TargetInstrInfo.h revision 7a73b80b9052136c8cd2234eb3433a07df7cf38e
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===----------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_TARGETINSTRINFO_H
8#define LLVM_TARGET_TARGETINSTRINFO_H
9
10#include "Support/DataTypes.h"
11#include <vector>
12
13class MachineInstr;
14class TargetMachine;
15class Value;
16class Instruction;
17class Constant;
18class Function;
19class MachineCodeForInstruction;
20
21//---------------------------------------------------------------------------
22// Data types used to define information about a single machine instruction
23//---------------------------------------------------------------------------
24
25typedef int MachineOpCode;
26typedef unsigned InstrSchedClass;
27
28const MachineOpCode INVALID_MACHINE_OPCODE = -1;
29
30
31//---------------------------------------------------------------------------
32// struct TargetInstrDescriptor:
33//	Predefined information about each machine instruction.
34//	Designed to initialized statically.
35//
36
37const unsigned M_NOP_FLAG		= 1 << 0;
38const unsigned M_BRANCH_FLAG		= 1 << 1;
39const unsigned M_CALL_FLAG		= 1 << 2;
40const unsigned M_RET_FLAG		= 1 << 3;
41const unsigned M_ARITH_FLAG		= 1 << 4;
42const unsigned M_CC_FLAG		= 1 << 6;
43const unsigned M_LOGICAL_FLAG		= 1 << 6;
44const unsigned M_INT_FLAG		= 1 << 7;
45const unsigned M_FLOAT_FLAG		= 1 << 8;
46const unsigned M_CONDL_FLAG		= 1 << 9;
47const unsigned M_LOAD_FLAG		= 1 << 10;
48const unsigned M_PREFETCH_FLAG		= 1 << 11;
49const unsigned M_STORE_FLAG		= 1 << 12;
50const unsigned M_DUMMY_PHI_FLAG	= 1 << 13;
51const unsigned M_PSEUDO_FLAG           = 1 << 14;       // Pseudo instruction
52// 3-addr instructions which really work like 2-addr ones, eg. X86 add/sub
53const unsigned M_2_ADDR_FLAG           = 1 << 15;
54
55// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
56// block?  Typically this is things like return and branch instructions.
57// Various passes use this to insert code into the bottom of a basic block, but
58// before control flow occurs.
59const unsigned M_TERMINATOR_FLAG       = 1 << 16;
60
61struct TargetInstrDescriptor {
62  const char *    Name;          // Assembly language mnemonic for the opcode.
63  int             numOperands;   // Number of args; -1 if variable #args
64  int             resultPos;     // Position of the result; -1 if no result
65  unsigned        maxImmedConst; // Largest +ve constant in IMMMED field or 0.
66  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
67                                 //   smallest -ve value is -(maxImmedConst+1).
68  unsigned        numDelaySlots; // Number of delay slots after instruction
69  unsigned        latency;       // Latency in machine cycles
70  InstrSchedClass schedClass;    // enum  identifying instr sched class
71  unsigned        Flags;         // flags identifying machine instr class
72  unsigned        TSFlags;       // Target Specific Flag values
73  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
74  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
75};
76
77
78//---------------------------------------------------------------------------
79///
80/// TargetInstrInfo - Interface to description of machine instructions
81///
82class TargetInstrInfo {
83  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
84  unsigned descSize;                    // number of entries in the desc array
85  unsigned numRealOpCodes;              // number of non-dummy op codes
86
87  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
88  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
89public:
90  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned descSize,
91		  unsigned numRealOpCodes);
92  virtual ~TargetInstrInfo();
93
94  // Invariant: All instruction sets use opcode #0 as the PHI instruction and
95  // opcode #1 as the noop instruction.
96  enum {
97    PHI = 0, NOOP = 1
98  };
99
100  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
101  unsigned getNumTotalOpCodes() const { return descSize; }
102
103  /// get - Return the machine instruction descriptor that corresponds to the
104  /// specified instruction opcode.
105  ///
106  const TargetInstrDescriptor& get(MachineOpCode opCode) const {
107    assert(opCode >= 0 && opCode < (int)descSize);
108    return desc[opCode];
109  }
110
111  const char *getName(MachineOpCode opCode) const {
112    return get(opCode).Name;
113  }
114
115  int getNumOperands(MachineOpCode opCode) const {
116    return get(opCode).numOperands;
117  }
118
119  int getResultPos(MachineOpCode opCode) const {
120    return get(opCode).resultPos;
121  }
122
123  unsigned getNumDelaySlots(MachineOpCode opCode) const {
124    return get(opCode).numDelaySlots;
125  }
126
127  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
128    return get(opCode).schedClass;
129  }
130
131  const unsigned *getImplicitUses(MachineOpCode opCode) const {
132    return get(opCode).ImplicitUses;
133  }
134
135  const unsigned *getImplicitDefs(MachineOpCode opCode) const {
136    return get(opCode).ImplicitDefs;
137  }
138
139  //
140  // Query instruction class flags according to the machine-independent
141  // flags listed above.
142  //
143  bool isNop(MachineOpCode opCode) const {
144    return get(opCode).Flags & M_NOP_FLAG;
145  }
146  bool isBranch(MachineOpCode opCode) const {
147    return get(opCode).Flags & M_BRANCH_FLAG;
148  }
149  bool isCall(MachineOpCode opCode) const {
150    return get(opCode).Flags & M_CALL_FLAG;
151  }
152  bool isReturn(MachineOpCode opCode) const {
153    return get(opCode).Flags & M_RET_FLAG;
154  }
155  bool isControlFlow(MachineOpCode opCode) const {
156    return get(opCode).Flags & M_BRANCH_FLAG
157        || get(opCode).Flags & M_CALL_FLAG
158        || get(opCode).Flags & M_RET_FLAG;
159  }
160  bool isArith(MachineOpCode opCode) const {
161    return get(opCode).Flags & M_ARITH_FLAG;
162  }
163  bool isCCInstr(MachineOpCode opCode) const {
164    return get(opCode).Flags & M_CC_FLAG;
165  }
166  bool isLogical(MachineOpCode opCode) const {
167    return get(opCode).Flags & M_LOGICAL_FLAG;
168  }
169  bool isIntInstr(MachineOpCode opCode) const {
170    return get(opCode).Flags & M_INT_FLAG;
171  }
172  bool isFloatInstr(MachineOpCode opCode) const {
173    return get(opCode).Flags & M_FLOAT_FLAG;
174  }
175  bool isConditional(MachineOpCode opCode) const {
176    return get(opCode).Flags & M_CONDL_FLAG;
177  }
178  bool isLoad(MachineOpCode opCode) const {
179    return get(opCode).Flags & M_LOAD_FLAG;
180  }
181  bool isPrefetch(MachineOpCode opCode) const {
182    return get(opCode).Flags & M_PREFETCH_FLAG;
183  }
184  bool isLoadOrPrefetch(MachineOpCode opCode) const {
185    return get(opCode).Flags & M_LOAD_FLAG
186        || get(opCode).Flags & M_PREFETCH_FLAG;
187  }
188  bool isStore(MachineOpCode opCode) const {
189    return get(opCode).Flags & M_STORE_FLAG;
190  }
191  bool isMemoryAccess(MachineOpCode opCode) const {
192    return get(opCode).Flags & M_LOAD_FLAG
193        || get(opCode).Flags & M_PREFETCH_FLAG
194        || get(opCode).Flags & M_STORE_FLAG;
195  }
196  bool isDummyPhiInstr(MachineOpCode opCode) const {
197    return get(opCode).Flags & M_DUMMY_PHI_FLAG;
198  }
199  bool isPseudoInstr(MachineOpCode opCode) const {
200    return get(opCode).Flags & M_PSEUDO_FLAG;
201  }
202  bool isTwoAddrInstr(MachineOpCode opCode) const {
203    return get(opCode).Flags & M_2_ADDR_FLAG;
204  }
205  bool isTerminatorInstr(unsigned Opcode) const {
206    return get(Opcode).Flags & M_TERMINATOR_FLAG;
207  }
208
209  // Check if an instruction can be issued before its operands are ready,
210  // or if a subsequent instruction that uses its result can be issued
211  // before the results are ready.
212  // Default to true since most instructions on many architectures allow this.
213  //
214  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
215    return true;
216  }
217
218  virtual bool hasResultInterlock(MachineOpCode opCode) const {
219    return true;
220  }
221
222  //
223  // Latencies for individual instructions and instruction pairs
224  //
225  virtual int minLatency(MachineOpCode opCode) const {
226    return get(opCode).latency;
227  }
228
229  virtual int maxLatency(MachineOpCode opCode) const {
230    return get(opCode).latency;
231  }
232
233  //
234  // Which operand holds an immediate constant?  Returns -1 if none
235  //
236  virtual int getImmedConstantPos(MachineOpCode opCode) const {
237    return -1; // immediate position is machine specific, so say -1 == "none"
238  }
239
240  // Check if the specified constant fits in the immediate field
241  // of this machine instruction
242  //
243  virtual bool constantFitsInImmedField(MachineOpCode opCode,
244					int64_t intValue) const;
245
246  // Return the largest +ve constant that can be held in the IMMMED field
247  // of this machine instruction.
248  // isSignExtended is set to true if the value is sign-extended before use
249  // (this is true for all immediate fields in SPARC instructions).
250  // Return 0 if the instruction has no IMMED field.
251  //
252  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
253				    bool &isSignExtended) const {
254    isSignExtended = get(opCode).immedIsSignExtended;
255    return get(opCode).maxImmedConst;
256  }
257
258  //-------------------------------------------------------------------------
259  // Queries about representation of LLVM quantities (e.g., constants)
260  //-------------------------------------------------------------------------
261
262  /// ConstantTypeMustBeLoaded - Test if this type of constant must be loaded
263  /// from memory into a register, i.e., cannot be set bitwise in register and
264  /// cannot use immediate fields of instructions.  Note that this only makes
265  /// sense for primitive types.
266  ///
267  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const;
268
269  // Test if this constant may not fit in the immediate field of the
270  // machine instructions (probably) generated for this instruction.
271  //
272  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
273                                             const Instruction* I) const {
274    return true;                        // safe but very conservative
275  }
276
277
278  /// createNOPinstr - returns the target's implementation of NOP, which is
279  /// usually a pseudo-instruction, implemented by a degenerate version of
280  /// another instruction, e.g. X86: xchg ax, ax; SparcV9: sethi g0, 0
281  ///
282  virtual MachineInstr* createNOPinstr() const = 0;
283
284  /// isNOPinstr - not having a special NOP opcode, we need to know if a given
285  /// instruction is interpreted as an `official' NOP instr, i.e., there may be
286  /// more than one way to `do nothing' but only one canonical way to slack off.
287  ///
288  virtual bool isNOPinstr(const MachineInstr &MI) const = 0;
289
290  //-------------------------------------------------------------------------
291  // Code generation support for creating individual machine instructions
292  //
293  // WARNING: These methods are Sparc specific
294  //
295  //-------------------------------------------------------------------------
296
297  // Get certain common op codes for the current target.  this and all the
298  // Create* methods below should be moved to a machine code generation class
299  //
300  virtual MachineOpCode getNOPOpCode() const { abort(); }
301
302  // Create an instruction sequence to put the constant `val' into
303  // the virtual register `dest'.  `val' may be a Constant or a
304  // GlobalValue, viz., the constant address of a global variable or function.
305  // The generated instructions are returned in `mvec'.
306  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
307  // Symbolic constants or constants that must be accessed from memory
308  // are added to the constant pool via MachineFunction::get(F).
309  //
310  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
311                                      Function* F,
312                                      Value* val,
313                                      Instruction* dest,
314                                      std::vector<MachineInstr*>& mvec,
315                                      MachineCodeForInstruction& mcfi) const {
316    abort();
317  }
318
319  // Create an instruction sequence to copy an integer value `val'
320  // to a floating point value `dest' by copying to memory and back.
321  // val must be an integral type.  dest must be a Float or Double.
322  // The generated instructions are returned in `mvec'.
323  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
324  // Any stack space required is allocated via mcff.
325  //
326  virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target,
327					  Function* F,
328					  Value* val,
329					  Instruction* dest,
330					  std::vector<MachineInstr*>& mvec,
331					  MachineCodeForInstruction& MI) const {
332    abort();
333  }
334
335  // Similarly, create an instruction sequence to copy an FP value
336  // `val' to an integer value `dest' by copying to memory and back.
337  // The generated instructions are returned in `mvec'.
338  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
339  // Any stack space required is allocated via mcff.
340  //
341  virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target,
342					  Function* F,
343					  Value* val,
344					  Instruction* dest,
345					  std::vector<MachineInstr*>& mvec,
346					  MachineCodeForInstruction& MI) const {
347    abort();
348  }
349
350  // Create instruction(s) to copy src to dest, for arbitrary types
351  // The generated instructions are returned in `mvec'.
352  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
353  // Any stack space required is allocated via mcff.
354  //
355  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
356					    Function* F,
357					    Value* src,
358					    Instruction* dest,
359					    std::vector<MachineInstr*>& mvec,
360                                          MachineCodeForInstruction& MI) const {
361    abort();
362  }
363
364  // Create instruction sequence to produce a sign-extended register value
365  // from an arbitrary sized value (sized in bits, not bytes).
366  // The generated instructions are appended to `mvec'.
367  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
368  // Any stack space required is allocated via mcff.
369  //
370  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
371                                       Function* F,
372                                       Value* srcVal,
373                                       Value* destVal,
374                                       unsigned numLowBits,
375                                       std::vector<MachineInstr*>& mvec,
376				       MachineCodeForInstruction& MI) const {
377    abort();
378  }
379
380  // Create instruction sequence to produce a zero-extended register value
381  // from an arbitrary sized value (sized in bits, not bytes).
382  // The generated instructions are appended to `mvec'.
383  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
384  // Any stack space required is allocated via mcff.
385  //
386  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
387                                       Function* F,
388                                       Value* srcVal,
389                                       Value* destVal,
390                                       unsigned srcSizeInBits,
391                                       std::vector<MachineInstr*>& mvec,
392                                       MachineCodeForInstruction& mcfi) const {
393    abort();
394  }
395};
396
397#endif
398