TargetInstrInfo.h revision 43600e95ec3690b37d458a6d3d56941ad84cddcb
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/MC/MCInstrInfo.h"
19#include "llvm/CodeGen/DFAPacketizer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
49  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = 0) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const {
147    return 0;
148  }
149
150  /// isStoreToStackSlot - If the specified machine instruction is a direct
151  /// store to a stack slot, return the virtual or physical register number of
152  /// the source reg along with the FrameIndex of the loaded stack slot.  If
153  /// not, return 0.  This predicate must return 0 if the instruction has
154  /// any side effects other than storing to the stack slot.
155  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
156                                      int &FrameIndex) const {
157    return 0;
158  }
159
160  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
161  /// stack locations as well.  This uses a heuristic so it isn't
162  /// reliable for correctness.
163  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
164                                            int &FrameIndex) const {
165    return 0;
166  }
167
168  /// hasStoreToStackSlot - If the specified machine instruction has a
169  /// store to a stack slot, return true along with the FrameIndex of
170  /// the loaded stack slot and the machine mem operand containing the
171  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
172  /// this returns true for any instructions that stores to the
173  /// stack.  This is just a hint, as some cases may be missed.
174  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
175                                   const MachineMemOperand *&MMO,
176                                   int &FrameIndex) const {
177    return 0;
178  }
179
180  /// reMaterialize - Re-issue the specified 'original' instruction at the
181  /// specific location targeting a new destination register.
182  /// The register in Orig->getOperand(0).getReg() will be substituted by
183  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
184  /// SubIdx.
185  virtual void reMaterialize(MachineBasicBlock &MBB,
186                             MachineBasicBlock::iterator MI,
187                             unsigned DestReg, unsigned SubIdx,
188                             const MachineInstr *Orig,
189                             const TargetRegisterInfo &TRI) const = 0;
190
191  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
192  /// MachineFunction::CloneMachineInstr(), but the target may update operands
193  /// that are required to be unique.
194  ///
195  /// The instruction must be duplicable as indicated by isNotDuplicable().
196  virtual MachineInstr *duplicate(MachineInstr *Orig,
197                                  MachineFunction &MF) const = 0;
198
199  /// convertToThreeAddress - This method must be implemented by targets that
200  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
201  /// may be able to convert a two-address instruction into one or more true
202  /// three-address instructions on demand.  This allows the X86 target (for
203  /// example) to convert ADD and SHL instructions into LEA instructions if they
204  /// would require register copies due to two-addressness.
205  ///
206  /// This method returns a null pointer if the transformation cannot be
207  /// performed, otherwise it returns the last new instruction.
208  ///
209  virtual MachineInstr *
210  convertToThreeAddress(MachineFunction::iterator &MFI,
211                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
212    return 0;
213  }
214
215  /// commuteInstruction - If a target has any instructions that are
216  /// commutable but require converting to different instructions or making
217  /// non-trivial changes to commute them, this method can overloaded to do
218  /// that.  The default implementation simply swaps the commutable operands.
219  /// If NewMI is false, MI is modified in place and returned; otherwise, a
220  /// new machine instruction is created and returned.  Do not call this
221  /// method for a non-commutable instruction, but there may be some cases
222  /// where this method fails and returns null.
223  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
224                                           bool NewMI = false) const = 0;
225
226  /// findCommutedOpIndices - If specified MI is commutable, return the two
227  /// operand indices that would swap value. Return false if the instruction
228  /// is not in a form which this routine understands.
229  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
230                                     unsigned &SrcOpIdx2) const = 0;
231
232  /// produceSameValue - Return true if two machine instructions would produce
233  /// identical values. By default, this is only true when the two instructions
234  /// are deemed identical except for defs. If this function is called when the
235  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
236  /// aggressive checks.
237  virtual bool produceSameValue(const MachineInstr *MI0,
238                                const MachineInstr *MI1,
239                                const MachineRegisterInfo *MRI = 0) const = 0;
240
241  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
242  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
243  /// implemented for a target).  Upon success, this returns false and returns
244  /// with the following information in various cases:
245  ///
246  /// 1. If this block ends with no branches (it just falls through to its succ)
247  ///    just return false, leaving TBB/FBB null.
248  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
249  ///    the destination block.
250  /// 3. If this block ends with a conditional branch and it falls through to a
251  ///    successor block, it sets TBB to be the branch destination block and a
252  ///    list of operands that evaluate the condition. These operands can be
253  ///    passed to other TargetInstrInfo methods to create new branches.
254  /// 4. If this block ends with a conditional branch followed by an
255  ///    unconditional branch, it returns the 'true' destination in TBB, the
256  ///    'false' destination in FBB, and a list of operands that evaluate the
257  ///    condition.  These operands can be passed to other TargetInstrInfo
258  ///    methods to create new branches.
259  ///
260  /// Note that RemoveBranch and InsertBranch must be implemented to support
261  /// cases where this method returns success.
262  ///
263  /// If AllowModify is true, then this routine is allowed to modify the basic
264  /// block (e.g. delete instructions after the unconditional branch).
265  ///
266  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
267                             MachineBasicBlock *&FBB,
268                             SmallVectorImpl<MachineOperand> &Cond,
269                             bool AllowModify = false) const {
270    return true;
271  }
272
273  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
274  /// This is only invoked in cases where AnalyzeBranch returns success. It
275  /// returns the number of instructions that were removed.
276  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
277    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
278  }
279
280  /// InsertBranch - Insert branch code into the end of the specified
281  /// MachineBasicBlock.  The operands to this method are the same as those
282  /// returned by AnalyzeBranch.  This is only invoked in cases where
283  /// AnalyzeBranch returns success. It returns the number of instructions
284  /// inserted.
285  ///
286  /// It is also invoked by tail merging to add unconditional branches in
287  /// cases where AnalyzeBranch doesn't apply because there was no original
288  /// branch to analyze.  At least this much must be implemented, else tail
289  /// merging needs to be disabled.
290  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
291                                MachineBasicBlock *FBB,
292                                const SmallVectorImpl<MachineOperand> &Cond,
293                                DebugLoc DL) const {
294    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
295  }
296
297  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
298  /// after it, replacing it with an unconditional branch to NewDest. This is
299  /// used by the tail merging pass.
300  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
301                                       MachineBasicBlock *NewDest) const = 0;
302
303  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
304  /// block at the specified instruction (i.e. instruction would be the start
305  /// of a new basic block).
306  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
307                                   MachineBasicBlock::iterator MBBI) const {
308    return true;
309  }
310
311  /// isProfitableToIfCvt - Return true if it's profitable to predicate
312  /// instructions with accumulated instruction latency of "NumCycles"
313  /// of the specified basic block, where the probability of the instructions
314  /// being executed is given by Probability, and Confidence is a measure
315  /// of our confidence that it will be properly predicted.
316  virtual
317  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
318                           unsigned ExtraPredCycles,
319                           const BranchProbability &Probability) const {
320    return false;
321  }
322
323  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
324  /// checks for the case where two basic blocks from true and false path
325  /// of a if-then-else (diamond) are predicated on mutally exclusive
326  /// predicates, where the probability of the true path being taken is given
327  /// by Probability, and Confidence is a measure of our confidence that it
328  /// will be properly predicted.
329  virtual bool
330  isProfitableToIfCvt(MachineBasicBlock &TMBB,
331                      unsigned NumTCycles, unsigned ExtraTCycles,
332                      MachineBasicBlock &FMBB,
333                      unsigned NumFCycles, unsigned ExtraFCycles,
334                      const BranchProbability &Probability) const {
335    return false;
336  }
337
338  /// isProfitableToDupForIfCvt - Return true if it's profitable for
339  /// if-converter to duplicate instructions of specified accumulated
340  /// instruction latencies in the specified MBB to enable if-conversion.
341  /// The probability of the instructions being executed is given by
342  /// Probability, and Confidence is a measure of our confidence that it
343  /// will be properly predicted.
344  virtual bool
345  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
346                            const BranchProbability &Probability) const {
347    return false;
348  }
349
350  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
351  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
352  /// exclusive predicates.
353  /// e.g.
354  ///   subeq  r0, r1, #1
355  ///   addne  r0, r1, #1
356  /// =>
357  ///   sub    r0, r1, #1
358  ///   addne  r0, r1, #1
359  ///
360  /// This may be profitable is conditional instructions are always executed.
361  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
362                                         MachineBasicBlock &FMBB) const {
363    return false;
364  }
365
366  /// canInsertSelect - Return true if it is possible to insert a select
367  /// instruction that chooses between TrueReg and FalseReg based on the
368  /// condition code in Cond.
369  ///
370  /// When successful, also return the latency in cycles from TrueReg,
371  /// FalseReg, and Cond to the destination register. The Cond latency should
372  /// compensate for a conditional branch being removed. For example, if a
373  /// conditional branch has a 3 cycle latency from the condition code read,
374  /// and a cmov instruction has a 2 cycle latency from the condition code
375  /// read, CondCycles should be returned as -1.
376  ///
377  /// @param MBB         Block where select instruction would be inserted.
378  /// @param Cond        Condition returned by AnalyzeBranch.
379  /// @param TrueReg     Virtual register to select when Cond is true.
380  /// @param FalseReg    Virtual register to select when Cond is false.
381  /// @param CondCycles  Latency from Cond+Branch to select output.
382  /// @param TrueCycles  Latency from TrueReg to select output.
383  /// @param FalseCycles Latency from FalseReg to select output.
384  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
385                               const SmallVectorImpl<MachineOperand> &Cond,
386                               unsigned TrueReg, unsigned FalseReg,
387                               int &CondCycles,
388                               int &TrueCycles, int &FalseCycles) const {
389    return false;
390  }
391
392  /// insertSelect - Insert a select instruction into MBB before I that will
393  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
394  /// Cond is false.
395  ///
396  /// This function can only be called after canInsertSelect() returned true.
397  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
398  /// that the same flags or registers required by Cond are available at the
399  /// insertion point.
400  ///
401  /// @param MBB      Block where select instruction should be inserted.
402  /// @param I        Insertion point.
403  /// @param DL       Source location for debugging.
404  /// @param DstReg   Virtual register to be defined by select instruction.
405  /// @param Cond     Condition as computed by AnalyzeBranch.
406  /// @param TrueReg  Virtual register to copy when Cond is true.
407  /// @param FalseReg Virtual register to copy when Cons is false.
408  virtual void insertSelect(MachineBasicBlock &MBB,
409                            MachineBasicBlock::iterator I, DebugLoc DL,
410                            unsigned DstReg,
411                            const SmallVectorImpl<MachineOperand> &Cond,
412                            unsigned TrueReg, unsigned FalseReg) const {
413    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
414  }
415
416  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
417  virtual void copyPhysReg(MachineBasicBlock &MBB,
418                           MachineBasicBlock::iterator MI, DebugLoc DL,
419                           unsigned DestReg, unsigned SrcReg,
420                           bool KillSrc) const {
421    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
422  }
423
424  /// storeRegToStackSlot - Store the specified register of the given register
425  /// class to the specified stack frame index. The store instruction is to be
426  /// added to the given machine basic block before the specified machine
427  /// instruction. If isKill is true, the register operand is the last use and
428  /// must be marked kill.
429  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
430                                   MachineBasicBlock::iterator MI,
431                                   unsigned SrcReg, bool isKill, int FrameIndex,
432                                   const TargetRegisterClass *RC,
433                                   const TargetRegisterInfo *TRI) const {
434    llvm_unreachable("Target didn't implement "
435                     "TargetInstrInfo::storeRegToStackSlot!");
436  }
437
438  /// loadRegFromStackSlot - Load the specified register of the given register
439  /// class from the specified stack frame index. The load instruction is to be
440  /// added to the given machine basic block before the specified machine
441  /// instruction.
442  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
443                                    MachineBasicBlock::iterator MI,
444                                    unsigned DestReg, int FrameIndex,
445                                    const TargetRegisterClass *RC,
446                                    const TargetRegisterInfo *TRI) const {
447    llvm_unreachable("Target didn't implement "
448                     "TargetInstrInfo::loadRegFromStackSlot!");
449  }
450
451  /// expandPostRAPseudo - This function is called for all pseudo instructions
452  /// that remain after register allocation. Many pseudo instructions are
453  /// created to help register allocation. This is the place to convert them
454  /// into real instructions. The target can edit MI in place, or it can insert
455  /// new instructions and erase MI. The function should return true if
456  /// anything was changed.
457  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
458    return false;
459  }
460
461  /// emitFrameIndexDebugValue - Emit a target-dependent form of
462  /// DBG_VALUE encoding the address of a frame index.  Addresses would
463  /// normally be lowered the same way as other addresses on the target,
464  /// e.g. in load instructions.  For targets that do not support this
465  /// the debug info is simply lost.
466  /// If you add this for a target you should handle this DBG_VALUE in the
467  /// target-specific AsmPrinter code as well; you will probably get invalid
468  /// assembly output if you don't.
469  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
470                                                 int FrameIx,
471                                                 uint64_t Offset,
472                                                 const MDNode *MDPtr,
473                                                 DebugLoc dl) const {
474    return 0;
475  }
476
477  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
478  /// slot into the specified machine instruction for the specified operand(s).
479  /// If this is possible, a new instruction is returned with the specified
480  /// operand folded, otherwise NULL is returned.
481  /// The new instruction is inserted before MI, and the client is responsible
482  /// for removing the old instruction.
483  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
484                                  const SmallVectorImpl<unsigned> &Ops,
485                                  int FrameIndex) const;
486
487  /// foldMemoryOperand - Same as the previous version except it allows folding
488  /// of any load and store from / to any address, not just from a specific
489  /// stack slot.
490  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
491                                  const SmallVectorImpl<unsigned> &Ops,
492                                  MachineInstr* LoadMI) const;
493
494protected:
495  /// foldMemoryOperandImpl - Target-dependent implementation for
496  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
497  /// take care of adding a MachineMemOperand to the newly created instruction.
498  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
499                                          MachineInstr* MI,
500                                          const SmallVectorImpl<unsigned> &Ops,
501                                          int FrameIndex) const {
502    return 0;
503  }
504
505  /// foldMemoryOperandImpl - Target-dependent implementation for
506  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
507  /// take care of adding a MachineMemOperand to the newly created instruction.
508  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
509                                              MachineInstr* MI,
510                                          const SmallVectorImpl<unsigned> &Ops,
511                                              MachineInstr* LoadMI) const {
512    return 0;
513  }
514
515public:
516  /// canFoldMemoryOperand - Returns true for the specified load / store if
517  /// folding is possible.
518  virtual
519  bool canFoldMemoryOperand(const MachineInstr *MI,
520                            const SmallVectorImpl<unsigned> &Ops) const =0;
521
522  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
523  /// a store or a load and a store into two or more instruction. If this is
524  /// possible, returns true as well as the new instructions by reference.
525  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
526                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
527                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
528    return false;
529  }
530
531  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
532                                   SmallVectorImpl<SDNode*> &NewNodes) const {
533    return false;
534  }
535
536  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
537  /// instruction after load / store are unfolded from an instruction of the
538  /// specified opcode. It returns zero if the specified unfolding is not
539  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
540  /// index of the operand which will hold the register holding the loaded
541  /// value.
542  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
543                                      bool UnfoldLoad, bool UnfoldStore,
544                                      unsigned *LoadRegIndex = 0) const {
545    return 0;
546  }
547
548  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
549  /// to determine if two loads are loading from the same base address. It
550  /// should only return true if the base pointers are the same and the
551  /// only differences between the two addresses are the offset. It also returns
552  /// the offsets by reference.
553  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
554                                    int64_t &Offset1, int64_t &Offset2) const {
555    return false;
556  }
557
558  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
559  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
560  /// be scheduled togther. On some targets if two loads are loading from
561  /// addresses in the same cache line, it's better if they are scheduled
562  /// together. This function takes two integers that represent the load offsets
563  /// from the common base address. It returns true if it decides it's desirable
564  /// to schedule the two loads together. "NumLoads" is the number of loads that
565  /// have already been scheduled after Load1.
566  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
567                                       int64_t Offset1, int64_t Offset2,
568                                       unsigned NumLoads) const {
569    return false;
570  }
571
572  /// ReverseBranchCondition - Reverses the branch condition of the specified
573  /// condition list, returning false on success and true if it cannot be
574  /// reversed.
575  virtual
576  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
577    return true;
578  }
579
580  /// insertNoop - Insert a noop into the instruction stream at the specified
581  /// point.
582  virtual void insertNoop(MachineBasicBlock &MBB,
583                          MachineBasicBlock::iterator MI) const;
584
585
586  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
587  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
588    // Default to just using 'nop' string.
589  }
590
591
592  /// isPredicated - Returns true if the instruction is already predicated.
593  ///
594  virtual bool isPredicated(const MachineInstr *MI) const {
595    return false;
596  }
597
598  /// isUnpredicatedTerminator - Returns true if the instruction is a
599  /// terminator instruction that has not been predicated.
600  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
601
602  /// PredicateInstruction - Convert the instruction into a predicated
603  /// instruction. It returns true if the operation was successful.
604  virtual
605  bool PredicateInstruction(MachineInstr *MI,
606                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
607
608  /// SubsumesPredicate - Returns true if the first specified predicate
609  /// subsumes the second, e.g. GE subsumes GT.
610  virtual
611  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
612                         const SmallVectorImpl<MachineOperand> &Pred2) const {
613    return false;
614  }
615
616  /// DefinesPredicate - If the specified instruction defines any predicate
617  /// or condition code register(s) used for predication, returns true as well
618  /// as the definition predicate(s) by reference.
619  virtual bool DefinesPredicate(MachineInstr *MI,
620                                std::vector<MachineOperand> &Pred) const {
621    return false;
622  }
623
624  /// isPredicable - Return true if the specified instruction can be predicated.
625  /// By default, this returns true for every instruction with a
626  /// PredicateOperand.
627  virtual bool isPredicable(MachineInstr *MI) const {
628    return MI->getDesc().isPredicable();
629  }
630
631  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
632  /// instruction that defines the specified register class.
633  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
634    return true;
635  }
636
637  /// isSchedulingBoundary - Test if the given instruction should be
638  /// considered a scheduling boundary. This primarily includes labels and
639  /// terminators.
640  virtual bool isSchedulingBoundary(const MachineInstr *MI,
641                                    const MachineBasicBlock *MBB,
642                                    const MachineFunction &MF) const = 0;
643
644  /// Measure the specified inline asm to determine an approximation of its
645  /// length.
646  virtual unsigned getInlineAsmLength(const char *Str,
647                                      const MCAsmInfo &MAI) const;
648
649  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
650  /// use for this target when scheduling the machine instructions before
651  /// register allocation.
652  virtual ScheduleHazardRecognizer*
653  CreateTargetHazardRecognizer(const TargetMachine *TM,
654                               const ScheduleDAG *DAG) const = 0;
655
656  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
657  /// to use for this target when scheduling the machine instructions before
658  /// register allocation.
659  virtual ScheduleHazardRecognizer*
660  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
661                                 const ScheduleDAG *DAG) const = 0;
662
663  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
664  /// recognizer to use for this target when scheduling the machine instructions
665  /// after register allocation.
666  virtual ScheduleHazardRecognizer*
667  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
668                                     const ScheduleDAG *DAG) const = 0;
669
670  /// analyzeCompare - For a comparison instruction, return the source registers
671  /// in SrcReg and SrcReg2 if having two register operands, and the value it
672  /// compares against in CmpValue. Return true if the comparison instruction
673  /// can be analyzed.
674  virtual bool analyzeCompare(const MachineInstr *MI,
675                              unsigned &SrcReg, unsigned &SrcReg2,
676                              int &Mask, int &Value) const {
677    return false;
678  }
679
680  /// optimizeCompareInstr - See if the comparison instruction can be converted
681  /// into something more efficient. E.g., on ARM most instructions can set the
682  /// flags register, obviating the need for a separate CMP.
683  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
684                                    unsigned SrcReg, unsigned SrcReg2,
685                                    int Mask, int Value,
686                                    const MachineRegisterInfo *MRI) const {
687    return false;
688  }
689
690  /// optimizeLoadInstr - Try to remove the load by folding it to a register
691  /// operand at the use. We fold the load instructions if and only if the
692  /// def and use are in the same BB. We only look at one load and see
693  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
694  /// defined by the load we are trying to fold. DefMI returns the machine
695  /// instruction that defines FoldAsLoadDefReg, and the function returns
696  /// the machine instruction generated due to folding.
697  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
698                        const MachineRegisterInfo *MRI,
699                        unsigned &FoldAsLoadDefReg,
700                        MachineInstr *&DefMI) const {
701    return 0;
702  }
703
704  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
705  /// instruction, try to fold the immediate into the use instruction.
706  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
707                             unsigned Reg, MachineRegisterInfo *MRI) const {
708    return false;
709  }
710
711  /// getNumMicroOps - Return the number of u-operations the given machine
712  /// instruction will be decoded to on the target cpu. The itinerary's
713  /// IssueWidth is the number of microops that can be dispatched each
714  /// cycle. An instruction with zero microops takes no dispatch resources.
715  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
716                                  const MachineInstr *MI) const = 0;
717
718  /// isZeroCost - Return true for pseudo instructions that don't consume any
719  /// machine resources in their current form. These are common cases that the
720  /// scheduler should consider free, rather than conservatively handling them
721  /// as instructions with no itinerary.
722  bool isZeroCost(unsigned Opcode) const {
723    return Opcode <= TargetOpcode::COPY;
724  }
725
726  virtual int getOperandLatency(const InstrItineraryData *ItinData,
727                                SDNode *DefNode, unsigned DefIdx,
728                                SDNode *UseNode, unsigned UseIdx) const = 0;
729
730  /// getOperandLatency - Compute and return the use operand latency of a given
731  /// pair of def and use.
732  /// In most cases, the static scheduling itinerary was enough to determine the
733  /// operand latency. But it may not be possible for instructions with variable
734  /// number of defs / uses.
735  ///
736  /// This is a raw interface to the itinerary that may be directly overriden by
737  /// a target. Use computeOperandLatency to get the best estimate of latency.
738  virtual int getOperandLatency(const InstrItineraryData *ItinData,
739                                const MachineInstr *DefMI, unsigned DefIdx,
740                                const MachineInstr *UseMI,
741                                unsigned UseIdx) const = 0;
742
743  /// computeOperandLatency - Compute and return the latency of the given data
744  /// dependent def and use when the operand indices are already known.
745  ///
746  /// FindMin may be set to get the minimum vs. expected latency.
747  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
748                                 const MachineInstr *DefMI, unsigned DefIdx,
749                                 const MachineInstr *UseMI, unsigned UseIdx,
750                                 bool FindMin = false) const;
751
752  /// computeOperandLatency - Compute and return the latency of the given data
753  /// dependent def and use. DefMI must be a valid def. UseMI may be NULL for
754  /// an unknown use. If the subtarget allows, this may or may not need to call
755  /// getOperandLatency().
756  ///
757  /// FindMin may be set to get the minimum vs. expected latency. Minimum
758  /// latency is used for scheduling groups, while expected latency is for
759  /// instruction cost and critical path.
760  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
761                                 const TargetRegisterInfo *TRI,
762                                 const MachineInstr *DefMI,
763                                 const MachineInstr *UseMI,
764                                 unsigned Reg, bool FindMin) const;
765
766  /// getOutputLatency - Compute and return the output dependency latency of a
767  /// a given pair of defs which both target the same register. This is usually
768  /// one.
769  virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
770                                    const MachineInstr *DefMI, unsigned DefIdx,
771                                    const MachineInstr *DepMI) const {
772    return 1;
773  }
774
775  /// getInstrLatency - Compute the instruction latency of a given instruction.
776  /// If the instruction has higher cost when predicated, it's returned via
777  /// PredCost.
778  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
779                                   const MachineInstr *MI,
780                                   unsigned *PredCost = 0) const = 0;
781
782  virtual int getInstrLatency(const InstrItineraryData *ItinData,
783                              SDNode *Node) const = 0;
784
785  /// Return the default expected latency for a def based on it's opcode.
786  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
787                             const MachineInstr *DefMI) const;
788
789  /// isHighLatencyDef - Return true if this opcode has high latency to its
790  /// result.
791  virtual bool isHighLatencyDef(int opc) const { return false; }
792
793  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
794  /// and an use in the current loop, return true if the target considered
795  /// it 'high'. This is used by optimization passes such as machine LICM to
796  /// determine whether it makes sense to hoist an instruction out even in
797  /// high register pressure situation.
798  virtual
799  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
800                             const MachineRegisterInfo *MRI,
801                             const MachineInstr *DefMI, unsigned DefIdx,
802                             const MachineInstr *UseMI, unsigned UseIdx) const {
803    return false;
804  }
805
806  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
807  /// if the target considered it 'low'.
808  virtual
809  bool hasLowDefLatency(const InstrItineraryData *ItinData,
810                        const MachineInstr *DefMI, unsigned DefIdx) const = 0;
811
812  /// verifyInstruction - Perform target specific instruction verification.
813  virtual
814  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
815    return true;
816  }
817
818  /// getExecutionDomain - Return the current execution domain and bit mask of
819  /// possible domains for instruction.
820  ///
821  /// Some micro-architectures have multiple execution domains, and multiple
822  /// opcodes that perform the same operation in different domains.  For
823  /// example, the x86 architecture provides the por, orps, and orpd
824  /// instructions that all do the same thing.  There is a latency penalty if a
825  /// register is written in one domain and read in another.
826  ///
827  /// This function returns a pair (domain, mask) containing the execution
828  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
829  /// function can be used to change the opcode to one of the domains in the
830  /// bit mask.  Instructions whose execution domain can't be changed should
831  /// return a 0 mask.
832  ///
833  /// The execution domain numbers don't have any special meaning except domain
834  /// 0 is used for instructions that are not associated with any interesting
835  /// execution domain.
836  ///
837  virtual std::pair<uint16_t, uint16_t>
838  getExecutionDomain(const MachineInstr *MI) const {
839    return std::make_pair(0, 0);
840  }
841
842  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
843  ///
844  /// The bit (1 << Domain) must be set in the mask returned from
845  /// getExecutionDomain(MI).
846  ///
847  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
848
849
850  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
851  /// before an instruction with an unwanted partial register update.
852  ///
853  /// Some instructions only write part of a register, and implicitly need to
854  /// read the other parts of the register.  This may cause unwanted stalls
855  /// preventing otherwise unrelated instructions from executing in parallel in
856  /// an out-of-order CPU.
857  ///
858  /// For example, the x86 instruction cvtsi2ss writes its result to bits
859  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
860  /// the instruction needs to wait for the old value of the register to become
861  /// available:
862  ///
863  ///   addps %xmm1, %xmm0
864  ///   movaps %xmm0, (%rax)
865  ///   cvtsi2ss %rbx, %xmm0
866  ///
867  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
868  /// instruction before it can issue, even though the high bits of %xmm0
869  /// probably aren't needed.
870  ///
871  /// This hook returns the preferred clearance before MI, measured in
872  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
873  /// instructions before MI.  It should only return a positive value for
874  /// unwanted dependencies.  If the old bits of the defined register have
875  /// useful values, or if MI is determined to otherwise read the dependency,
876  /// the hook should return 0.
877  ///
878  /// The unwanted dependency may be handled by:
879  ///
880  /// 1. Allocating the same register for an MI def and use.  That makes the
881  ///    unwanted dependency identical to a required dependency.
882  ///
883  /// 2. Allocating a register for the def that has no defs in the previous N
884  ///    instructions.
885  ///
886  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
887  ///    allows the target to insert a dependency breaking instruction.
888  ///
889  virtual unsigned
890  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
891                               const TargetRegisterInfo *TRI) const {
892    // The default implementation returns 0 for no partial register dependency.
893    return 0;
894  }
895
896  /// breakPartialRegDependency - Insert a dependency-breaking instruction
897  /// before MI to eliminate an unwanted dependency on OpNum.
898  ///
899  /// If it wasn't possible to avoid a def in the last N instructions before MI
900  /// (see getPartialRegUpdateClearance), this hook will be called to break the
901  /// unwanted dependency.
902  ///
903  /// On x86, an xorps instruction can be used as a dependency breaker:
904  ///
905  ///   addps %xmm1, %xmm0
906  ///   movaps %xmm0, (%rax)
907  ///   xorps %xmm0, %xmm0
908  ///   cvtsi2ss %rbx, %xmm0
909  ///
910  /// An <imp-kill> operand should be added to MI if an instruction was
911  /// inserted.  This ties the instructions together in the post-ra scheduler.
912  ///
913  virtual void
914  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
915                            const TargetRegisterInfo *TRI) const {}
916
917  /// Create machine specific model for scheduling.
918  virtual DFAPacketizer*
919    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
920    return NULL;
921  }
922
923private:
924  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
925};
926
927/// TargetInstrInfoImpl - This is the default implementation of
928/// TargetInstrInfo, which just provides a couple of default implementations
929/// for various methods.  This separated out because it is implemented in
930/// libcodegen, not in libtarget.
931class TargetInstrInfoImpl : public TargetInstrInfo {
932protected:
933  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
934                      int CallFrameDestroyOpcode = -1)
935    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
936public:
937  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
938                                       MachineBasicBlock *NewDest) const;
939  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
940                                           bool NewMI = false) const;
941  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
942                                     unsigned &SrcOpIdx2) const;
943  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
944                                    const SmallVectorImpl<unsigned> &Ops) const;
945  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
946                                    const MachineMemOperand *&MMO,
947                                    int &FrameIndex) const;
948  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
949                                   const MachineMemOperand *&MMO,
950                                   int &FrameIndex) const;
951  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
952  virtual bool PredicateInstruction(MachineInstr *MI,
953                            const SmallVectorImpl<MachineOperand> &Pred) const;
954  virtual void reMaterialize(MachineBasicBlock &MBB,
955                             MachineBasicBlock::iterator MI,
956                             unsigned DestReg, unsigned SubReg,
957                             const MachineInstr *Orig,
958                             const TargetRegisterInfo &TRI) const;
959  virtual MachineInstr *duplicate(MachineInstr *Orig,
960                                  MachineFunction &MF) const;
961  virtual bool produceSameValue(const MachineInstr *MI0,
962                                const MachineInstr *MI1,
963                                const MachineRegisterInfo *MRI) const;
964  virtual bool isSchedulingBoundary(const MachineInstr *MI,
965                                    const MachineBasicBlock *MBB,
966                                    const MachineFunction &MF) const;
967
968  virtual int getOperandLatency(const InstrItineraryData *ItinData,
969                                SDNode *DefNode, unsigned DefIdx,
970                                SDNode *UseNode, unsigned UseIdx) const;
971
972  virtual int getInstrLatency(const InstrItineraryData *ItinData,
973                              SDNode *Node) const;
974
975  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
976                                  const MachineInstr *MI) const;
977
978  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
979                                   const MachineInstr *MI,
980                                   unsigned *PredCost = 0) const;
981
982  virtual
983  bool hasLowDefLatency(const InstrItineraryData *ItinData,
984                        const MachineInstr *DefMI, unsigned DefIdx) const;
985
986  virtual int getOperandLatency(const InstrItineraryData *ItinData,
987                                const MachineInstr *DefMI, unsigned DefIdx,
988                                const MachineInstr *UseMI,
989                                unsigned UseIdx) const;
990
991  bool usePreRAHazardRecognizer() const;
992
993  virtual ScheduleHazardRecognizer *
994  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
995
996  virtual ScheduleHazardRecognizer *
997  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
998                                 const ScheduleDAG*) const;
999
1000  virtual ScheduleHazardRecognizer *
1001  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1002                                     const ScheduleDAG*) const;
1003};
1004
1005} // End llvm namespace
1006
1007#endif
1008