TargetInstrInfo.h revision 82a87a01723c095176c6940bcc63d3a7c8007b4b
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class MachineCodeForInstruction;
28class TargetRegisterClass;
29class LiveVariables;
30
31//---------------------------------------------------------------------------
32// Data types used to define information about a single machine instruction
33//---------------------------------------------------------------------------
34
35typedef short MachineOpCode;
36typedef unsigned InstrSchedClass;
37
38//---------------------------------------------------------------------------
39// struct TargetInstrDescriptor:
40//  Predefined information about each machine instruction.
41//  Designed to initialized statically.
42//
43
44const unsigned M_BRANCH_FLAG           = 1 << 0;
45const unsigned M_CALL_FLAG             = 1 << 1;
46const unsigned M_RET_FLAG              = 1 << 2;
47const unsigned M_BARRIER_FLAG          = 1 << 3;
48const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
49const unsigned M_LOAD_FLAG             = 1 << 5;
50const unsigned M_STORE_FLAG            = 1 << 6;
51
52// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
53// changed into a 3-address instruction if the first two operands cannot be
54// assigned to the same register.  The target must implement the
55// TargetInstrInfo::convertToThreeAddress method for this instruction.
56const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
57
58// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
59// Z), which produces the same result if Y and Z are exchanged.
60const unsigned M_COMMUTABLE            = 1 << 8;
61
62// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
63// block?  Typically this is things like return and branch instructions.
64// Various passes use this to insert code into the bottom of a basic block, but
65// before control flow occurs.
66const unsigned M_TERMINATOR_FLAG       = 1 << 9;
67
68// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
69// insertion support when the DAG scheduler is inserting it into a machine basic
70// block.
71const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
72
73// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
74// operands in addition to the minimum number operands specified.
75const unsigned M_VARIABLE_OPS = 1 << 11;
76
77// M_PREDICABLE - Set if this instruction has a predicate operand that
78// controls execution. It may be set to 'always'.
79const unsigned M_PREDICABLE = 1 << 12;
80
81// M_CLOBBERS_PRED - Set if this instruction may clobbers the condition code
82// register and / or registers that are used to predicate instructions.
83const unsigned M_CLOBBERS_PRED = 1 << 14;
84
85// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
86// (e.g. instructions with unique labels attached).
87const unsigned M_NOT_DUPLICABLE = 1 << 15;
88
89// Machine operand flags
90// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
91// requires a callback to look up its register class.
92const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
93
94/// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the
95/// predicate operand that controls an M_PREDICATED instruction.
96const unsigned M_PREDICATE_OPERAND = 1 << 1;
97
98namespace TOI {
99  // Operand constraints: only "tied_to" for now.
100  enum OperandConstraint {
101    TIED_TO = 0  // Must be allocated the same register as.
102  };
103}
104
105/// TargetOperandInfo - This holds information about one operand of a machine
106/// instruction, indicating the register class for register operands, etc.
107///
108class TargetOperandInfo {
109public:
110  /// RegClass - This specifies the register class enumeration of the operand
111  /// if the operand is a register.  If not, this contains 0.
112  unsigned short RegClass;
113  unsigned short Flags;
114  /// Lower 16 bits are used to specify which constraints are set. The higher 16
115  /// bits are used to specify the value of constraints (4 bits each).
116  unsigned int Constraints;
117  /// Currently no other information.
118};
119
120
121class TargetInstrDescriptor {
122public:
123  MachineOpCode   Opcode;        // The opcode.
124  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
125  const char *    Name;          // Assembly language mnemonic for the opcode.
126  InstrSchedClass schedClass;    // enum  identifying instr sched class
127  unsigned        Flags;         // flags identifying machine instr class
128  unsigned        TSFlags;       // Target Specific Flag values
129  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
130  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
131  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
132
133  /// getOperandConstraint - Returns the value of the specific constraint if
134  /// it is set. Returns -1 if it is not set.
135  int getOperandConstraint(unsigned OpNum,
136                           TOI::OperandConstraint Constraint) const {
137    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
138           "Invalid operand # of TargetInstrInfo");
139    if (OpNum < numOperands &&
140        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
141      unsigned Pos = 16 + Constraint * 4;
142      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
143    }
144    return -1;
145  }
146
147  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
148  /// dest operand. Returns -1 if there isn't one.
149  int findTiedToSrcOperand(unsigned OpNum) const;
150};
151
152
153//---------------------------------------------------------------------------
154///
155/// TargetInstrInfo - Interface to description of machine instructions
156///
157class TargetInstrInfo {
158  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
159  unsigned NumOpcodes;                  // number of entries in the desc array
160  unsigned numRealOpCodes;              // number of non-dummy op codes
161
162  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
163  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
164public:
165  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
166  virtual ~TargetInstrInfo();
167
168  // Invariant opcodes: All instruction sets have these as their low opcodes.
169  enum {
170    PHI = 0,
171    INLINEASM = 1,
172    LABEL = 2
173  };
174
175  unsigned getNumOpcodes() const { return NumOpcodes; }
176
177  /// get - Return the machine instruction descriptor that corresponds to the
178  /// specified instruction opcode.
179  ///
180  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
181    assert((unsigned)Opcode < NumOpcodes);
182    return desc[Opcode];
183  }
184
185  const char *getName(MachineOpCode Opcode) const {
186    return get(Opcode).Name;
187  }
188
189  int getNumOperands(MachineOpCode Opcode) const {
190    return get(Opcode).numOperands;
191  }
192
193  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
194    return get(Opcode).schedClass;
195  }
196
197  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
198    return get(Opcode).ImplicitUses;
199  }
200
201  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
202    return get(Opcode).ImplicitDefs;
203  }
204
205
206  //
207  // Query instruction class flags according to the machine-independent
208  // flags listed above.
209  //
210  bool isReturn(MachineOpCode Opcode) const {
211    return get(Opcode).Flags & M_RET_FLAG;
212  }
213
214  bool isCommutableInstr(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_COMMUTABLE;
216  }
217  bool isTerminatorInstr(MachineOpCode Opcode) const {
218    return get(Opcode).Flags & M_TERMINATOR_FLAG;
219  }
220
221  bool isBranch(MachineOpCode Opcode) const {
222    return get(Opcode).Flags & M_BRANCH_FLAG;
223  }
224
225  /// isBarrier - Returns true if the specified instruction stops control flow
226  /// from executing the instruction immediately following it.  Examples include
227  /// unconditional branches and return instructions.
228  bool isBarrier(MachineOpCode Opcode) const {
229    return get(Opcode).Flags & M_BARRIER_FLAG;
230  }
231
232  bool isCall(MachineOpCode Opcode) const {
233    return get(Opcode).Flags & M_CALL_FLAG;
234  }
235  bool isLoad(MachineOpCode Opcode) const {
236    return get(Opcode).Flags & M_LOAD_FLAG;
237  }
238  bool isStore(MachineOpCode Opcode) const {
239    return get(Opcode).Flags & M_STORE_FLAG;
240  }
241
242  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
243  /// which must be filled by the code generator.
244  bool hasDelaySlot(MachineOpCode Opcode) const {
245    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
246  }
247
248  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
249  /// custom insertion support when the DAG scheduler is inserting it into a
250  /// machine basic block.
251  bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const {
252    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
253  }
254
255  bool hasVariableOperands(MachineOpCode Opcode) const {
256    return get(Opcode).Flags & M_VARIABLE_OPS;
257  }
258
259  bool isPredicable(MachineOpCode Opcode) const {
260    return get(Opcode).Flags & M_PREDICABLE;
261  }
262
263  bool clobbersPredicate(MachineOpCode Opcode) const {
264    return get(Opcode).Flags & M_CLOBBERS_PRED;
265  }
266
267  bool isNotDuplicable(MachineOpCode Opcode) const {
268    return get(Opcode).Flags & M_NOT_DUPLICABLE;
269  }
270
271  /// getOperandConstraint - Returns the value of the specific constraint if
272  /// it is set. Returns -1 if it is not set.
273  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
274                           TOI::OperandConstraint Constraint) const {
275    return get(Opcode).getOperandConstraint(OpNum, Constraint);
276  }
277
278  /// Return true if the instruction is a register to register move
279  /// and leave the source and dest operands in the passed parameters.
280  virtual bool isMoveInstr(const MachineInstr& MI,
281                           unsigned& sourceReg,
282                           unsigned& destReg) const {
283    return false;
284  }
285
286  /// isLoadFromStackSlot - If the specified machine instruction is a direct
287  /// load from a stack slot, return the virtual or physical register number of
288  /// the destination along with the FrameIndex of the loaded stack slot.  If
289  /// not, return 0.  This predicate must return 0 if the instruction has
290  /// any side effects other than loading from the stack slot.
291  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
292    return 0;
293  }
294
295  /// isStoreToStackSlot - If the specified machine instruction is a direct
296  /// store to a stack slot, return the virtual or physical register number of
297  /// the source reg along with the FrameIndex of the loaded stack slot.  If
298  /// not, return 0.  This predicate must return 0 if the instruction has
299  /// any side effects other than storing to the stack slot.
300  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
301    return 0;
302  }
303
304  /// isTriviallyReMaterializable - If the specified machine instruction can
305  /// be trivally re-materialized  at any time, e.g. constant generation or
306  /// loads from constant pools. If not, return false.  This predicate must
307  /// return false if the instruction has any side effects other than
308  /// producing the value from the load, or if it requres any address
309  /// registers that are not always available.
310  virtual bool isTriviallyReMaterializable(MachineInstr *MI) const {
311    return false;
312  }
313
314  /// convertToThreeAddress - This method must be implemented by targets that
315  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
316  /// may be able to convert a two-address instruction into one or moretrue
317  /// three-address instructions on demand.  This allows the X86 target (for
318  /// example) to convert ADD and SHL instructions into LEA instructions if they
319  /// would require register copies due to two-addressness.
320  ///
321  /// This method returns a null pointer if the transformation cannot be
322  /// performed, otherwise it returns the last new instruction.
323  ///
324  virtual MachineInstr *
325  convertToThreeAddress(MachineFunction::iterator &MFI,
326                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
327    return 0;
328  }
329
330  /// commuteInstruction - If a target has any instructions that are commutable,
331  /// but require converting to a different instruction or making non-trivial
332  /// changes to commute them, this method can overloaded to do this.  The
333  /// default implementation of this method simply swaps the first two operands
334  /// of MI and returns it.
335  ///
336  /// If a target wants to make more aggressive changes, they can construct and
337  /// return a new machine instruction.  If an instruction cannot commute, it
338  /// can also return null.
339  ///
340  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
341
342  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
343  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
344  /// implemented for a target).  Upon success, this returns false and returns
345  /// with the following information in various cases:
346  ///
347  /// 1. If this block ends with no branches (it just falls through to its succ)
348  ///    just return false, leaving TBB/FBB null.
349  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
350  ///    the destination block.
351  /// 3. If this block ends with an conditional branch and it falls through to
352  ///    an successor block, it sets TBB to be the branch destination block and a
353  ///    list of operands that evaluate the condition. These
354  ///    operands can be passed to other TargetInstrInfo methods to create new
355  ///    branches.
356  /// 4. If this block ends with an conditional branch and an unconditional
357  ///    block, it returns the 'true' destination in TBB, the 'false' destination
358  ///    in FBB, and a list of operands that evaluate the condition. These
359  ///    operands can be passed to other TargetInstrInfo methods to create new
360  ///    branches.
361  ///
362  /// Note that RemoveBranch and InsertBranch must be implemented to support
363  /// cases where this method returns success.
364  ///
365  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
366                             MachineBasicBlock *&FBB,
367                             std::vector<MachineOperand> &Cond) const {
368    return true;
369  }
370
371  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
372  /// this is only invoked in cases where AnalyzeBranch returns success. It
373  /// returns the number of instructions that were removed.
374  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
375    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
376    return 0;
377  }
378
379  /// InsertBranch - Insert a branch into the end of the specified
380  /// MachineBasicBlock.  This operands to this method are the same as those
381  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
382  /// returns success and when an unconditional branch (TBB is non-null, FBB is
383  /// null, Cond is empty) needs to be inserted. It returns the number of
384  /// instructions inserted.
385  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
386                            MachineBasicBlock *FBB,
387                            const std::vector<MachineOperand> &Cond) const {
388    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
389    return 0;
390  }
391
392  /// BlockHasNoFallThrough - Return true if the specified block does not
393  /// fall-through into its successor block.  This is primarily used when a
394  /// branch is unanalyzable.  It is useful for things like unconditional
395  /// indirect branches (jump tables).
396  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
397    return false;
398  }
399
400  /// ReverseBranchCondition - Reverses the branch condition of the specified
401  /// condition list, returning false on success and true if it cannot be
402  /// reversed.
403  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
404    return true;
405  }
406
407  /// insertNoop - Insert a noop into the instruction stream at the specified
408  /// point.
409  virtual void insertNoop(MachineBasicBlock &MBB,
410                          MachineBasicBlock::iterator MI) const {
411    assert(0 && "Target didn't implement insertNoop!");
412    abort();
413  }
414
415  /// isPredicated - Returns true if the instruction is already predicated.
416  ///
417  virtual bool isPredicated(const MachineInstr *MI) const {
418    return false;
419  }
420
421  /// isUnpredicatedTerminator - Returns true if the instruction is a
422  /// terminator instruction that has not been predicated.
423  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
424
425  /// PredicateInstruction - Convert the instruction into a predicated
426  /// instruction. It returns true if the operation was successful.
427  virtual
428  bool PredicateInstruction(MachineInstr *MI,
429                            const std::vector<MachineOperand> &Pred) const;
430
431  /// SubsumesPredicate - Returns true if the first specified predicate
432  /// subsumes the second, e.g. GE subsumes GT.
433  virtual
434  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
435                         const std::vector<MachineOperand> &Pred2) const {
436    return false;
437  }
438
439  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
440  /// values.
441  virtual const TargetRegisterClass *getPointerRegClass() const {
442    assert(0 && "Target didn't implement getPointerRegClass!");
443    abort();
444    return 0; // Must return a value in order to compile with VS 2005
445  }
446};
447
448} // End llvm namespace
449
450#endif
451