TargetInstrInfo.h revision 4d54e5b2dd4a3d3bed38ff9c7aa57fc66adb5855
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class TargetRegisterClass;
33class TargetRegisterInfo;
34
35template<class T> class SmallVectorImpl;
36
37
38//---------------------------------------------------------------------------
39///
40/// TargetInstrInfo - Interface to description of machine instruction set
41///
42class TargetInstrInfo {
43  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
44  unsigned NumOpcodes;                // Number of entries in the desc array
45
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
50  virtual ~TargetInstrInfo();
51
52  unsigned getNumOpcodes() const { return NumOpcodes; }
53
54  /// get - Return the machine instruction descriptor that corresponds to the
55  /// specified instruction opcode.
56  ///
57  const TargetInstrDesc &get(unsigned Opcode) const {
58    assert(Opcode < NumOpcodes && "Invalid opcode!");
59    return Descriptors[Opcode];
60  }
61
62  /// isTriviallyReMaterializable - Return true if the instruction is trivially
63  /// rematerializable, meaning it has no side effects and requires no operands
64  /// that aren't always available.
65  bool isTriviallyReMaterializable(const MachineInstr *MI,
66                                   AliasAnalysis *AA = 0) const {
67    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
68           (MI->getDesc().isRematerializable() &&
69            (isReallyTriviallyReMaterializable(MI, AA) ||
70             isReallyTriviallyReMaterializableGeneric(MI, AA)));
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
76  /// specify whether the instruction is actually trivially rematerializable,
77  /// taking into consideration its operands. This predicate must return false
78  /// if the instruction has any side effects other than producing a value, or
79  /// if it requres any address registers that are not always available.
80  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
81                                                 AliasAnalysis *AA) const {
82    return false;
83  }
84
85private:
86  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
87  /// for which the M_REMATERIALIZABLE flag is set and the target hook
88  /// isReallyTriviallyReMaterializable returns false, this function does
89  /// target-independent tests to determine if the instruction is really
90  /// trivially rematerializable.
91  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
92                                                AliasAnalysis *AA) const;
93
94public:
95  /// isMoveInstr - Return true if the instruction is a register to register
96  /// move and return the source and dest operands and their sub-register
97  /// indices by reference.
98  virtual bool isMoveInstr(const MachineInstr& MI,
99                           unsigned& SrcReg, unsigned& DstReg,
100                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
101    return false;
102  }
103
104  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
105  /// extension instruction. That is, it's like a copy where it's legal for the
106  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
107  /// true, then it's expected the pre-extension value is available as a subreg
108  /// of the result register. This also returns the sub-register index in
109  /// SubIdx.
110  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
111                                     unsigned &SrcReg, unsigned &DstReg,
112                                     unsigned &SubIdx) const {
113    return false;
114  }
115
116  /// isIdentityCopy - Return true if the instruction is a copy (or
117  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
118  /// destination registers are the same.
119  bool isIdentityCopy(const MachineInstr &MI) const {
120    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
121    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
122        SrcReg == DstReg)
123      return true;
124
125    if (MI.getOpcode() == TargetOpcode::EXTRACT_SUBREG &&
126        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
127    return true;
128
129    if ((MI.getOpcode() == TargetOpcode::INSERT_SUBREG ||
130         MI.getOpcode() == TargetOpcode::SUBREG_TO_REG) &&
131        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
132      return true;
133    return false;
134  }
135
136  /// isLoadFromStackSlot - If the specified machine instruction is a direct
137  /// load from a stack slot, return the virtual or physical register number of
138  /// the destination along with the FrameIndex of the loaded stack slot.  If
139  /// not, return 0.  This predicate must return 0 if the instruction has
140  /// any side effects other than loading from the stack slot.
141  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
142                                       int &FrameIndex) const {
143    return 0;
144  }
145
146  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
147  /// stack locations as well.  This uses a heuristic so it isn't
148  /// reliable for correctness.
149  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
150                                             int &FrameIndex) const {
151    return 0;
152  }
153
154  /// hasLoadFromStackSlot - If the specified machine instruction has
155  /// a load from a stack slot, return true along with the FrameIndex
156  /// of the loaded stack slot and the machine mem operand containing
157  /// the reference.  If not, return false.  Unlike
158  /// isLoadFromStackSlot, this returns true for any instructions that
159  /// loads from the stack.  This is just a hint, as some cases may be
160  /// missed.
161  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
162                                    const MachineMemOperand *&MMO,
163                                    int &FrameIndex) const {
164    return 0;
165  }
166
167  /// isStoreToStackSlot - If the specified machine instruction is a direct
168  /// store to a stack slot, return the virtual or physical register number of
169  /// the source reg along with the FrameIndex of the loaded stack slot.  If
170  /// not, return 0.  This predicate must return 0 if the instruction has
171  /// any side effects other than storing to the stack slot.
172  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
173                                      int &FrameIndex) const {
174    return 0;
175  }
176
177  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
178  /// stack locations as well.  This uses a heuristic so it isn't
179  /// reliable for correctness.
180  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
181                                            int &FrameIndex) const {
182    return 0;
183  }
184
185  /// hasStoreToStackSlot - If the specified machine instruction has a
186  /// store to a stack slot, return true along with the FrameIndex of
187  /// the loaded stack slot and the machine mem operand containing the
188  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
189  /// this returns true for any instructions that stores to the
190  /// stack.  This is just a hint, as some cases may be missed.
191  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
192                                   const MachineMemOperand *&MMO,
193                                   int &FrameIndex) const {
194    return 0;
195  }
196
197  /// reMaterialize - Re-issue the specified 'original' instruction at the
198  /// specific location targeting a new destination register.
199  /// The register in Orig->getOperand(0).getReg() will be substituted by
200  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
201  /// SubIdx.
202  virtual void reMaterialize(MachineBasicBlock &MBB,
203                             MachineBasicBlock::iterator MI,
204                             unsigned DestReg, unsigned SubIdx,
205                             const MachineInstr *Orig,
206                             const TargetRegisterInfo &TRI) const = 0;
207
208  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
209  /// two-addrss instruction inserted by two-address pass.
210  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
211                                     MachineInstr *UseMI,
212                                     const TargetRegisterInfo &TRI) const {
213    // Do nothing.
214  }
215
216  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
217  /// MachineFunction::CloneMachineInstr(), but the target may update operands
218  /// that are required to be unique.
219  ///
220  /// The instruction must be duplicable as indicated by isNotDuplicable().
221  virtual MachineInstr *duplicate(MachineInstr *Orig,
222                                  MachineFunction &MF) const = 0;
223
224  /// convertToThreeAddress - This method must be implemented by targets that
225  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
226  /// may be able to convert a two-address instruction into one or more true
227  /// three-address instructions on demand.  This allows the X86 target (for
228  /// example) to convert ADD and SHL instructions into LEA instructions if they
229  /// would require register copies due to two-addressness.
230  ///
231  /// This method returns a null pointer if the transformation cannot be
232  /// performed, otherwise it returns the last new instruction.
233  ///
234  virtual MachineInstr *
235  convertToThreeAddress(MachineFunction::iterator &MFI,
236                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
237    return 0;
238  }
239
240  /// commuteInstruction - If a target has any instructions that are commutable,
241  /// but require converting to a different instruction or making non-trivial
242  /// changes to commute them, this method can overloaded to do this.  The
243  /// default implementation of this method simply swaps the first two operands
244  /// of MI and returns it.
245  ///
246  /// If a target wants to make more aggressive changes, they can construct and
247  /// return a new machine instruction.  If an instruction cannot commute, it
248  /// can also return null.
249  ///
250  /// If NewMI is true, then a new machine instruction must be created.
251  ///
252  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
253                                           bool NewMI = false) const = 0;
254
255  /// findCommutedOpIndices - If specified MI is commutable, return the two
256  /// operand indices that would swap value. Return true if the instruction
257  /// is not in a form which this routine understands.
258  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
259                                     unsigned &SrcOpIdx2) const = 0;
260
261  /// produceSameValue - Return true if two machine instructions would produce
262  /// identical values. By default, this is only true when the two instructions
263  /// are deemed identical except for defs.
264  virtual bool produceSameValue(const MachineInstr *MI0,
265                                const MachineInstr *MI1) const = 0;
266
267  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
268  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
269  /// implemented for a target).  Upon success, this returns false and returns
270  /// with the following information in various cases:
271  ///
272  /// 1. If this block ends with no branches (it just falls through to its succ)
273  ///    just return false, leaving TBB/FBB null.
274  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
275  ///    the destination block.
276  /// 3. If this block ends with a conditional branch and it falls through to a
277  ///    successor block, it sets TBB to be the branch destination block and a
278  ///    list of operands that evaluate the condition. These operands can be
279  ///    passed to other TargetInstrInfo methods to create new branches.
280  /// 4. If this block ends with a conditional branch followed by an
281  ///    unconditional branch, it returns the 'true' destination in TBB, the
282  ///    'false' destination in FBB, and a list of operands that evaluate the
283  ///    condition.  These operands can be passed to other TargetInstrInfo
284  ///    methods to create new branches.
285  ///
286  /// Note that RemoveBranch and InsertBranch must be implemented to support
287  /// cases where this method returns success.
288  ///
289  /// If AllowModify is true, then this routine is allowed to modify the basic
290  /// block (e.g. delete instructions after the unconditional branch).
291  ///
292  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
293                             MachineBasicBlock *&FBB,
294                             SmallVectorImpl<MachineOperand> &Cond,
295                             bool AllowModify = false) const {
296    return true;
297  }
298
299  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
300  /// This is only invoked in cases where AnalyzeBranch returns success. It
301  /// returns the number of instructions that were removed.
302  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
303    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
304    return 0;
305  }
306
307  /// InsertBranch - Insert branch code into the end of the specified
308  /// MachineBasicBlock.  The operands to this method are the same as those
309  /// returned by AnalyzeBranch.  This is only invoked in cases where
310  /// AnalyzeBranch returns success. It returns the number of instructions
311  /// inserted.
312  ///
313  /// It is also invoked by tail merging to add unconditional branches in
314  /// cases where AnalyzeBranch doesn't apply because there was no original
315  /// branch to analyze.  At least this much must be implemented, else tail
316  /// merging needs to be disabled.
317  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
318                                MachineBasicBlock *FBB,
319                                const SmallVectorImpl<MachineOperand> &Cond,
320                                DebugLoc DL) const {
321    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
322    return 0;
323  }
324
325  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
326  /// after it, replacing it with an unconditional branch to NewDest. This is
327  /// used by the tail merging pass.
328  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
329                                       MachineBasicBlock *NewDest) const = 0;
330
331  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
332  /// block at the specified instruction (i.e. instruction would be the start
333  /// of a new basic block).
334  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
335                                   MachineBasicBlock::iterator MBBI) const {
336    return true;
337  }
338
339  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
340  /// returns false if the target does not how to copy between the specified
341  /// registers.
342  virtual bool copyRegToReg(MachineBasicBlock &MBB,
343                            MachineBasicBlock::iterator MI,
344                            unsigned DestReg, unsigned SrcReg,
345                            const TargetRegisterClass *DestRC,
346                            const TargetRegisterClass *SrcRC,
347                            DebugLoc DL) const {
348    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
349    return false;
350  }
351
352  /// storeRegToStackSlot - Store the specified register of the given register
353  /// class to the specified stack frame index. The store instruction is to be
354  /// added to the given machine basic block before the specified machine
355  /// instruction. If isKill is true, the register operand is the last use and
356  /// must be marked kill.
357  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
358                                   MachineBasicBlock::iterator MI,
359                                   unsigned SrcReg, bool isKill, int FrameIndex,
360                                   const TargetRegisterClass *RC,
361                                   const TargetRegisterInfo *TRI) const {
362    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
363  }
364
365  /// loadRegFromStackSlot - Load the specified register of the given register
366  /// class from the specified stack frame index. The load instruction is to be
367  /// added to the given machine basic block before the specified machine
368  /// instruction.
369  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
370                                    MachineBasicBlock::iterator MI,
371                                    unsigned DestReg, int FrameIndex,
372                                    const TargetRegisterClass *RC,
373                                    const TargetRegisterInfo *TRI) const {
374    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
375  }
376
377  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
378  /// saved registers and returns true if it isn't possible / profitable to do
379  /// so by issuing a series of store instructions via
380  /// storeRegToStackSlot(). Returns false otherwise.
381  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
382                                         MachineBasicBlock::iterator MI,
383                                         const std::vector<CalleeSavedInfo> &CSI,
384                                         const TargetRegisterInfo *TRI) const {
385    return false;
386  }
387
388  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
389  /// saved registers and returns true if it isn't possible / profitable to do
390  /// so by issuing a series of load instructions via loadRegToStackSlot().
391  /// Returns false otherwise.
392  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
393                                           MachineBasicBlock::iterator MI,
394                                        const std::vector<CalleeSavedInfo> &CSI,
395                                        const TargetRegisterInfo *TRI) const {
396    return false;
397  }
398
399  /// emitFrameIndexDebugValue - Emit a target-dependent form of
400  /// DBG_VALUE encoding the address of a frame index.  Addresses would
401  /// normally be lowered the same way as other addresses on the target,
402  /// e.g. in load instructions.  For targets that do not support this
403  /// the debug info is simply lost.
404  /// If you add this for a target you should handle this DBG_VALUE in the
405  /// target-specific AsmPrinter code as well; you will probably get invalid
406  /// assembly output if you don't.
407  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
408                                                 int FrameIx,
409                                                 uint64_t Offset,
410                                                 const MDNode *MDPtr,
411                                                 DebugLoc dl) const {
412    return 0;
413  }
414
415  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
416  /// slot into the specified machine instruction for the specified operand(s).
417  /// If this is possible, a new instruction is returned with the specified
418  /// operand folded, otherwise NULL is returned. The client is responsible for
419  /// removing the old instruction and adding the new one in the instruction
420  /// stream.
421  MachineInstr* foldMemoryOperand(MachineFunction &MF,
422                                  MachineInstr* MI,
423                                  const SmallVectorImpl<unsigned> &Ops,
424                                  int FrameIndex) const;
425
426  /// foldMemoryOperand - Same as the previous version except it allows folding
427  /// of any load and store from / to any address, not just from a specific
428  /// stack slot.
429  MachineInstr* foldMemoryOperand(MachineFunction &MF,
430                                  MachineInstr* MI,
431                                  const SmallVectorImpl<unsigned> &Ops,
432                                  MachineInstr* LoadMI) const;
433
434protected:
435  /// foldMemoryOperandImpl - Target-dependent implementation for
436  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
437  /// take care of adding a MachineMemOperand to the newly created instruction.
438  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
439                                          MachineInstr* MI,
440                                          const SmallVectorImpl<unsigned> &Ops,
441                                          int FrameIndex) const {
442    return 0;
443  }
444
445  /// foldMemoryOperandImpl - Target-dependent implementation for
446  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
447  /// take care of adding a MachineMemOperand to the newly created instruction.
448  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
449                                              MachineInstr* MI,
450                                              const SmallVectorImpl<unsigned> &Ops,
451                                              MachineInstr* LoadMI) const {
452    return 0;
453  }
454
455public:
456  /// canFoldMemoryOperand - Returns true for the specified load / store if
457  /// folding is possible.
458  virtual
459  bool canFoldMemoryOperand(const MachineInstr *MI,
460                            const SmallVectorImpl<unsigned> &Ops) const {
461    return false;
462  }
463
464  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
465  /// a store or a load and a store into two or more instruction. If this is
466  /// possible, returns true as well as the new instructions by reference.
467  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
468                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
469                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
470    return false;
471  }
472
473  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
474                                   SmallVectorImpl<SDNode*> &NewNodes) const {
475    return false;
476  }
477
478  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
479  /// instruction after load / store are unfolded from an instruction of the
480  /// specified opcode. It returns zero if the specified unfolding is not
481  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
482  /// index of the operand which will hold the register holding the loaded
483  /// value.
484  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
485                                      bool UnfoldLoad, bool UnfoldStore,
486                                      unsigned *LoadRegIndex = 0) const {
487    return 0;
488  }
489
490  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
491  /// to determine if two loads are loading from the same base address. It
492  /// should only return true if the base pointers are the same and the
493  /// only differences between the two addresses are the offset. It also returns
494  /// the offsets by reference.
495  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
496                                       int64_t &Offset1, int64_t &Offset2) const {
497    return false;
498  }
499
500  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
501  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
502  /// be scheduled togther. On some targets if two loads are loading from
503  /// addresses in the same cache line, it's better if they are scheduled
504  /// together. This function takes two integers that represent the load offsets
505  /// from the common base address. It returns true if it decides it's desirable
506  /// to schedule the two loads together. "NumLoads" is the number of loads that
507  /// have already been scheduled after Load1.
508  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
509                                       int64_t Offset1, int64_t Offset2,
510                                       unsigned NumLoads) const {
511    return false;
512  }
513
514  /// ReverseBranchCondition - Reverses the branch condition of the specified
515  /// condition list, returning false on success and true if it cannot be
516  /// reversed.
517  virtual
518  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
519    return true;
520  }
521
522  /// insertNoop - Insert a noop into the instruction stream at the specified
523  /// point.
524  virtual void insertNoop(MachineBasicBlock &MBB,
525                          MachineBasicBlock::iterator MI) const;
526
527
528  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
529  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
530    // Default to just using 'nop' string.
531  }
532
533
534  /// isPredicated - Returns true if the instruction is already predicated.
535  ///
536  virtual bool isPredicated(const MachineInstr *MI) const {
537    return false;
538  }
539
540  /// isUnpredicatedTerminator - Returns true if the instruction is a
541  /// terminator instruction that has not been predicated.
542  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
543
544  /// PredicateInstruction - Convert the instruction into a predicated
545  /// instruction. It returns true if the operation was successful.
546  virtual
547  bool PredicateInstruction(MachineInstr *MI,
548                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
549
550  /// SubsumesPredicate - Returns true if the first specified predicate
551  /// subsumes the second, e.g. GE subsumes GT.
552  virtual
553  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
554                         const SmallVectorImpl<MachineOperand> &Pred2) const {
555    return false;
556  }
557
558  /// DefinesPredicate - If the specified instruction defines any predicate
559  /// or condition code register(s) used for predication, returns true as well
560  /// as the definition predicate(s) by reference.
561  virtual bool DefinesPredicate(MachineInstr *MI,
562                                std::vector<MachineOperand> &Pred) const {
563    return false;
564  }
565
566  /// isPredicable - Return true if the specified instruction can be predicated.
567  /// By default, this returns true for every instruction with a
568  /// PredicateOperand.
569  virtual bool isPredicable(MachineInstr *MI) const {
570    return MI->getDesc().isPredicable();
571  }
572
573  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
574  /// instruction that defines the specified register class.
575  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
576    return true;
577  }
578
579  /// isSchedulingBoundary - Test if the given instruction should be
580  /// considered a scheduling boundary. This primarily includes labels and
581  /// terminators.
582  virtual bool isSchedulingBoundary(const MachineInstr *MI,
583                                    const MachineBasicBlock *MBB,
584                                    const MachineFunction &MF) const = 0;
585
586  /// GetInstSize - Returns the size of the specified Instruction.
587  ///
588  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
589    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
590    return 0;
591  }
592
593  /// GetFunctionSizeInBytes - Returns the size of the specified
594  /// MachineFunction.
595  ///
596  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
597
598  /// Measure the specified inline asm to determine an approximation of its
599  /// length.
600  virtual unsigned getInlineAsmLength(const char *Str,
601                                      const MCAsmInfo &MAI) const;
602
603  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
604  /// to use for this target when scheduling the machine instructions after
605  /// register allocation.
606  virtual ScheduleHazardRecognizer*
607  CreateTargetPostRAHazardRecognizer(const InstrItineraryData&) const = 0;
608};
609
610/// TargetInstrInfoImpl - This is the default implementation of
611/// TargetInstrInfo, which just provides a couple of default implementations
612/// for various methods.  This separated out because it is implemented in
613/// libcodegen, not in libtarget.
614class TargetInstrInfoImpl : public TargetInstrInfo {
615protected:
616  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
617  : TargetInstrInfo(desc, NumOpcodes) {}
618public:
619  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
620                                       MachineBasicBlock *NewDest) const;
621  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
622                                           bool NewMI = false) const;
623  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
624                                     unsigned &SrcOpIdx2) const;
625  virtual bool PredicateInstruction(MachineInstr *MI,
626                            const SmallVectorImpl<MachineOperand> &Pred) const;
627  virtual void reMaterialize(MachineBasicBlock &MBB,
628                             MachineBasicBlock::iterator MI,
629                             unsigned DestReg, unsigned SubReg,
630                             const MachineInstr *Orig,
631                             const TargetRegisterInfo &TRI) const;
632  virtual MachineInstr *duplicate(MachineInstr *Orig,
633                                  MachineFunction &MF) const;
634  virtual bool produceSameValue(const MachineInstr *MI0,
635                                const MachineInstr *MI1) const;
636  virtual bool isSchedulingBoundary(const MachineInstr *MI,
637                                    const MachineBasicBlock *MBB,
638                                    const MachineFunction &MF) const;
639  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
640
641  virtual ScheduleHazardRecognizer *
642  CreateTargetPostRAHazardRecognizer(const InstrItineraryData&) const;
643};
644
645} // End llvm namespace
646
647#endif
648