TargetInstrInfo.h revision 349c4952009525b27383e2120a6b3c998f39bd09
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class TargetRegisterClass;
28class LiveVariables;
29class CalleeSavedInfo;
30class SDNode;
31class SelectionDAG;
32
33template<class T> class SmallVectorImpl;
34
35//===----------------------------------------------------------------------===//
36// struct TargetInstrDescriptor:
37//  Predefined information about each machine instruction.
38//  Designed to initialized statically.
39//
40
41const unsigned M_BRANCH_FLAG           = 1 << 0;
42const unsigned M_CALL_FLAG             = 1 << 1;
43const unsigned M_RET_FLAG              = 1 << 2;
44const unsigned M_BARRIER_FLAG          = 1 << 3;
45const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
46
47/// M_SIMPLE_LOAD_FLAG - This flag is set for instructions that are simple loads
48/// from memory.  This should only be set on instructions that load a value from
49/// memory and return it in their only virtual register definition.
50const unsigned M_SIMPLE_LOAD_FLAG      = 1 << 5;
51
52/// M_MAY_STORE_FLAG - This flag is set to any instruction that could possibly
53/// modify memory.  Instructions with this flag set are not necessarily simple
54/// store instructions, they may store a modified value based on their operands,
55/// or may not actually modify anything, for example.
56const unsigned M_MAY_STORE_FLAG        = 1 << 6;
57
58const unsigned M_INDIRECT_FLAG         = 1 << 7;
59const unsigned M_IMPLICIT_DEF_FLAG     = 1 << 8;
60
61// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
62// changed into a 3-address instruction if the first two operands cannot be
63// assigned to the same register.  The target must implement the
64// TargetInstrInfo::convertToThreeAddress method for this instruction.
65const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 9;
66
67// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
68// Z), which produces the same result if Y and Z are exchanged.
69const unsigned M_COMMUTABLE            = 1 << 10;
70
71// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
72// block?  Typically this is things like return and branch instructions.
73// Various passes use this to insert code into the bottom of a basic block, but
74// before control flow occurs.
75const unsigned M_TERMINATOR_FLAG       = 1 << 11;
76
77// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
78// insertion support when the DAG scheduler is inserting it into a machine basic
79// block.
80const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 12;
81
82// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
83// operands in addition to the minimum number operands specified.
84const unsigned M_VARIABLE_OPS          = 1 << 13;
85
86// M_PREDICABLE - Set if this instruction has a predicate operand that
87// controls execution. It may be set to 'always'.
88const unsigned M_PREDICABLE            = 1 << 14;
89
90// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
91// at any time, e.g. constant generation, load from constant pool.
92const unsigned M_REMATERIALIZIBLE      = 1 << 15;
93
94// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
95// (e.g. instructions with unique labels attached).
96const unsigned M_NOT_DUPLICABLE        = 1 << 16;
97
98// M_HAS_OPTIONAL_DEF - Set if this instruction has an optional definition, e.g.
99// ARM instructions which can set condition code if 's' bit is set.
100const unsigned M_HAS_OPTIONAL_DEF      = 1 << 17;
101
102// M_NEVER_HAS_SIDE_EFFECTS - Set if this instruction has no side effects that
103// are not captured by any operands of the instruction or other flags, and when
104// *all* instances of the instruction of that opcode have no side effects.
105//
106// Note: This and M_MAY_HAVE_SIDE_EFFECTS are mutually exclusive. You can't set
107// both! If neither flag is set, then the instruction *always* has side effects.
108const unsigned M_NEVER_HAS_SIDE_EFFECTS = 1 << 18;
109
110// M_MAY_HAVE_SIDE_EFFECTS - Set if some instances of this instruction can have
111// side effects. The virtual method "isReallySideEffectFree" is called to
112// determine this. Load instructions are an example of where this is useful. In
113// general, loads always have side effects. However, loads from constant pools
114// don't. We let the specific back end make this determination.
115//
116// Note: This and M_NEVER_HAS_SIDE_EFFECTS are mutually exclusive. You can't set
117// both! If neither flag is set, then the instruction *always* has side effects.
118const unsigned M_MAY_HAVE_SIDE_EFFECTS = 1 << 19;
119
120
121//===----------------------------------------------------------------------===//
122// Machine operand flags
123//===----------------------------------------------------------------------===//
124
125namespace TOI {
126  // Operand constraints: only "tied_to" for now.
127  enum OperandConstraint {
128    TIED_TO = 0  // Must be allocated the same register as.
129  };
130
131  /// OperandFlags - These are flags set on operands, but should be considered
132  /// private, all access should go through the TargetOperandInfo accessors.
133  /// See the accessors for a description of what these are.
134  enum OperandFlags {
135    LookupPtrRegClass = 1 << 0,
136    Predicate         = 1 << 1,
137    OptionalDef       = 1 << 2
138  };
139}
140
141/// TargetOperandInfo - This holds information about one operand of a machine
142/// instruction, indicating the register class for register operands, etc.
143///
144class TargetOperandInfo {
145public:
146  /// RegClass - This specifies the register class enumeration of the operand
147  /// if the operand is a register.  If not, this contains 0.
148  unsigned short RegClass;
149  unsigned short Flags;
150  /// Lower 16 bits are used to specify which constraints are set. The higher 16
151  /// bits are used to specify the value of constraints (4 bits each).
152  unsigned int Constraints;
153  /// Currently no other information.
154
155  /// isLookupPtrRegClass - Set if this operand is a pointer value and it
156  /// requires a callback to look up its register class.
157  bool isLookupPtrRegClass() const { return Flags & TOI::LookupPtrRegClass; }
158
159  /// isPredicate - Set if this is one of the operands that made up of
160  /// the predicate operand that controls an M_PREDICATED instruction.
161  bool isPredicate() const { return Flags & TOI::Predicate; }
162
163  /// isOptionalDef - Set if this operand is a optional def.
164  ///
165  bool isOptionalDef() const { return Flags & TOI::OptionalDef; }
166};
167
168
169class TargetInstrDescriptor {
170public:
171  unsigned short  Opcode;        // The opcode.
172  unsigned short  NumOperands;   // Num of args (may be more if variable_ops).
173  unsigned short  NumDefs;       // Num of args that are definitions.
174  const char *    Name;          // Assembly language mnemonic for the opcode.
175  unsigned        SchedClass;    // enum  identifying instr sched class
176  unsigned        Flags;         // flags identifying machine instr class
177  unsigned        TSFlags;       // Target Specific Flag values
178  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
179  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
180  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
181
182  /// getOperandConstraint - Returns the value of the specific constraint if
183  /// it is set. Returns -1 if it is not set.
184  int getOperandConstraint(unsigned OpNum,
185                           TOI::OperandConstraint Constraint) const {
186    assert((OpNum < NumOperands || hasVariableOperands()) &&
187           "Invalid operand # of TargetInstrInfo");
188    if (OpNum < NumOperands &&
189        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
190      unsigned Pos = 16 + Constraint * 4;
191      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
192    }
193    return -1;
194  }
195
196  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
197  /// dest operand. Returns -1 if there isn't one.
198  int findTiedToSrcOperand(unsigned OpNum) const;
199
200  const char *getName() const {
201    return Name;
202  }
203
204  unsigned getNumOperands() const {
205    return NumOperands;
206  }
207
208  unsigned getNumDefs() const {
209    return NumDefs;
210  }
211
212  bool hasVariableOperands() const {
213    return Flags & M_VARIABLE_OPS;
214  }
215
216  bool hasOptionalDef() const {
217    return Flags & M_HAS_OPTIONAL_DEF;
218  }
219
220  const unsigned *getImplicitUses() const {
221    return ImplicitUses;
222  }
223
224  const unsigned *getImplicitDefs() const {
225    return ImplicitDefs;
226  }
227
228  bool isReturn() const {
229    return Flags & M_RET_FLAG;
230  }
231
232  bool isCall() const {
233    return Flags & M_CALL_FLAG;
234  }
235
236  bool isTerminator() const {
237    return Flags & M_TERMINATOR_FLAG;
238  }
239
240  bool isBranch() const {
241    return Flags & M_BRANCH_FLAG;
242  }
243
244  bool isIndirectBranch() const {
245    return Flags & M_INDIRECT_FLAG;
246  }
247
248  bool isPredicable() const {
249    return Flags & M_PREDICABLE;
250  }
251
252  bool isNotDuplicable() const {
253    return Flags & M_NOT_DUPLICABLE;
254  }
255
256  bool isCommutableInstr() const {
257    return Flags & M_COMMUTABLE;
258  }
259
260  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
261  /// custom insertion support when the DAG scheduler is inserting it into a
262  /// machine basic block.
263  bool usesCustomDAGSchedInsertionHook() const {
264    return Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
265  }
266
267  /// isSimpleLoad - Return true for instructions that are simple loads from
268  /// memory.  This should only be set on instructions that load a value from
269  /// memory and return it in their only virtual register definition.
270  /// Instructions that return a value loaded from memory and then modified in
271  /// some way should not return true for this.
272  bool isSimpleLoad() const {
273    return Flags & M_SIMPLE_LOAD_FLAG;
274  }
275
276  /// mayStore - Return true if this instruction could possibly modify memory.
277  /// Instructions with this flag set are not necessarily simple store
278  /// instructions, they may store a modified value based on their operands, or
279  /// may not actually modify anything, for example.
280  bool mayStore() const {
281    return Flags & M_MAY_STORE_FLAG;
282  }
283
284  /// isBarrier - Returns true if the specified instruction stops control flow
285  /// from executing the instruction immediately following it.  Examples include
286  /// unconditional branches and return instructions.
287  bool isBarrier() const {
288    return Flags & M_BARRIER_FLAG;
289  }
290
291  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
292  /// which must be filled by the code generator.
293  bool hasDelaySlot() const {
294    return Flags & M_DELAY_SLOT_FLAG;
295  }
296
297  unsigned getSchedClass() const {
298    return SchedClass;
299  }
300};
301
302
303//---------------------------------------------------------------------------
304///
305/// TargetInstrInfo - Interface to description of machine instructions
306///
307class TargetInstrInfo {
308  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
309  unsigned NumOpcodes;                  // number of entries in the desc array
310  unsigned numRealOpCodes;              // number of non-dummy op codes
311
312  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
313  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
314public:
315  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
316  virtual ~TargetInstrInfo();
317
318  // Invariant opcodes: All instruction sets have these as their low opcodes.
319  enum {
320    PHI = 0,
321    INLINEASM = 1,
322    LABEL = 2,
323    EXTRACT_SUBREG = 3,
324    INSERT_SUBREG = 4
325  };
326
327  unsigned getNumOpcodes() const { return NumOpcodes; }
328
329  /// get - Return the machine instruction descriptor that corresponds to the
330  /// specified instruction opcode.
331  ///
332  const TargetInstrDescriptor& get(unsigned Opcode) const {
333    assert(Opcode < NumOpcodes);
334    return desc[Opcode];
335  }
336
337  /// isTriviallyReMaterializable - Return true if the instruction is trivially
338  /// rematerializable, meaning it has no side effects and requires no operands
339  /// that aren't always available.
340  bool isTriviallyReMaterializable(MachineInstr *MI) const {
341    return (MI->getDesc()->Flags & M_REMATERIALIZIBLE) &&
342           isReallyTriviallyReMaterializable(MI);
343  }
344
345  /// hasUnmodelledSideEffects - Returns true if the instruction has side
346  /// effects that are not captured by any operands of the instruction or other
347  /// flags.
348  bool hasUnmodelledSideEffects(MachineInstr *MI) const {
349    const TargetInstrDescriptor *TID = MI->getDesc();
350    if (TID->Flags & M_NEVER_HAS_SIDE_EFFECTS) return false;
351    if (!(TID->Flags & M_MAY_HAVE_SIDE_EFFECTS)) return true;
352    return !isReallySideEffectFree(MI); // May have side effects
353  }
354protected:
355  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
356  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
357  /// instruction itself is actually trivially rematerializable, considering
358  /// its operands.  This is used for targets that have instructions that are
359  /// only trivially rematerializable for specific uses.  This predicate must
360  /// return false if the instruction has any side effects other than
361  /// producing a value, or if it requres any address registers that are not
362  /// always available.
363  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
364    return true;
365  }
366
367  /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
368  /// method is called to determine if the specific instance of this
369  /// instruction has side effects. This is useful in cases of instructions,
370  /// like loads, which generally always have side effects. A load from a
371  /// constant pool doesn't have side effects, though. So we need to
372  /// differentiate it from the general case.
373  virtual bool isReallySideEffectFree(MachineInstr *MI) const {
374    return false;
375  }
376public:
377  /// getOperandConstraint - Returns the value of the specific constraint if
378  /// it is set. Returns -1 if it is not set.
379  int getOperandConstraint(unsigned Opcode, unsigned OpNum,
380                           TOI::OperandConstraint Constraint) const {
381    return get(Opcode).getOperandConstraint(OpNum, Constraint);
382  }
383
384  /// Return true if the instruction is a register to register move
385  /// and leave the source and dest operands in the passed parameters.
386  virtual bool isMoveInstr(const MachineInstr& MI,
387                           unsigned& sourceReg,
388                           unsigned& destReg) const {
389    return false;
390  }
391
392  /// isLoadFromStackSlot - If the specified machine instruction is a direct
393  /// load from a stack slot, return the virtual or physical register number of
394  /// the destination along with the FrameIndex of the loaded stack slot.  If
395  /// not, return 0.  This predicate must return 0 if the instruction has
396  /// any side effects other than loading from the stack slot.
397  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
398    return 0;
399  }
400
401  /// isStoreToStackSlot - If the specified machine instruction is a direct
402  /// store to a stack slot, return the virtual or physical register number of
403  /// the source reg along with the FrameIndex of the loaded stack slot.  If
404  /// not, return 0.  This predicate must return 0 if the instruction has
405  /// any side effects other than storing to the stack slot.
406  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
407    return 0;
408  }
409
410  /// convertToThreeAddress - This method must be implemented by targets that
411  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
412  /// may be able to convert a two-address instruction into one or more true
413  /// three-address instructions on demand.  This allows the X86 target (for
414  /// example) to convert ADD and SHL instructions into LEA instructions if they
415  /// would require register copies due to two-addressness.
416  ///
417  /// This method returns a null pointer if the transformation cannot be
418  /// performed, otherwise it returns the last new instruction.
419  ///
420  virtual MachineInstr *
421  convertToThreeAddress(MachineFunction::iterator &MFI,
422                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
423    return 0;
424  }
425
426  /// commuteInstruction - If a target has any instructions that are commutable,
427  /// but require converting to a different instruction or making non-trivial
428  /// changes to commute them, this method can overloaded to do this.  The
429  /// default implementation of this method simply swaps the first two operands
430  /// of MI and returns it.
431  ///
432  /// If a target wants to make more aggressive changes, they can construct and
433  /// return a new machine instruction.  If an instruction cannot commute, it
434  /// can also return null.
435  ///
436  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
437
438  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
439  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
440  /// implemented for a target).  Upon success, this returns false and returns
441  /// with the following information in various cases:
442  ///
443  /// 1. If this block ends with no branches (it just falls through to its succ)
444  ///    just return false, leaving TBB/FBB null.
445  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
446  ///    the destination block.
447  /// 3. If this block ends with an conditional branch and it falls through to
448  ///    an successor block, it sets TBB to be the branch destination block and a
449  ///    list of operands that evaluate the condition. These
450  ///    operands can be passed to other TargetInstrInfo methods to create new
451  ///    branches.
452  /// 4. If this block ends with an conditional branch and an unconditional
453  ///    block, it returns the 'true' destination in TBB, the 'false' destination
454  ///    in FBB, and a list of operands that evaluate the condition. These
455  ///    operands can be passed to other TargetInstrInfo methods to create new
456  ///    branches.
457  ///
458  /// Note that RemoveBranch and InsertBranch must be implemented to support
459  /// cases where this method returns success.
460  ///
461  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
462                             MachineBasicBlock *&FBB,
463                             std::vector<MachineOperand> &Cond) const {
464    return true;
465  }
466
467  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
468  /// this is only invoked in cases where AnalyzeBranch returns success. It
469  /// returns the number of instructions that were removed.
470  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
471    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
472    return 0;
473  }
474
475  /// InsertBranch - Insert a branch into the end of the specified
476  /// MachineBasicBlock.  This operands to this method are the same as those
477  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
478  /// returns success and when an unconditional branch (TBB is non-null, FBB is
479  /// null, Cond is empty) needs to be inserted. It returns the number of
480  /// instructions inserted.
481  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
482                            MachineBasicBlock *FBB,
483                            const std::vector<MachineOperand> &Cond) const {
484    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
485    return 0;
486  }
487
488  /// copyRegToReg - Add a copy between a pair of registers
489  virtual void copyRegToReg(MachineBasicBlock &MBB,
490                            MachineBasicBlock::iterator MI,
491                            unsigned DestReg, unsigned SrcReg,
492                            const TargetRegisterClass *DestRC,
493                            const TargetRegisterClass *SrcRC) const {
494    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
495  }
496
497  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
498                                   MachineBasicBlock::iterator MI,
499                                   unsigned SrcReg, bool isKill, int FrameIndex,
500                                   const TargetRegisterClass *RC) const {
501    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
502  }
503
504  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
505                              SmallVectorImpl<MachineOperand> &Addr,
506                              const TargetRegisterClass *RC,
507                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
508    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
509  }
510
511  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
512                                    MachineBasicBlock::iterator MI,
513                                    unsigned DestReg, int FrameIndex,
514                                    const TargetRegisterClass *RC) const {
515    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
516  }
517
518  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
519                               SmallVectorImpl<MachineOperand> &Addr,
520                               const TargetRegisterClass *RC,
521                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
522    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
523  }
524
525  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
526  /// saved registers and returns true if it isn't possible / profitable to do
527  /// so by issuing a series of store instructions via
528  /// storeRegToStackSlot(). Returns false otherwise.
529  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
530                                         MachineBasicBlock::iterator MI,
531                                const std::vector<CalleeSavedInfo> &CSI) const {
532    return false;
533  }
534
535  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
536  /// saved registers and returns true if it isn't possible / profitable to do
537  /// so by issuing a series of load instructions via loadRegToStackSlot().
538  /// Returns false otherwise.
539  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
540                                           MachineBasicBlock::iterator MI,
541                                const std::vector<CalleeSavedInfo> &CSI) const {
542    return false;
543  }
544
545  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
546  /// slot into the specified machine instruction for the specified operand(s).
547  /// If this is possible, a new instruction is returned with the specified
548  /// operand folded, otherwise NULL is returned. The client is responsible for
549  /// removing the old instruction and adding the new one in the instruction
550  /// stream.
551  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
552                                          SmallVectorImpl<unsigned> &Ops,
553                                          int FrameIndex) const {
554    return 0;
555  }
556
557  /// foldMemoryOperand - Same as the previous version except it allows folding
558  /// of any load and store from / to any address, not just from a specific
559  /// stack slot.
560  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
561                                          SmallVectorImpl<unsigned> &Ops,
562                                          MachineInstr* LoadMI) const {
563    return 0;
564  }
565
566  /// canFoldMemoryOperand - Returns true if the specified load / store is
567  /// folding is possible.
568  virtual
569  bool canFoldMemoryOperand(MachineInstr *MI,
570                            SmallVectorImpl<unsigned> &Ops) const{
571    return false;
572  }
573
574  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
575  /// a store or a load and a store into two or more instruction. If this is
576  /// possible, returns true as well as the new instructions by reference.
577  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
578                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
579                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
580    return false;
581  }
582
583  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
584                                   SmallVectorImpl<SDNode*> &NewNodes) const {
585    return false;
586  }
587
588  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
589  /// instruction after load / store are unfolded from an instruction of the
590  /// specified opcode. It returns zero if the specified unfolding is not
591  /// possible.
592  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
593                                      bool UnfoldLoad, bool UnfoldStore) const {
594    return 0;
595  }
596
597  /// BlockHasNoFallThrough - Return true if the specified block does not
598  /// fall-through into its successor block.  This is primarily used when a
599  /// branch is unanalyzable.  It is useful for things like unconditional
600  /// indirect branches (jump tables).
601  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
602    return false;
603  }
604
605  /// ReverseBranchCondition - Reverses the branch condition of the specified
606  /// condition list, returning false on success and true if it cannot be
607  /// reversed.
608  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
609    return true;
610  }
611
612  /// insertNoop - Insert a noop into the instruction stream at the specified
613  /// point.
614  virtual void insertNoop(MachineBasicBlock &MBB,
615                          MachineBasicBlock::iterator MI) const {
616    assert(0 && "Target didn't implement insertNoop!");
617    abort();
618  }
619
620  /// isPredicated - Returns true if the instruction is already predicated.
621  ///
622  virtual bool isPredicated(const MachineInstr *MI) const {
623    return false;
624  }
625
626  /// isUnpredicatedTerminator - Returns true if the instruction is a
627  /// terminator instruction that has not been predicated.
628  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
629
630  /// PredicateInstruction - Convert the instruction into a predicated
631  /// instruction. It returns true if the operation was successful.
632  virtual
633  bool PredicateInstruction(MachineInstr *MI,
634                            const std::vector<MachineOperand> &Pred) const = 0;
635
636  /// SubsumesPredicate - Returns true if the first specified predicate
637  /// subsumes the second, e.g. GE subsumes GT.
638  virtual
639  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
640                         const std::vector<MachineOperand> &Pred2) const {
641    return false;
642  }
643
644  /// DefinesPredicate - If the specified instruction defines any predicate
645  /// or condition code register(s) used for predication, returns true as well
646  /// as the definition predicate(s) by reference.
647  virtual bool DefinesPredicate(MachineInstr *MI,
648                                std::vector<MachineOperand> &Pred) const {
649    return false;
650  }
651
652  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
653  /// values.
654  virtual const TargetRegisterClass *getPointerRegClass() const {
655    assert(0 && "Target didn't implement getPointerRegClass!");
656    abort();
657    return 0; // Must return a value in order to compile with VS 2005
658  }
659};
660
661/// TargetInstrInfoImpl - This is the default implementation of
662/// TargetInstrInfo, which just provides a couple of default implementations
663/// for various methods.  This separated out because it is implemented in
664/// libcodegen, not in libtarget.
665class TargetInstrInfoImpl : public TargetInstrInfo {
666protected:
667  TargetInstrInfoImpl(const TargetInstrDescriptor *desc, unsigned NumOpcodes)
668  : TargetInstrInfo(desc, NumOpcodes) {}
669public:
670  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
671  virtual bool PredicateInstruction(MachineInstr *MI,
672                              const std::vector<MachineOperand> &Pred) const;
673
674};
675
676} // End llvm namespace
677
678#endif
679