &SrcReg, unsigned &SrcReg2,
682                              int &Mask, int &Value) const {
683    return false;
684  }
685
686  /// optimizeCompareInstr - See if the comparison instruction can be converted
687  /// into something more efficient. E.g., on ARM most instructions can set the
688  /// flags register, obviating the need for a separate CMP.
689  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
690                                    unsigned SrcReg, unsigned SrcReg2,
691                                    int Mask, int Value,
692                                    const MachineRegisterInfo *MRI) const {
693    return false;
694  }
695
696  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
697  /// instruction, try to fold the immediate into the use instruction.
698  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
699                             unsigned Reg, MachineRegisterInfo *MRI) const {
700    return false;
701  }
702
703  /// getNumMicroOps - Return the number of u-operations the given machine
704  /// instruction will be decoded to on the target cpu. The itinerary's
705  /// IssueWidth is the number of microops that can be dispatched each
706  /// cycle. An instruction with zero microops takes no dispatch resources.
707  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
708                                  const MachineInstr *MI) const = 0;
709
710  /// isZeroCost - Return true for pseudo instructions that don't consume any
711  /// machine resources in their current form. These are common cases that the
712  /// scheduler should consider free, rather than conservatively handling them
713  /// as instructions with no itinerary.
714  bool isZeroCost(unsigned Opcode) const {
715    return Opcode <= TargetOpcode::COPY;
716  }
717
718  virtual int getOperandLatency(const InstrItineraryData *ItinData,
719                                SDNode *DefNode, unsigned DefIdx,
720                                SDNode *UseNode, unsigned UseIdx) const = 0;
721
722  /// getOperandLatency - Compute and return the use operand latency of a given
723  /// pair of def and use.
724  /// In most cases, the static scheduling itinerary was enough to determine the
725  /// operand latency. But it may not be possible for instructions with variable
726  /// number of defs / uses.
727  ///
728  /// This is a raw interface to the itinerary that may be directly overriden by
729  /// a target. Use computeOperandLatency to get the best estimate of latency.
730  virtual int getOperandLatency(const InstrItineraryData *ItinData,
731                                const MachineInstr *DefMI, unsigned DefIdx,
732                                const MachineInstr *UseMI,
733                                unsigned UseIdx) const = 0;
734
735  /// computeOperandLatency - Compute and return the latency of the given data
736  /// dependent def and use when the operand indices are already known.
737  ///
738  /// FindMin may be set to get the minimum vs. expected latency.
739  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
740                                 const MachineInstr *DefMI, unsigned DefIdx,
741                                 const MachineInstr *UseMI, unsigned UseIdx,
742                                 bool FindMin = false) const;
743
744  /// computeOperandLatency - Compute and return the latency of the given data
745  /// dependent def and use. DefMI must be a valid def. UseMI may be NULL for
746  /// an unknown use. If the subtarget allows, this may or may not need to call
747  /// getOperandLatency().
748  ///
749  /// FindMin may be set to get the minimum vs. expected latency. Minimum
750  /// latency is used for scheduling groups, while expected latency is for
751  /// instruction cost and critical path.
752  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
753                                 const TargetRegisterInfo *TRI,
754                                 const MachineInstr *DefMI,
755                                 const MachineInstr *UseMI,
756                                 unsigned Reg, bool FindMin) const;
757
758  /// getOutputLatency - Compute and return the output dependency latency of a
759  /// a given pair of defs which both target the same register. This is usually
760  /// one.
761  virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
762                                    const MachineInstr *DefMI, unsigned DefIdx,
763                                    const MachineInstr *DepMI) const {
764    return 1;
765  }
766
767  /// getInstrLatency - Compute the instruction latency of a given instruction.
768  /// If the instruction has higher cost when predicated, it's returned via
769  /// PredCost.
770  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
771                                   const MachineInstr *MI,
772                                   unsigned *PredCost = 0) const = 0;
773
774  virtual int getInstrLatency(const InstrItineraryData *ItinData,
775                              SDNode *Node) const = 0;
776
777  /// Return the default expected latency for a def based on it's opcode.
778  unsigned defaultDefLatency(const InstrItineraryData *ItinData,
779                             const MachineInstr *DefMI) const;
780
781  /// isHighLatencyDef - Return true if this opcode has high latency to its
782  /// result.
783  virtual bool isHighLatencyDef(int opc) const { return false; }
784
785  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
786  /// and an use in the current loop, return true if the target considered
787  /// it 'high'. This is used by optimization passes such as machine LICM to
788  /// determine whether it makes sense to hoist an instruction out even in
789  /// high register pressure situation.
790  virtual
791  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
792                             const MachineRegisterInfo *MRI,
793                             const MachineInstr *DefMI, unsigned DefIdx,
794                             const MachineInstr *UseMI, unsigned UseIdx) const {
795    return false;
796  }
797
798  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
799  /// if the target considered it 'low'.
800  virtual
801  bool hasLowDefLatency(const InstrItineraryData *ItinData,
802                        const MachineInstr *DefMI, unsigned DefIdx) const = 0;
803
804  /// verifyInstruction - Perform target specific instruction verification.
805  virtual
806  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
807    return true;
808  }
809
810  /// getExecutionDomain - Return the current execution domain and bit mask of
811  /// possible domains for instruction.
812  ///
813  /// Some micro-architectures have multiple execution domains, and multiple
814  /// opcodes that perform the same operation in different domains.  For
815  /// example, the x86 architecture provides the por, orps, and orpd
816  /// instructions that all do the same thing.  There is a latency penalty if a
817  /// register is written in one domain and read in another.
818  ///
819  /// This function returns a pair (domain, mask) containing the execution
820  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
821  /// function can be used to change the opcode to one of the domains in the
822  /// bit mask.  Instructions whose execution domain can't be changed should
823  /// return a 0 mask.
824  ///
825  /// The execution domain numbers don't have any special meaning except domain
826  /// 0 is used for instructions that are not associated with any interesting
827  /// execution domain.
828  ///
829  virtual std::pair<uint16_t, uint16_t>
830  getExecutionDomain(const MachineInstr *MI) const {
831    return std::make_pair(0, 0);
832  }
833
834  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
835  ///
836  /// The bit (1 << Domain) must be set in the mask returned from
837  /// getExecutionDomain(MI).
838  ///
839  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
840
841
842  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
843  /// before an instruction with an unwanted partial register update.
844  ///
845  /// Some instructions only write part of a register, and implicitly need to
846  /// read the other parts of the register.  This may cause unwanted stalls
847  /// preventing otherwise unrelated instructions from executing in parallel in
848  /// an out-of-order CPU.
849  ///
850  /// For example, the x86 instruction cvtsi2ss writes its result to bits
851  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
852  /// the instruction needs to wait for the old value of the register to become
853  /// available:
854  ///
855  ///   addps %xmm1, %xmm0
856  ///   movaps %xmm0, (%rax)
857  ///   cvtsi2ss %rbx, %xmm0
858  ///
859  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
860  /// instruction before it can issue, even though the high bits of %xmm0
861  /// probably aren't needed.
862  ///
863  /// This hook returns the preferred clearance before MI, measured in
864  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
865  /// instructions before MI.  It should only return a positive value for
866  /// unwanted dependencies.  If the old bits of the defined register have
867  /// useful values, or if MI is determined to otherwise read the dependency,
868  /// the hook should return 0.
869  ///
870  /// The unwanted dependency may be handled by:
871  ///
872  /// 1. Allocating the same register for an MI def and use.  That makes the
873  ///    unwanted dependency identical to a required dependency.
874  ///
875  /// 2. Allocating a register for the def that has no defs in the previous N
876  ///    instructions.
877  ///
878  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
879  ///    allows the target to insert a dependency breaking instruction.
880  ///
881  virtual unsigned
882  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
883                               const TargetRegisterInfo *TRI) const {
884    // The default implementation returns 0 for no partial register dependency.
885    return 0;
886  }
887
888  /// breakPartialRegDependency - Insert a dependency-breaking instruction
889  /// before MI to eliminate an unwanted dependency on OpNum.
890  ///
891  /// If it wasn't possible to avoid a def in the last N instructions before MI
892  /// (see getPartialRegUpdateClearance), this hook will be called to break the
893  /// unwanted dependency.
894  ///
895  /// On x86, an xorps instruction can be used as a dependency breaker:
896  ///
897  ///   addps %xmm1, %xmm0
898  ///   movaps %xmm0, (%rax)
899  ///   xorps %xmm0, %xmm0
900  ///   cvtsi2ss %rbx, %xmm0
901  ///
902  /// An <imp-kill> operand should be added to MI if an instruction was
903  /// inserted.  This ties the instructions together in the post-ra scheduler.
904  ///
905  virtual void
906  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
907                            const TargetRegisterInfo *TRI) const {}
908
909  /// Create machine specific model for scheduling.
910  virtual DFAPacketizer*
911    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
912    return NULL;
913  }
914
915private:
916  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
917};
918
919/// TargetInstrInfoImpl - This is the default implementation of
920/// TargetInstrInfo, which just provides a couple of default implementations
921/// for various methods.  This separated out because it is implemented in
922/// libcodegen, not in libtarget.
923class TargetInstrInfoImpl : public TargetInstrInfo {
924protected:
925  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
926                      int CallFrameDestroyOpcode = -1)
927    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
928public:
929  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
930                                       MachineBasicBlock *NewDest) const;
931  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
932                                           bool NewMI = false) const;
933  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
934                                     unsigned &SrcOpIdx2) const;
935  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
936                                    const SmallVectorImpl<unsigned> &Ops) const;
937  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
938                                    const MachineMemOperand *&MMO,
939                                    int &FrameIndex) const;
940  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
941                                   const MachineMemOperand *&MMO,
942                                   int &FrameIndex) const;
943  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
944  virtual bool PredicateInstruction(MachineInstr *MI,
945                            const SmallVectorImpl<MachineOperand> &Pred) const;
946  virtual void reMaterialize(MachineBasicBlock &MBB,
947                             MachineBasicBlock::iterator MI,
948                             unsigned DestReg, unsigned SubReg,
949                             const MachineInstr *Orig,
950                             const TargetRegisterInfo &TRI) const;
951  virtual MachineInstr *duplicate(MachineInstr *Orig,
952                                  MachineFunction &MF) const;
953  virtual bool produceSameValue(const MachineInstr *MI0,
954                                const MachineInstr *MI1,
955                                const MachineRegisterInfo *MRI) const;
956  virtual bool isSchedulingBoundary(const MachineInstr *MI,
957                                    const MachineBasicBlock *MBB,
958                                    const MachineFunction &MF) const;
959
960  virtual int getOperandLatency(const InstrItineraryData *ItinData,
961                                SDNode *DefNode, unsigned DefIdx,
962                                SDNode *UseNode, unsigned UseIdx) const;
963
964  virtual int getInstrLatency(const InstrItineraryData *ItinData,
965                              SDNode *Node) const;
966
967  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
968                                  const MachineInstr *MI) const;
969
970  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
971                                   const MachineInstr *MI,
972                                   unsigned *PredCost = 0) const;
973
974  virtual
975  bool hasLowDefLatency(const InstrItineraryData *ItinData,
976                        const MachineInstr *DefMI, unsigned DefIdx) const;
977
978  virtual int getOperandLatency(const InstrItineraryData *ItinData,
979                                const MachineInstr *DefMI, unsigned DefIdx,
980                                const MachineInstr *UseMI,
981                                unsigned UseIdx) const;
982
983  bool usePreRAHazardRecognizer() const;
984
985  virtual ScheduleHazardRecognizer *
986  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
987
988  virtual ScheduleHazardRecognizer *
989  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
990                                 const ScheduleDAG*) const;
991
992  virtual ScheduleHazardRecognizer *
993  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
994                                     const ScheduleDAG*) const;
995};
996
997} // End llvm namespace
998
999#endif
1000