TargetInstrInfo.h revision a0792de66c8364d47b0a688c7f408efb7b10f31b
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class TargetRegisterClass;
33class TargetRegisterInfo;
34
35template<class T> class SmallVectorImpl;
36
37
38//---------------------------------------------------------------------------
39///
40/// TargetInstrInfo - Interface to description of machine instruction set
41///
42class TargetInstrInfo {
43  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
44  unsigned NumOpcodes;                // Number of entries in the desc array
45
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
50  virtual ~TargetInstrInfo();
51
52  unsigned getNumOpcodes() const { return NumOpcodes; }
53
54  /// get - Return the machine instruction descriptor that corresponds to the
55  /// specified instruction opcode.
56  ///
57  const TargetInstrDesc &get(unsigned Opcode) const {
58    assert(Opcode < NumOpcodes && "Invalid opcode!");
59    return Descriptors[Opcode];
60  }
61
62  /// isTriviallyReMaterializable - Return true if the instruction is trivially
63  /// rematerializable, meaning it has no side effects and requires no operands
64  /// that aren't always available.
65  bool isTriviallyReMaterializable(const MachineInstr *MI,
66                                   AliasAnalysis *AA = 0) const {
67    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
68           (MI->getDesc().isRematerializable() &&
69            (isReallyTriviallyReMaterializable(MI, AA) ||
70             isReallyTriviallyReMaterializableGeneric(MI, AA)));
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
76  /// specify whether the instruction is actually trivially rematerializable,
77  /// taking into consideration its operands. This predicate must return false
78  /// if the instruction has any side effects other than producing a value, or
79  /// if it requres any address registers that are not always available.
80  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
81                                                 AliasAnalysis *AA) const {
82    return false;
83  }
84
85private:
86  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
87  /// for which the M_REMATERIALIZABLE flag is set and the target hook
88  /// isReallyTriviallyReMaterializable returns false, this function does
89  /// target-independent tests to determine if the instruction is really
90  /// trivially rematerializable.
91  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
92                                                AliasAnalysis *AA) const;
93
94public:
95  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
96  /// extension instruction. That is, it's like a copy where it's legal for the
97  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
98  /// true, then it's expected the pre-extension value is available as a subreg
99  /// of the result register. This also returns the sub-register index in
100  /// SubIdx.
101  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
102                                     unsigned &SrcReg, unsigned &DstReg,
103                                     unsigned &SubIdx) const {
104    return false;
105  }
106
107  /// isLoadFromStackSlot - If the specified machine instruction is a direct
108  /// load from a stack slot, return the virtual or physical register number of
109  /// the destination along with the FrameIndex of the loaded stack slot.  If
110  /// not, return 0.  This predicate must return 0 if the instruction has
111  /// any side effects other than loading from the stack slot.
112  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
113                                       int &FrameIndex) const {
114    return 0;
115  }
116
117  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
118  /// stack locations as well.  This uses a heuristic so it isn't
119  /// reliable for correctness.
120  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
121                                             int &FrameIndex) const {
122    return 0;
123  }
124
125  /// hasLoadFromStackSlot - If the specified machine instruction has
126  /// a load from a stack slot, return true along with the FrameIndex
127  /// of the loaded stack slot and the machine mem operand containing
128  /// the reference.  If not, return false.  Unlike
129  /// isLoadFromStackSlot, this returns true for any instructions that
130  /// loads from the stack.  This is just a hint, as some cases may be
131  /// missed.
132  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
133                                    const MachineMemOperand *&MMO,
134                                    int &FrameIndex) const {
135    return 0;
136  }
137
138  /// isStoreToStackSlot - If the specified machine instruction is a direct
139  /// store to a stack slot, return the virtual or physical register number of
140  /// the source reg along with the FrameIndex of the loaded stack slot.  If
141  /// not, return 0.  This predicate must return 0 if the instruction has
142  /// any side effects other than storing to the stack slot.
143  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
144                                      int &FrameIndex) const {
145    return 0;
146  }
147
148  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
149  /// stack locations as well.  This uses a heuristic so it isn't
150  /// reliable for correctness.
151  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
152                                            int &FrameIndex) const {
153    return 0;
154  }
155
156  /// hasStoreToStackSlot - If the specified machine instruction has a
157  /// store to a stack slot, return true along with the FrameIndex of
158  /// the loaded stack slot and the machine mem operand containing the
159  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
160  /// this returns true for any instructions that stores to the
161  /// stack.  This is just a hint, as some cases may be missed.
162  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
163                                   const MachineMemOperand *&MMO,
164                                   int &FrameIndex) const {
165    return 0;
166  }
167
168  /// reMaterialize - Re-issue the specified 'original' instruction at the
169  /// specific location targeting a new destination register.
170  /// The register in Orig->getOperand(0).getReg() will be substituted by
171  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
172  /// SubIdx.
173  virtual void reMaterialize(MachineBasicBlock &MBB,
174                             MachineBasicBlock::iterator MI,
175                             unsigned DestReg, unsigned SubIdx,
176                             const MachineInstr *Orig,
177                             const TargetRegisterInfo &TRI) const = 0;
178
179  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
180  /// two-addrss instruction inserted by two-address pass.
181  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
182                                     MachineInstr *UseMI,
183                                     const TargetRegisterInfo &TRI) const {
184    // Do nothing.
185  }
186
187  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
188  /// MachineFunction::CloneMachineInstr(), but the target may update operands
189  /// that are required to be unique.
190  ///
191  /// The instruction must be duplicable as indicated by isNotDuplicable().
192  virtual MachineInstr *duplicate(MachineInstr *Orig,
193                                  MachineFunction &MF) const = 0;
194
195  /// convertToThreeAddress - This method must be implemented by targets that
196  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
197  /// may be able to convert a two-address instruction into one or more true
198  /// three-address instructions on demand.  This allows the X86 target (for
199  /// example) to convert ADD and SHL instructions into LEA instructions if they
200  /// would require register copies due to two-addressness.
201  ///
202  /// This method returns a null pointer if the transformation cannot be
203  /// performed, otherwise it returns the last new instruction.
204  ///
205  virtual MachineInstr *
206  convertToThreeAddress(MachineFunction::iterator &MFI,
207                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
208    return 0;
209  }
210
211  /// commuteInstruction - If a target has any instructions that are
212  /// commutable but require converting to different instructions or making
213  /// non-trivial changes to commute them, this method can overloaded to do
214  /// that.  The default implementation simply swaps the commutable operands.
215  /// If NewMI is false, MI is modified in place and returned; otherwise, a
216  /// new machine instruction is created and returned.  Do not call this
217  /// method for a non-commutable instruction, but there may be some cases
218  /// where this method fails and returns null.
219  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                           bool NewMI = false) const = 0;
221
222  /// findCommutedOpIndices - If specified MI is commutable, return the two
223  /// operand indices that would swap value. Return false if the instruction
224  /// is not in a form which this routine understands.
225  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                     unsigned &SrcOpIdx2) const = 0;
227
228  /// produceSameValue - Return true if two machine instructions would produce
229  /// identical values. By default, this is only true when the two instructions
230  /// are deemed identical except for defs.
231  virtual bool produceSameValue(const MachineInstr *MI0,
232                                const MachineInstr *MI1) const = 0;
233
234  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
235  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
236  /// implemented for a target).  Upon success, this returns false and returns
237  /// with the following information in various cases:
238  ///
239  /// 1. If this block ends with no branches (it just falls through to its succ)
240  ///    just return false, leaving TBB/FBB null.
241  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
242  ///    the destination block.
243  /// 3. If this block ends with a conditional branch and it falls through to a
244  ///    successor block, it sets TBB to be the branch destination block and a
245  ///    list of operands that evaluate the condition. These operands can be
246  ///    passed to other TargetInstrInfo methods to create new branches.
247  /// 4. If this block ends with a conditional branch followed by an
248  ///    unconditional branch, it returns the 'true' destination in TBB, the
249  ///    'false' destination in FBB, and a list of operands that evaluate the
250  ///    condition.  These operands can be passed to other TargetInstrInfo
251  ///    methods to create new branches.
252  ///
253  /// Note that RemoveBranch and InsertBranch must be implemented to support
254  /// cases where this method returns success.
255  ///
256  /// If AllowModify is true, then this routine is allowed to modify the basic
257  /// block (e.g. delete instructions after the unconditional branch).
258  ///
259  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
260                             MachineBasicBlock *&FBB,
261                             SmallVectorImpl<MachineOperand> &Cond,
262                             bool AllowModify = false) const {
263    return true;
264  }
265
266  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
267  /// This is only invoked in cases where AnalyzeBranch returns success. It
268  /// returns the number of instructions that were removed.
269  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
270    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
271    return 0;
272  }
273
274  /// InsertBranch - Insert branch code into the end of the specified
275  /// MachineBasicBlock.  The operands to this method are the same as those
276  /// returned by AnalyzeBranch.  This is only invoked in cases where
277  /// AnalyzeBranch returns success. It returns the number of instructions
278  /// inserted.
279  ///
280  /// It is also invoked by tail merging to add unconditional branches in
281  /// cases where AnalyzeBranch doesn't apply because there was no original
282  /// branch to analyze.  At least this much must be implemented, else tail
283  /// merging needs to be disabled.
284  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
285                                MachineBasicBlock *FBB,
286                                const SmallVectorImpl<MachineOperand> &Cond,
287                                DebugLoc DL) const {
288    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
289    return 0;
290  }
291
292  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
293  /// after it, replacing it with an unconditional branch to NewDest. This is
294  /// used by the tail merging pass.
295  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
296                                       MachineBasicBlock *NewDest) const = 0;
297
298  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
299  /// block at the specified instruction (i.e. instruction would be the start
300  /// of a new basic block).
301  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
302                                   MachineBasicBlock::iterator MBBI) const {
303    return true;
304  }
305
306  /// isProfitableToIfCvt - Return true if it's profitable to first "NumInstrs"
307  /// of the specified basic block, where the probability of the instructions
308  /// being executed is given by Probability, and Confidence is a measure
309  /// of our confidence that it will be properly predicted.
310  virtual
311  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumInstrs,
312                           float Probability, float Confidence) const {
313    return false;
314  }
315
316  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
317  /// checks for the case where two basic blocks from true and false path
318  /// of a if-then-else (diamond) are predicated on mutally exclusive
319  /// predicates, where the probability of the true path being taken is given
320  /// by Probability, and Confidence is a measure of our confidence that it
321  /// will be properly predicted.
322  virtual bool
323  isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTInstrs,
324                      MachineBasicBlock &FMBB, unsigned NumFInstrs,
325                      float Probability, float Confidence) const {
326    return false;
327  }
328
329  /// isProfitableToDupForIfCvt - Return true if it's profitable for
330  /// if-converter to duplicate a specific number of instructions in the
331  /// specified MBB to enable if-conversion, where the probability of the
332  /// instructions being executed is given by Probability, and Confidence is
333  /// a measure of our confidence that it will be properly predicted.
334  virtual bool
335  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumInstrs,
336                            float Probability, float Confidence) const {
337    return false;
338  }
339
340  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
341  virtual void copyPhysReg(MachineBasicBlock &MBB,
342                           MachineBasicBlock::iterator MI, DebugLoc DL,
343                           unsigned DestReg, unsigned SrcReg,
344                           bool KillSrc) const {
345    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
346  }
347
348  /// storeRegToStackSlot - Store the specified register of the given register
349  /// class to the specified stack frame index. The store instruction is to be
350  /// added to the given machine basic block before the specified machine
351  /// instruction. If isKill is true, the register operand is the last use and
352  /// must be marked kill.
353  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
354                                   MachineBasicBlock::iterator MI,
355                                   unsigned SrcReg, bool isKill, int FrameIndex,
356                                   const TargetRegisterClass *RC,
357                                   const TargetRegisterInfo *TRI) const {
358  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
359  }
360
361  /// loadRegFromStackSlot - Load the specified register of the given register
362  /// class from the specified stack frame index. The load instruction is to be
363  /// added to the given machine basic block before the specified machine
364  /// instruction.
365  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
366                                    MachineBasicBlock::iterator MI,
367                                    unsigned DestReg, int FrameIndex,
368                                    const TargetRegisterClass *RC,
369                                    const TargetRegisterInfo *TRI) const {
370  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
371  }
372
373  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
374  /// saved registers and returns true if it isn't possible / profitable to do
375  /// so by issuing a series of store instructions via
376  /// storeRegToStackSlot(). Returns false otherwise.
377  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
378                                         MachineBasicBlock::iterator MI,
379                                        const std::vector<CalleeSavedInfo> &CSI,
380                                         const TargetRegisterInfo *TRI) const {
381    return false;
382  }
383
384  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
385  /// saved registers and returns true if it isn't possible / profitable to do
386  /// so by issuing a series of load instructions via loadRegToStackSlot().
387  /// Returns false otherwise.
388  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
389                                           MachineBasicBlock::iterator MI,
390                                        const std::vector<CalleeSavedInfo> &CSI,
391                                        const TargetRegisterInfo *TRI) const {
392    return false;
393  }
394
395  /// emitFrameIndexDebugValue - Emit a target-dependent form of
396  /// DBG_VALUE encoding the address of a frame index.  Addresses would
397  /// normally be lowered the same way as other addresses on the target,
398  /// e.g. in load instructions.  For targets that do not support this
399  /// the debug info is simply lost.
400  /// If you add this for a target you should handle this DBG_VALUE in the
401  /// target-specific AsmPrinter code as well; you will probably get invalid
402  /// assembly output if you don't.
403  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
404                                                 int FrameIx,
405                                                 uint64_t Offset,
406                                                 const MDNode *MDPtr,
407                                                 DebugLoc dl) const {
408    return 0;
409  }
410
411  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
412  /// slot into the specified machine instruction for the specified operand(s).
413  /// If this is possible, a new instruction is returned with the specified
414  /// operand folded, otherwise NULL is returned.
415  /// The new instruction is inserted before MI, and the client is responsible
416  /// for removing the old instruction.
417  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
418                                  const SmallVectorImpl<unsigned> &Ops,
419                                  int FrameIndex) const;
420
421  /// foldMemoryOperand - Same as the previous version except it allows folding
422  /// of any load and store from / to any address, not just from a specific
423  /// stack slot.
424  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
425                                  const SmallVectorImpl<unsigned> &Ops,
426                                  MachineInstr* LoadMI) const;
427
428protected:
429  /// foldMemoryOperandImpl - Target-dependent implementation for
430  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
431  /// take care of adding a MachineMemOperand to the newly created instruction.
432  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
433                                          MachineInstr* MI,
434                                          const SmallVectorImpl<unsigned> &Ops,
435                                          int FrameIndex) const {
436    return 0;
437  }
438
439  /// foldMemoryOperandImpl - Target-dependent implementation for
440  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
441  /// take care of adding a MachineMemOperand to the newly created instruction.
442  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
443                                              MachineInstr* MI,
444                                          const SmallVectorImpl<unsigned> &Ops,
445                                              MachineInstr* LoadMI) const {
446    return 0;
447  }
448
449public:
450  /// canFoldMemoryOperand - Returns true for the specified load / store if
451  /// folding is possible.
452  virtual
453  bool canFoldMemoryOperand(const MachineInstr *MI,
454                            const SmallVectorImpl<unsigned> &Ops) const =0;
455
456  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
457  /// a store or a load and a store into two or more instruction. If this is
458  /// possible, returns true as well as the new instructions by reference.
459  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
460                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
461                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
462    return false;
463  }
464
465  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
466                                   SmallVectorImpl<SDNode*> &NewNodes) const {
467    return false;
468  }
469
470  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
471  /// instruction after load / store are unfolded from an instruction of the
472  /// specified opcode. It returns zero if the specified unfolding is not
473  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
474  /// index of the operand which will hold the register holding the loaded
475  /// value.
476  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
477                                      bool UnfoldLoad, bool UnfoldStore,
478                                      unsigned *LoadRegIndex = 0) const {
479    return 0;
480  }
481
482  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
483  /// to determine if two loads are loading from the same base address. It
484  /// should only return true if the base pointers are the same and the
485  /// only differences between the two addresses are the offset. It also returns
486  /// the offsets by reference.
487  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
488                                    int64_t &Offset1, int64_t &Offset2) const {
489    return false;
490  }
491
492  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
493  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
494  /// be scheduled togther. On some targets if two loads are loading from
495  /// addresses in the same cache line, it's better if they are scheduled
496  /// together. This function takes two integers that represent the load offsets
497  /// from the common base address. It returns true if it decides it's desirable
498  /// to schedule the two loads together. "NumLoads" is the number of loads that
499  /// have already been scheduled after Load1.
500  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
501                                       int64_t Offset1, int64_t Offset2,
502                                       unsigned NumLoads) const {
503    return false;
504  }
505
506  /// ReverseBranchCondition - Reverses the branch condition of the specified
507  /// condition list, returning false on success and true if it cannot be
508  /// reversed.
509  virtual
510  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
511    return true;
512  }
513
514  /// insertNoop - Insert a noop into the instruction stream at the specified
515  /// point.
516  virtual void insertNoop(MachineBasicBlock &MBB,
517                          MachineBasicBlock::iterator MI) const;
518
519
520  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
521  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
522    // Default to just using 'nop' string.
523  }
524
525
526  /// isPredicated - Returns true if the instruction is already predicated.
527  ///
528  virtual bool isPredicated(const MachineInstr *MI) const {
529    return false;
530  }
531
532  /// isUnpredicatedTerminator - Returns true if the instruction is a
533  /// terminator instruction that has not been predicated.
534  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
535
536  /// PredicateInstruction - Convert the instruction into a predicated
537  /// instruction. It returns true if the operation was successful.
538  virtual
539  bool PredicateInstruction(MachineInstr *MI,
540                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
541
542  /// SubsumesPredicate - Returns true if the first specified predicate
543  /// subsumes the second, e.g. GE subsumes GT.
544  virtual
545  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
546                         const SmallVectorImpl<MachineOperand> &Pred2) const {
547    return false;
548  }
549
550  /// DefinesPredicate - If the specified instruction defines any predicate
551  /// or condition code register(s) used for predication, returns true as well
552  /// as the definition predicate(s) by reference.
553  virtual bool DefinesPredicate(MachineInstr *MI,
554                                std::vector<MachineOperand> &Pred) const {
555    return false;
556  }
557
558  /// isPredicable - Return true if the specified instruction can be predicated.
559  /// By default, this returns true for every instruction with a
560  /// PredicateOperand.
561  virtual bool isPredicable(MachineInstr *MI) const {
562    return MI->getDesc().isPredicable();
563  }
564
565  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
566  /// instruction that defines the specified register class.
567  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
568    return true;
569  }
570
571  /// isSchedulingBoundary - Test if the given instruction should be
572  /// considered a scheduling boundary. This primarily includes labels and
573  /// terminators.
574  virtual bool isSchedulingBoundary(const MachineInstr *MI,
575                                    const MachineBasicBlock *MBB,
576                                    const MachineFunction &MF) const = 0;
577
578  /// Measure the specified inline asm to determine an approximation of its
579  /// length.
580  virtual unsigned getInlineAsmLength(const char *Str,
581                                      const MCAsmInfo &MAI) const;
582
583  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
584  /// to use for this target when scheduling the machine instructions after
585  /// register allocation.
586  virtual ScheduleHazardRecognizer*
587  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const = 0;
588
589  /// AnalyzeCompare - For a comparison instruction, return the source register
590  /// in SrcReg and the value it compares against in CmpValue. Return true if
591  /// the comparison instruction can be analyzed.
592  virtual bool AnalyzeCompare(const MachineInstr *MI,
593                              unsigned &SrcReg, int &Mask, int &Value) const {
594    return false;
595  }
596
597  /// OptimizeCompareInstr - See if the comparison instruction can be converted
598  /// into something more efficient. E.g., on ARM most instructions can set the
599  /// flags register, obviating the need for a separate CMP. Update the iterator
600  /// *only* if a transformation took place.
601  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
602                                    unsigned SrcReg, int Mask, int Value,
603                                    MachineBasicBlock::iterator &) const {
604    return false;
605  }
606
607  /// getNumMicroOps - Return the number of u-operations the given machine
608  /// instruction will be decoded to on the target cpu.
609  virtual unsigned getNumMicroOps(const MachineInstr *MI,
610                                  const InstrItineraryData *ItinData) const;
611
612  /// getOperandLatency - Compute and return the use operand latency of a given
613  /// itinerary class and operand index if the value is produced by an
614  /// instruction of the specified itinerary class and def operand index.
615  /// In most cases, the static scheduling itinerary was enough to determine the
616  /// operand latency. But it may not be possible for instructions with variable
617  /// number of defs / uses.
618  virtual
619  int getOperandLatency(const InstrItineraryData *ItinData,
620                        const MachineInstr *DefMI, unsigned DefIdx,
621                        const MachineInstr *UseMI, unsigned UseIdx) const;
622
623  virtual
624  int getOperandLatency(const InstrItineraryData *ItinData,
625                        SDNode *DefNode, unsigned DefIdx,
626                        SDNode *UseNode, unsigned UseIdx) const;
627};
628
629/// TargetInstrInfoImpl - This is the default implementation of
630/// TargetInstrInfo, which just provides a couple of default implementations
631/// for various methods.  This separated out because it is implemented in
632/// libcodegen, not in libtarget.
633class TargetInstrInfoImpl : public TargetInstrInfo {
634protected:
635  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
636  : TargetInstrInfo(desc, NumOpcodes) {}
637public:
638  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
639                                       MachineBasicBlock *NewDest) const;
640  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
641                                           bool NewMI = false) const;
642  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
643                                     unsigned &SrcOpIdx2) const;
644  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
645                                    const SmallVectorImpl<unsigned> &Ops) const;
646  virtual bool PredicateInstruction(MachineInstr *MI,
647                            const SmallVectorImpl<MachineOperand> &Pred) const;
648  virtual void reMaterialize(MachineBasicBlock &MBB,
649                             MachineBasicBlock::iterator MI,
650                             unsigned DestReg, unsigned SubReg,
651                             const MachineInstr *Orig,
652                             const TargetRegisterInfo &TRI) const;
653  virtual MachineInstr *duplicate(MachineInstr *Orig,
654                                  MachineFunction &MF) const;
655  virtual bool produceSameValue(const MachineInstr *MI0,
656                                const MachineInstr *MI1) const;
657  virtual bool isSchedulingBoundary(const MachineInstr *MI,
658                                    const MachineBasicBlock *MBB,
659                                    const MachineFunction &MF) const;
660
661  virtual ScheduleHazardRecognizer *
662  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const;
663};
664
665} // End llvm namespace
666
667#endif
668