TargetInstrInfo.h revision 71804149a3a6f6c081b874869b27fafe7d3288ce
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/CodeGen/DFAPacketizer.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/MC/MCInstrInfo.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
49  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = 0) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const;
147
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot.  If
151  /// not, return 0.  This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                      int &FrameIndex) const {
155    return 0;
156  }
157
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well.  This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                            int &FrameIndex) const {
163    return 0;
164  }
165
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack.  This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                   const MachineMemOperand *&MMO,
174                                   int &FrameIndex) const;
175
176  /// isStackSlotCopy - Return true if the specified machine instruction
177  /// is a copy of one stack slot to another and has no other effect.
178  /// Provide the identity of the two frame indices.
179  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
180                               int &SrcFrameIndex) const {
181    return false;
182  }
183
184  /// reMaterialize - Re-issue the specified 'original' instruction at the
185  /// specific location targeting a new destination register.
186  /// The register in Orig->getOperand(0).getReg() will be substituted by
187  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
188  /// SubIdx.
189  virtual void reMaterialize(MachineBasicBlock &MBB,
190                             MachineBasicBlock::iterator MI,
191                             unsigned DestReg, unsigned SubIdx,
192                             const MachineInstr *Orig,
193                             const TargetRegisterInfo &TRI) const;
194
195  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
196  /// MachineFunction::CloneMachineInstr(), but the target may update operands
197  /// that are required to be unique.
198  ///
199  /// The instruction must be duplicable as indicated by isNotDuplicable().
200  virtual MachineInstr *duplicate(MachineInstr *Orig,
201                                  MachineFunction &MF) const;
202
203  /// convertToThreeAddress - This method must be implemented by targets that
204  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
205  /// may be able to convert a two-address instruction into one or more true
206  /// three-address instructions on demand.  This allows the X86 target (for
207  /// example) to convert ADD and SHL instructions into LEA instructions if they
208  /// would require register copies due to two-addressness.
209  ///
210  /// This method returns a null pointer if the transformation cannot be
211  /// performed, otherwise it returns the last new instruction.
212  ///
213  virtual MachineInstr *
214  convertToThreeAddress(MachineFunction::iterator &MFI,
215                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
216    return 0;
217  }
218
219  /// commuteInstruction - If a target has any instructions that are
220  /// commutable but require converting to different instructions or making
221  /// non-trivial changes to commute them, this method can overloaded to do
222  /// that.  The default implementation simply swaps the commutable operands.
223  /// If NewMI is false, MI is modified in place and returned; otherwise, a
224  /// new machine instruction is created and returned.  Do not call this
225  /// method for a non-commutable instruction, but there may be some cases
226  /// where this method fails and returns null.
227  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
228                                           bool NewMI = false) const;
229
230  /// findCommutedOpIndices - If specified MI is commutable, return the two
231  /// operand indices that would swap value. Return false if the instruction
232  /// is not in a form which this routine understands.
233  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
234                                     unsigned &SrcOpIdx2) const;
235
236  /// produceSameValue - Return true if two machine instructions would produce
237  /// identical values. By default, this is only true when the two instructions
238  /// are deemed identical except for defs. If this function is called when the
239  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
240  /// aggressive checks.
241  virtual bool produceSameValue(const MachineInstr *MI0,
242                                const MachineInstr *MI1,
243                                const MachineRegisterInfo *MRI = 0) const;
244
245  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
246  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
247  /// implemented for a target).  Upon success, this returns false and returns
248  /// with the following information in various cases:
249  ///
250  /// 1. If this block ends with no branches (it just falls through to its succ)
251  ///    just return false, leaving TBB/FBB null.
252  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
253  ///    the destination block.
254  /// 3. If this block ends with a conditional branch and it falls through to a
255  ///    successor block, it sets TBB to be the branch destination block and a
256  ///    list of operands that evaluate the condition. These operands can be
257  ///    passed to other TargetInstrInfo methods to create new branches.
258  /// 4. If this block ends with a conditional branch followed by an
259  ///    unconditional branch, it returns the 'true' destination in TBB, the
260  ///    'false' destination in FBB, and a list of operands that evaluate the
261  ///    condition.  These operands can be passed to other TargetInstrInfo
262  ///    methods to create new branches.
263  ///
264  /// Note that RemoveBranch and InsertBranch must be implemented to support
265  /// cases where this method returns success.
266  ///
267  /// If AllowModify is true, then this routine is allowed to modify the basic
268  /// block (e.g. delete instructions after the unconditional branch).
269  ///
270  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
271                             MachineBasicBlock *&FBB,
272                             SmallVectorImpl<MachineOperand> &Cond,
273                             bool AllowModify = false) const {
274    return true;
275  }
276
277  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
278  /// This is only invoked in cases where AnalyzeBranch returns success. It
279  /// returns the number of instructions that were removed.
280  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
281    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
282  }
283
284  /// InsertBranch - Insert branch code into the end of the specified
285  /// MachineBasicBlock.  The operands to this method are the same as those
286  /// returned by AnalyzeBranch.  This is only invoked in cases where
287  /// AnalyzeBranch returns success. It returns the number of instructions
288  /// inserted.
289  ///
290  /// It is also invoked by tail merging to add unconditional branches in
291  /// cases where AnalyzeBranch doesn't apply because there was no original
292  /// branch to analyze.  At least this much must be implemented, else tail
293  /// merging needs to be disabled.
294  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
295                                MachineBasicBlock *FBB,
296                                const SmallVectorImpl<MachineOperand> &Cond,
297                                DebugLoc DL) const {
298    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
299  }
300
301  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
302  /// after it, replacing it with an unconditional branch to NewDest. This is
303  /// used by the tail merging pass.
304  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
305                                       MachineBasicBlock *NewDest) const;
306
307  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
308  /// block at the specified instruction (i.e. instruction would be the start
309  /// of a new basic block).
310  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
311                                   MachineBasicBlock::iterator MBBI) const {
312    return true;
313  }
314
315  /// isProfitableToIfCvt - Return true if it's profitable to predicate
316  /// instructions with accumulated instruction latency of "NumCycles"
317  /// of the specified basic block, where the probability of the instructions
318  /// being executed is given by Probability, and Confidence is a measure
319  /// of our confidence that it will be properly predicted.
320  virtual
321  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
322                           unsigned ExtraPredCycles,
323                           const BranchProbability &Probability) const {
324    return false;
325  }
326
327  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
328  /// checks for the case where two basic blocks from true and false path
329  /// of a if-then-else (diamond) are predicated on mutally exclusive
330  /// predicates, where the probability of the true path being taken is given
331  /// by Probability, and Confidence is a measure of our confidence that it
332  /// will be properly predicted.
333  virtual bool
334  isProfitableToIfCvt(MachineBasicBlock &TMBB,
335                      unsigned NumTCycles, unsigned ExtraTCycles,
336                      MachineBasicBlock &FMBB,
337                      unsigned NumFCycles, unsigned ExtraFCycles,
338                      const BranchProbability &Probability) const {
339    return false;
340  }
341
342  /// isProfitableToDupForIfCvt - Return true if it's profitable for
343  /// if-converter to duplicate instructions of specified accumulated
344  /// instruction latencies in the specified MBB to enable if-conversion.
345  /// The probability of the instructions being executed is given by
346  /// Probability, and Confidence is a measure of our confidence that it
347  /// will be properly predicted.
348  virtual bool
349  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
350                            const BranchProbability &Probability) const {
351    return false;
352  }
353
354  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
355  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
356  /// exclusive predicates.
357  /// e.g.
358  ///   subeq  r0, r1, #1
359  ///   addne  r0, r1, #1
360  /// =>
361  ///   sub    r0, r1, #1
362  ///   addne  r0, r1, #1
363  ///
364  /// This may be profitable is conditional instructions are always executed.
365  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
366                                         MachineBasicBlock &FMBB) const {
367    return false;
368  }
369
370  /// canInsertSelect - Return true if it is possible to insert a select
371  /// instruction that chooses between TrueReg and FalseReg based on the
372  /// condition code in Cond.
373  ///
374  /// When successful, also return the latency in cycles from TrueReg,
375  /// FalseReg, and Cond to the destination register. In most cases, a select
376  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
377  ///
378  /// Some x86 implementations have 2-cycle cmov instructions.
379  ///
380  /// @param MBB         Block where select instruction would be inserted.
381  /// @param Cond        Condition returned by AnalyzeBranch.
382  /// @param TrueReg     Virtual register to select when Cond is true.
383  /// @param FalseReg    Virtual register to select when Cond is false.
384  /// @param CondCycles  Latency from Cond+Branch to select output.
385  /// @param TrueCycles  Latency from TrueReg to select output.
386  /// @param FalseCycles Latency from FalseReg to select output.
387  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
388                               const SmallVectorImpl<MachineOperand> &Cond,
389                               unsigned TrueReg, unsigned FalseReg,
390                               int &CondCycles,
391                               int &TrueCycles, int &FalseCycles) const {
392    return false;
393  }
394
395  /// insertSelect - Insert a select instruction into MBB before I that will
396  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
397  /// Cond is false.
398  ///
399  /// This function can only be called after canInsertSelect() returned true.
400  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
401  /// that the same flags or registers required by Cond are available at the
402  /// insertion point.
403  ///
404  /// @param MBB      Block where select instruction should be inserted.
405  /// @param I        Insertion point.
406  /// @param DL       Source location for debugging.
407  /// @param DstReg   Virtual register to be defined by select instruction.
408  /// @param Cond     Condition as computed by AnalyzeBranch.
409  /// @param TrueReg  Virtual register to copy when Cond is true.
410  /// @param FalseReg Virtual register to copy when Cons is false.
411  virtual void insertSelect(MachineBasicBlock &MBB,
412                            MachineBasicBlock::iterator I, DebugLoc DL,
413                            unsigned DstReg,
414                            const SmallVectorImpl<MachineOperand> &Cond,
415                            unsigned TrueReg, unsigned FalseReg) const {
416    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
417  }
418
419  /// analyzeSelect - Analyze the given select instruction, returning true if
420  /// it cannot be understood. It is assumed that MI->isSelect() is true.
421  ///
422  /// When successful, return the controlling condition and the operands that
423  /// determine the true and false result values.
424  ///
425  ///   Result = SELECT Cond, TrueOp, FalseOp
426  ///
427  /// Some targets can optimize select instructions, for example by predicating
428  /// the instruction defining one of the operands. Such targets should set
429  /// Optimizable.
430  ///
431  /// @param         MI Select instruction to analyze.
432  /// @param Cond    Condition controlling the select.
433  /// @param TrueOp  Operand number of the value selected when Cond is true.
434  /// @param FalseOp Operand number of the value selected when Cond is false.
435  /// @param Optimizable Returned as true if MI is optimizable.
436  /// @returns False on success.
437  virtual bool analyzeSelect(const MachineInstr *MI,
438                             SmallVectorImpl<MachineOperand> &Cond,
439                             unsigned &TrueOp, unsigned &FalseOp,
440                             bool &Optimizable) const {
441    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
442    return true;
443  }
444
445  /// optimizeSelect - Given a select instruction that was understood by
446  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
447  /// merging it with one of its operands. Returns NULL on failure.
448  ///
449  /// When successful, returns the new select instruction. The client is
450  /// responsible for deleting MI.
451  ///
452  /// If both sides of the select can be optimized, PreferFalse is used to pick
453  /// a side.
454  ///
455  /// @param MI          Optimizable select instruction.
456  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
457  /// @returns Optimized instruction or NULL.
458  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
459                                       bool PreferFalse = false) const {
460    // This function must be implemented if Optimizable is ever set.
461    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
462  }
463
464  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
465  ///
466  /// This function should support copies within any legal register class as
467  /// well as any cross-class copies created during instruction selection.
468  ///
469  /// The source and destination registers may overlap, which may require a
470  /// careful implementation when multiple copy instructions are required for
471  /// large registers. See for example the ARM target.
472  virtual void copyPhysReg(MachineBasicBlock &MBB,
473                           MachineBasicBlock::iterator MI, DebugLoc DL,
474                           unsigned DestReg, unsigned SrcReg,
475                           bool KillSrc) const {
476    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
477  }
478
479  /// storeRegToStackSlot - Store the specified register of the given register
480  /// class to the specified stack frame index. The store instruction is to be
481  /// added to the given machine basic block before the specified machine
482  /// instruction. If isKill is true, the register operand is the last use and
483  /// must be marked kill.
484  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
485                                   MachineBasicBlock::iterator MI,
486                                   unsigned SrcReg, bool isKill, int FrameIndex,
487                                   const TargetRegisterClass *RC,
488                                   const TargetRegisterInfo *TRI) const {
489    llvm_unreachable("Target didn't implement "
490                     "TargetInstrInfo::storeRegToStackSlot!");
491  }
492
493  /// loadRegFromStackSlot - Load the specified register of the given register
494  /// class from the specified stack frame index. The load instruction is to be
495  /// added to the given machine basic block before the specified machine
496  /// instruction.
497  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
498                                    MachineBasicBlock::iterator MI,
499                                    unsigned DestReg, int FrameIndex,
500                                    const TargetRegisterClass *RC,
501                                    const TargetRegisterInfo *TRI) const {
502    llvm_unreachable("Target didn't implement "
503                     "TargetInstrInfo::loadRegFromStackSlot!");
504  }
505
506  /// expandPostRAPseudo - This function is called for all pseudo instructions
507  /// that remain after register allocation. Many pseudo instructions are
508  /// created to help register allocation. This is the place to convert them
509  /// into real instructions. The target can edit MI in place, or it can insert
510  /// new instructions and erase MI. The function should return true if
511  /// anything was changed.
512  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
513    return false;
514  }
515
516  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
517  /// slot into the specified machine instruction for the specified operand(s).
518  /// If this is possible, a new instruction is returned with the specified
519  /// operand folded, otherwise NULL is returned.
520  /// The new instruction is inserted before MI, and the client is responsible
521  /// for removing the old instruction.
522  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
523                                  const SmallVectorImpl<unsigned> &Ops,
524                                  int FrameIndex) const;
525
526  /// foldMemoryOperand - Same as the previous version except it allows folding
527  /// of any load and store from / to any address, not just from a specific
528  /// stack slot.
529  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
530                                  const SmallVectorImpl<unsigned> &Ops,
531                                  MachineInstr* LoadMI) const;
532
533protected:
534  /// foldMemoryOperandImpl - Target-dependent implementation for
535  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
536  /// take care of adding a MachineMemOperand to the newly created instruction.
537  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
538                                          MachineInstr* MI,
539                                          const SmallVectorImpl<unsigned> &Ops,
540                                          int FrameIndex) const {
541    return 0;
542  }
543
544  /// foldMemoryOperandImpl - Target-dependent implementation for
545  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
546  /// take care of adding a MachineMemOperand to the newly created instruction.
547  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
548                                              MachineInstr* MI,
549                                          const SmallVectorImpl<unsigned> &Ops,
550                                              MachineInstr* LoadMI) const {
551    return 0;
552  }
553
554public:
555  /// canFoldMemoryOperand - Returns true for the specified load / store if
556  /// folding is possible.
557  virtual
558  bool canFoldMemoryOperand(const MachineInstr *MI,
559                            const SmallVectorImpl<unsigned> &Ops) const;
560
561  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
562  /// a store or a load and a store into two or more instruction. If this is
563  /// possible, returns true as well as the new instructions by reference.
564  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
565                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
566                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
567    return false;
568  }
569
570  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
571                                   SmallVectorImpl<SDNode*> &NewNodes) const {
572    return false;
573  }
574
575  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
576  /// instruction after load / store are unfolded from an instruction of the
577  /// specified opcode. It returns zero if the specified unfolding is not
578  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
579  /// index of the operand which will hold the register holding the loaded
580  /// value.
581  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
582                                      bool UnfoldLoad, bool UnfoldStore,
583                                      unsigned *LoadRegIndex = 0) const {
584    return 0;
585  }
586
587  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
588  /// to determine if two loads are loading from the same base address. It
589  /// should only return true if the base pointers are the same and the
590  /// only differences between the two addresses are the offset. It also returns
591  /// the offsets by reference.
592  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
593                                    int64_t &Offset1, int64_t &Offset2) const {
594    return false;
595  }
596
597  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
598  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
599  /// be scheduled togther. On some targets if two loads are loading from
600  /// addresses in the same cache line, it's better if they are scheduled
601  /// together. This function takes two integers that represent the load offsets
602  /// from the common base address. It returns true if it decides it's desirable
603  /// to schedule the two loads together. "NumLoads" is the number of loads that
604  /// have already been scheduled after Load1.
605  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
606                                       int64_t Offset1, int64_t Offset2,
607                                       unsigned NumLoads) const {
608    return false;
609  }
610
611  /// \brief Get the base register and byte offset of a load/store instr.
612  virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
613                                    unsigned &BaseReg, unsigned &Offset,
614                                    const TargetRegisterInfo *TRI) const {
615    return false;
616  }
617
618  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
619                                  MachineInstr *SecondLdSt,
620                                  unsigned NumLoads) const {
621    return false;
622  }
623
624  /// \brief Can this target fuse the given instructions if they are scheduled
625  /// adjacent.
626  virtual bool shouldScheduleAdjacent(MachineInstr* First,
627                                      MachineInstr *Second) const {
628    return false;
629  }
630
631  /// ReverseBranchCondition - Reverses the branch condition of the specified
632  /// condition list, returning false on success and true if it cannot be
633  /// reversed.
634  virtual
635  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
636    return true;
637  }
638
639  /// insertNoop - Insert a noop into the instruction stream at the specified
640  /// point.
641  virtual void insertNoop(MachineBasicBlock &MBB,
642                          MachineBasicBlock::iterator MI) const;
643
644
645  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
646  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
647    // Default to just using 'nop' string.
648  }
649
650
651  /// isPredicated - Returns true if the instruction is already predicated.
652  ///
653  virtual bool isPredicated(const MachineInstr *MI) const {
654    return false;
655  }
656
657  /// isUnpredicatedTerminator - Returns true if the instruction is a
658  /// terminator instruction that has not been predicated.
659  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
660
661  /// PredicateInstruction - Convert the instruction into a predicated
662  /// instruction. It returns true if the operation was successful.
663  virtual
664  bool PredicateInstruction(MachineInstr *MI,
665                        const SmallVectorImpl<MachineOperand> &Pred) const;
666
667  /// SubsumesPredicate - Returns true if the first specified predicate
668  /// subsumes the second, e.g. GE subsumes GT.
669  virtual
670  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
671                         const SmallVectorImpl<MachineOperand> &Pred2) const {
672    return false;
673  }
674
675  /// DefinesPredicate - If the specified instruction defines any predicate
676  /// or condition code register(s) used for predication, returns true as well
677  /// as the definition predicate(s) by reference.
678  virtual bool DefinesPredicate(MachineInstr *MI,
679                                std::vector<MachineOperand> &Pred) const {
680    return false;
681  }
682
683  /// isPredicable - Return true if the specified instruction can be predicated.
684  /// By default, this returns true for every instruction with a
685  /// PredicateOperand.
686  virtual bool isPredicable(MachineInstr *MI) const {
687    return MI->getDesc().isPredicable();
688  }
689
690  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
691  /// instruction that defines the specified register class.
692  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
693    return true;
694  }
695
696  /// isSchedulingBoundary - Test if the given instruction should be
697  /// considered a scheduling boundary. This primarily includes labels and
698  /// terminators.
699  virtual bool isSchedulingBoundary(const MachineInstr *MI,
700                                    const MachineBasicBlock *MBB,
701                                    const MachineFunction &MF) const;
702
703  /// Measure the specified inline asm to determine an approximation of its
704  /// length.
705  virtual unsigned getInlineAsmLength(const char *Str,
706                                      const MCAsmInfo &MAI) const;
707
708  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
709  /// use for this target when scheduling the machine instructions before
710  /// register allocation.
711  virtual ScheduleHazardRecognizer*
712  CreateTargetHazardRecognizer(const TargetMachine *TM,
713                               const ScheduleDAG *DAG) const;
714
715  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
716  /// to use for this target when scheduling the machine instructions before
717  /// register allocation.
718  virtual ScheduleHazardRecognizer*
719  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
720                                 const ScheduleDAG *DAG) const;
721
722  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
723  /// recognizer to use for this target when scheduling the machine instructions
724  /// after register allocation.
725  virtual ScheduleHazardRecognizer*
726  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
727                                     const ScheduleDAG *DAG) const;
728
729  /// Provide a global flag for disabling the PreRA hazard recognizer that
730  /// targets may choose to honor.
731  bool usePreRAHazardRecognizer() const;
732
733  /// analyzeCompare - For a comparison instruction, return the source registers
734  /// in SrcReg and SrcReg2 if having two register operands, and the value it
735  /// compares against in CmpValue. Return true if the comparison instruction
736  /// can be analyzed.
737  virtual bool analyzeCompare(const MachineInstr *MI,
738                              unsigned &SrcReg, unsigned &SrcReg2,
739                              int &Mask, int &Value) const {
740    return false;
741  }
742
743  /// optimizeCompareInstr - See if the comparison instruction can be converted
744  /// into something more efficient. E.g., on ARM most instructions can set the
745  /// flags register, obviating the need for a separate CMP.
746  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
747                                    unsigned SrcReg, unsigned SrcReg2,
748                                    int Mask, int Value,
749                                    const MachineRegisterInfo *MRI) const {
750    return false;
751  }
752
753  /// optimizeLoadInstr - Try to remove the load by folding it to a register
754  /// operand at the use. We fold the load instructions if and only if the
755  /// def and use are in the same BB. We only look at one load and see
756  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
757  /// defined by the load we are trying to fold. DefMI returns the machine
758  /// instruction that defines FoldAsLoadDefReg, and the function returns
759  /// the machine instruction generated due to folding.
760  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
761                        const MachineRegisterInfo *MRI,
762                        unsigned &FoldAsLoadDefReg,
763                        MachineInstr *&DefMI) const {
764    return 0;
765  }
766
767  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
768  /// instruction, try to fold the immediate into the use instruction.
769  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
770  /// then the caller may assume that DefMI has been erased from its parent
771  /// block. The caller may assume that it will not be erased by this
772  /// function otherwise.
773  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
774                             unsigned Reg, MachineRegisterInfo *MRI) const {
775    return false;
776  }
777
778  /// getNumMicroOps - Return the number of u-operations the given machine
779  /// instruction will be decoded to on the target cpu. The itinerary's
780  /// IssueWidth is the number of microops that can be dispatched each
781  /// cycle. An instruction with zero microops takes no dispatch resources.
782  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
783                                  const MachineInstr *MI) const;
784
785  /// isZeroCost - Return true for pseudo instructions that don't consume any
786  /// machine resources in their current form. These are common cases that the
787  /// scheduler should consider free, rather than conservatively handling them
788  /// as instructions with no itinerary.
789  bool isZeroCost(unsigned Opcode) const {
790    return Opcode <= TargetOpcode::COPY;
791  }
792
793  virtual int getOperandLatency(const InstrItineraryData *ItinData,
794                                SDNode *DefNode, unsigned DefIdx,
795                                SDNode *UseNode, unsigned UseIdx) const;
796
797  /// getOperandLatency - Compute and return the use operand latency of a given
798  /// pair of def and use.
799  /// In most cases, the static scheduling itinerary was enough to determine the
800  /// operand latency. But it may not be possible for instructions with variable
801  /// number of defs / uses.
802  ///
803  /// This is a raw interface to the itinerary that may be directly overriden by
804  /// a target. Use computeOperandLatency to get the best estimate of latency.
805  virtual int getOperandLatency(const InstrItineraryData *ItinData,
806                                const MachineInstr *DefMI, unsigned DefIdx,
807                                const MachineInstr *UseMI,
808                                unsigned UseIdx) const;
809
810  /// computeOperandLatency - Compute and return the latency of the given data
811  /// dependent def and use when the operand indices are already known.
812  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
813                                 const MachineInstr *DefMI, unsigned DefIdx,
814                                 const MachineInstr *UseMI, unsigned UseIdx)
815    const;
816
817  /// getInstrLatency - Compute the instruction latency of a given instruction.
818  /// If the instruction has higher cost when predicated, it's returned via
819  /// PredCost.
820  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
821                                   const MachineInstr *MI,
822                                   unsigned *PredCost = 0) const;
823
824  virtual int getInstrLatency(const InstrItineraryData *ItinData,
825                              SDNode *Node) const;
826
827  /// Return the default expected latency for a def based on it's opcode.
828  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
829                             const MachineInstr *DefMI) const;
830
831  int computeDefOperandLatency(const InstrItineraryData *ItinData,
832                               const MachineInstr *DefMI) const;
833
834  /// isHighLatencyDef - Return true if this opcode has high latency to its
835  /// result.
836  virtual bool isHighLatencyDef(int opc) const { return false; }
837
838  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
839  /// and an use in the current loop, return true if the target considered
840  /// it 'high'. This is used by optimization passes such as machine LICM to
841  /// determine whether it makes sense to hoist an instruction out even in
842  /// high register pressure situation.
843  virtual
844  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
845                             const MachineRegisterInfo *MRI,
846                             const MachineInstr *DefMI, unsigned DefIdx,
847                             const MachineInstr *UseMI, unsigned UseIdx) const {
848    return false;
849  }
850
851  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
852  /// if the target considered it 'low'.
853  virtual
854  bool hasLowDefLatency(const InstrItineraryData *ItinData,
855                        const MachineInstr *DefMI, unsigned DefIdx) const;
856
857  /// verifyInstruction - Perform target specific instruction verification.
858  virtual
859  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
860    return true;
861  }
862
863  /// getExecutionDomain - Return the current execution domain and bit mask of
864  /// possible domains for instruction.
865  ///
866  /// Some micro-architectures have multiple execution domains, and multiple
867  /// opcodes that perform the same operation in different domains.  For
868  /// example, the x86 architecture provides the por, orps, and orpd
869  /// instructions that all do the same thing.  There is a latency penalty if a
870  /// register is written in one domain and read in another.
871  ///
872  /// This function returns a pair (domain, mask) containing the execution
873  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
874  /// function can be used to change the opcode to one of the domains in the
875  /// bit mask.  Instructions whose execution domain can't be changed should
876  /// return a 0 mask.
877  ///
878  /// The execution domain numbers don't have any special meaning except domain
879  /// 0 is used for instructions that are not associated with any interesting
880  /// execution domain.
881  ///
882  virtual std::pair<uint16_t, uint16_t>
883  getExecutionDomain(const MachineInstr *MI) const {
884    return std::make_pair(0, 0);
885  }
886
887  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
888  ///
889  /// The bit (1 << Domain) must be set in the mask returned from
890  /// getExecutionDomain(MI).
891  ///
892  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
893
894
895  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
896  /// before an instruction with an unwanted partial register update.
897  ///
898  /// Some instructions only write part of a register, and implicitly need to
899  /// read the other parts of the register.  This may cause unwanted stalls
900  /// preventing otherwise unrelated instructions from executing in parallel in
901  /// an out-of-order CPU.
902  ///
903  /// For example, the x86 instruction cvtsi2ss writes its result to bits
904  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
905  /// the instruction needs to wait for the old value of the register to become
906  /// available:
907  ///
908  ///   addps %xmm1, %xmm0
909  ///   movaps %xmm0, (%rax)
910  ///   cvtsi2ss %rbx, %xmm0
911  ///
912  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
913  /// instruction before it can issue, even though the high bits of %xmm0
914  /// probably aren't needed.
915  ///
916  /// This hook returns the preferred clearance before MI, measured in
917  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
918  /// instructions before MI.  It should only return a positive value for
919  /// unwanted dependencies.  If the old bits of the defined register have
920  /// useful values, or if MI is determined to otherwise read the dependency,
921  /// the hook should return 0.
922  ///
923  /// The unwanted dependency may be handled by:
924  ///
925  /// 1. Allocating the same register for an MI def and use.  That makes the
926  ///    unwanted dependency identical to a required dependency.
927  ///
928  /// 2. Allocating a register for the def that has no defs in the previous N
929  ///    instructions.
930  ///
931  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
932  ///    allows the target to insert a dependency breaking instruction.
933  ///
934  virtual unsigned
935  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
936                               const TargetRegisterInfo *TRI) const {
937    // The default implementation returns 0 for no partial register dependency.
938    return 0;
939  }
940
941  /// breakPartialRegDependency - Insert a dependency-breaking instruction
942  /// before MI to eliminate an unwanted dependency on OpNum.
943  ///
944  /// If it wasn't possible to avoid a def in the last N instructions before MI
945  /// (see getPartialRegUpdateClearance), this hook will be called to break the
946  /// unwanted dependency.
947  ///
948  /// On x86, an xorps instruction can be used as a dependency breaker:
949  ///
950  ///   addps %xmm1, %xmm0
951  ///   movaps %xmm0, (%rax)
952  ///   xorps %xmm0, %xmm0
953  ///   cvtsi2ss %rbx, %xmm0
954  ///
955  /// An <imp-kill> operand should be added to MI if an instruction was
956  /// inserted.  This ties the instructions together in the post-ra scheduler.
957  ///
958  virtual void
959  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
960                            const TargetRegisterInfo *TRI) const {}
961
962  /// Create machine specific model for scheduling.
963  virtual DFAPacketizer*
964    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
965    return NULL;
966  }
967
968private:
969  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
970};
971
972} // End llvm namespace
973
974#endif
975