TargetInstrInfo.h revision a9fa4fd9736f7d1066223f32fa54efbe86c0fceb
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/MC/MCInstrInfo.h"
19#include "llvm/CodeGen/DFAPacketizer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
49  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = 0) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const;
147
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot.  If
151  /// not, return 0.  This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                      int &FrameIndex) const {
155    return 0;
156  }
157
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well.  This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                            int &FrameIndex) const {
163    return 0;
164  }
165
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack.  This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                   const MachineMemOperand *&MMO,
174                                   int &FrameIndex) const;
175
176  /// reMaterialize - Re-issue the specified 'original' instruction at the
177  /// specific location targeting a new destination register.
178  /// The register in Orig->getOperand(0).getReg() will be substituted by
179  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
180  /// SubIdx.
181  virtual void reMaterialize(MachineBasicBlock &MBB,
182                             MachineBasicBlock::iterator MI,
183                             unsigned DestReg, unsigned SubIdx,
184                             const MachineInstr *Orig,
185                             const TargetRegisterInfo &TRI) const;
186
187  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
188  /// MachineFunction::CloneMachineInstr(), but the target may update operands
189  /// that are required to be unique.
190  ///
191  /// The instruction must be duplicable as indicated by isNotDuplicable().
192  virtual MachineInstr *duplicate(MachineInstr *Orig,
193                                  MachineFunction &MF) const;
194
195  /// convertToThreeAddress - This method must be implemented by targets that
196  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
197  /// may be able to convert a two-address instruction into one or more true
198  /// three-address instructions on demand.  This allows the X86 target (for
199  /// example) to convert ADD and SHL instructions into LEA instructions if they
200  /// would require register copies due to two-addressness.
201  ///
202  /// This method returns a null pointer if the transformation cannot be
203  /// performed, otherwise it returns the last new instruction.
204  ///
205  virtual MachineInstr *
206  convertToThreeAddress(MachineFunction::iterator &MFI,
207                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
208    return 0;
209  }
210
211  /// commuteInstruction - If a target has any instructions that are
212  /// commutable but require converting to different instructions or making
213  /// non-trivial changes to commute them, this method can overloaded to do
214  /// that.  The default implementation simply swaps the commutable operands.
215  /// If NewMI is false, MI is modified in place and returned; otherwise, a
216  /// new machine instruction is created and returned.  Do not call this
217  /// method for a non-commutable instruction, but there may be some cases
218  /// where this method fails and returns null.
219  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                           bool NewMI = false) const;
221
222  /// findCommutedOpIndices - If specified MI is commutable, return the two
223  /// operand indices that would swap value. Return false if the instruction
224  /// is not in a form which this routine understands.
225  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                     unsigned &SrcOpIdx2) const;
227
228  /// produceSameValue - Return true if two machine instructions would produce
229  /// identical values. By default, this is only true when the two instructions
230  /// are deemed identical except for defs. If this function is called when the
231  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
232  /// aggressive checks.
233  virtual bool produceSameValue(const MachineInstr *MI0,
234                                const MachineInstr *MI1,
235                                const MachineRegisterInfo *MRI = 0) const;
236
237  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
238  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
239  /// implemented for a target).  Upon success, this returns false and returns
240  /// with the following information in various cases:
241  ///
242  /// 1. If this block ends with no branches (it just falls through to its succ)
243  ///    just return false, leaving TBB/FBB null.
244  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
245  ///    the destination block.
246  /// 3. If this block ends with a conditional branch and it falls through to a
247  ///    successor block, it sets TBB to be the branch destination block and a
248  ///    list of operands that evaluate the condition. These operands can be
249  ///    passed to other TargetInstrInfo methods to create new branches.
250  /// 4. If this block ends with a conditional branch followed by an
251  ///    unconditional branch, it returns the 'true' destination in TBB, the
252  ///    'false' destination in FBB, and a list of operands that evaluate the
253  ///    condition.  These operands can be passed to other TargetInstrInfo
254  ///    methods to create new branches.
255  ///
256  /// Note that RemoveBranch and InsertBranch must be implemented to support
257  /// cases where this method returns success.
258  ///
259  /// If AllowModify is true, then this routine is allowed to modify the basic
260  /// block (e.g. delete instructions after the unconditional branch).
261  ///
262  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
263                             MachineBasicBlock *&FBB,
264                             SmallVectorImpl<MachineOperand> &Cond,
265                             bool AllowModify = false) const {
266    return true;
267  }
268
269  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
270  /// This is only invoked in cases where AnalyzeBranch returns success. It
271  /// returns the number of instructions that were removed.
272  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
273    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
274  }
275
276  /// InsertBranch - Insert branch code into the end of the specified
277  /// MachineBasicBlock.  The operands to this method are the same as those
278  /// returned by AnalyzeBranch.  This is only invoked in cases where
279  /// AnalyzeBranch returns success. It returns the number of instructions
280  /// inserted.
281  ///
282  /// It is also invoked by tail merging to add unconditional branches in
283  /// cases where AnalyzeBranch doesn't apply because there was no original
284  /// branch to analyze.  At least this much must be implemented, else tail
285  /// merging needs to be disabled.
286  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
287                                MachineBasicBlock *FBB,
288                                const SmallVectorImpl<MachineOperand> &Cond,
289                                DebugLoc DL) const {
290    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
291  }
292
293  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
294  /// after it, replacing it with an unconditional branch to NewDest. This is
295  /// used by the tail merging pass.
296  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
297                                       MachineBasicBlock *NewDest) const;
298
299  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
300  /// block at the specified instruction (i.e. instruction would be the start
301  /// of a new basic block).
302  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
303                                   MachineBasicBlock::iterator MBBI) const {
304    return true;
305  }
306
307  /// isProfitableToIfCvt - Return true if it's profitable to predicate
308  /// instructions with accumulated instruction latency of "NumCycles"
309  /// of the specified basic block, where the probability of the instructions
310  /// being executed is given by Probability, and Confidence is a measure
311  /// of our confidence that it will be properly predicted.
312  virtual
313  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
314                           unsigned ExtraPredCycles,
315                           const BranchProbability &Probability) const {
316    return false;
317  }
318
319  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
320  /// checks for the case where two basic blocks from true and false path
321  /// of a if-then-else (diamond) are predicated on mutally exclusive
322  /// predicates, where the probability of the true path being taken is given
323  /// by Probability, and Confidence is a measure of our confidence that it
324  /// will be properly predicted.
325  virtual bool
326  isProfitableToIfCvt(MachineBasicBlock &TMBB,
327                      unsigned NumTCycles, unsigned ExtraTCycles,
328                      MachineBasicBlock &FMBB,
329                      unsigned NumFCycles, unsigned ExtraFCycles,
330                      const BranchProbability &Probability) const {
331    return false;
332  }
333
334  /// isProfitableToDupForIfCvt - Return true if it's profitable for
335  /// if-converter to duplicate instructions of specified accumulated
336  /// instruction latencies in the specified MBB to enable if-conversion.
337  /// The probability of the instructions being executed is given by
338  /// Probability, and Confidence is a measure of our confidence that it
339  /// will be properly predicted.
340  virtual bool
341  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
342                            const BranchProbability &Probability) const {
343    return false;
344  }
345
346  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
347  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
348  /// exclusive predicates.
349  /// e.g.
350  ///   subeq  r0, r1, #1
351  ///   addne  r0, r1, #1
352  /// =>
353  ///   sub    r0, r1, #1
354  ///   addne  r0, r1, #1
355  ///
356  /// This may be profitable is conditional instructions are always executed.
357  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
358                                         MachineBasicBlock &FMBB) const {
359    return false;
360  }
361
362  /// canInsertSelect - Return true if it is possible to insert a select
363  /// instruction that chooses between TrueReg and FalseReg based on the
364  /// condition code in Cond.
365  ///
366  /// When successful, also return the latency in cycles from TrueReg,
367  /// FalseReg, and Cond to the destination register. The Cond latency should
368  /// compensate for a conditional branch being removed. For example, if a
369  /// conditional branch has a 3 cycle latency from the condition code read,
370  /// and a cmov instruction has a 2 cycle latency from the condition code
371  /// read, CondCycles should be returned as -1.
372  ///
373  /// @param MBB         Block where select instruction would be inserted.
374  /// @param Cond        Condition returned by AnalyzeBranch.
375  /// @param TrueReg     Virtual register to select when Cond is true.
376  /// @param FalseReg    Virtual register to select when Cond is false.
377  /// @param CondCycles  Latency from Cond+Branch to select output.
378  /// @param TrueCycles  Latency from TrueReg to select output.
379  /// @param FalseCycles Latency from FalseReg to select output.
380  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
381                               const SmallVectorImpl<MachineOperand> &Cond,
382                               unsigned TrueReg, unsigned FalseReg,
383                               int &CondCycles,
384                               int &TrueCycles, int &FalseCycles) const {
385    return false;
386  }
387
388  /// insertSelect - Insert a select instruction into MBB before I that will
389  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
390  /// Cond is false.
391  ///
392  /// This function can only be called after canInsertSelect() returned true.
393  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
394  /// that the same flags or registers required by Cond are available at the
395  /// insertion point.
396  ///
397  /// @param MBB      Block where select instruction should be inserted.
398  /// @param I        Insertion point.
399  /// @param DL       Source location for debugging.
400  /// @param DstReg   Virtual register to be defined by select instruction.
401  /// @param Cond     Condition as computed by AnalyzeBranch.
402  /// @param TrueReg  Virtual register to copy when Cond is true.
403  /// @param FalseReg Virtual register to copy when Cons is false.
404  virtual void insertSelect(MachineBasicBlock &MBB,
405                            MachineBasicBlock::iterator I, DebugLoc DL,
406                            unsigned DstReg,
407                            const SmallVectorImpl<MachineOperand> &Cond,
408                            unsigned TrueReg, unsigned FalseReg) const {
409    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
410  }
411
412  /// analyzeSelect - Analyze the given select instruction, returning true if
413  /// it cannot be understood. It is assumed that MI->isSelect() is true.
414  ///
415  /// When successful, return the controlling condition and the operands that
416  /// determine the true and false result values.
417  ///
418  ///   Result = SELECT Cond, TrueOp, FalseOp
419  ///
420  /// Some targets can optimize select instructions, for example by predicating
421  /// the instruction defining one of the operands. Such targets should set
422  /// Optimizable.
423  ///
424  /// @param         MI Select instruction to analyze.
425  /// @param Cond    Condition controlling the select.
426  /// @param TrueOp  Operand number of the value selected when Cond is true.
427  /// @param FalseOp Operand number of the value selected when Cond is false.
428  /// @param Optimizable Returned as true if MI is optimizable.
429  /// @returns False on success.
430  virtual bool analyzeSelect(const MachineInstr *MI,
431                             SmallVectorImpl<MachineOperand> &Cond,
432                             unsigned &TrueOp, unsigned &FalseOp,
433                             bool &Optimizable) const {
434    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
435    return true;
436  }
437
438  /// optimizeSelect - Given a select instruction that was understood by
439  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
440  /// merging it with one of its operands. Returns NULL on failure.
441  ///
442  /// When successful, returns the new select instruction. The client is
443  /// responsible for deleting MI.
444  ///
445  /// If both sides of the select can be optimized, PreferFalse is used to pick
446  /// a side.
447  ///
448  /// @param MI          Optimizable select instruction.
449  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
450  /// @returns Optimized instruction or NULL.
451  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
452                                       bool PreferFalse = false) const {
453    // This function must be implemented if Optimizable is ever set.
454    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
455  }
456
457  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
458  ///
459  /// This function should support copies within any legal register class as
460  /// well as any cross-class copies created during instruction selection.
461  ///
462  /// The source and destination registers may overlap, which may require a
463  /// careful implementation when multiple copy instructions are required for
464  /// large registers. See for example the ARM target.
465  virtual void copyPhysReg(MachineBasicBlock &MBB,
466                           MachineBasicBlock::iterator MI, DebugLoc DL,
467                           unsigned DestReg, unsigned SrcReg,
468                           bool KillSrc) const {
469    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
470  }
471
472  /// storeRegToStackSlot - Store the specified register of the given register
473  /// class to the specified stack frame index. The store instruction is to be
474  /// added to the given machine basic block before the specified machine
475  /// instruction. If isKill is true, the register operand is the last use and
476  /// must be marked kill.
477  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
478                                   MachineBasicBlock::iterator MI,
479                                   unsigned SrcReg, bool isKill, int FrameIndex,
480                                   const TargetRegisterClass *RC,
481                                   const TargetRegisterInfo *TRI) const {
482    llvm_unreachable("Target didn't implement "
483                     "TargetInstrInfo::storeRegToStackSlot!");
484  }
485
486  /// loadRegFromStackSlot - Load the specified register of the given register
487  /// class from the specified stack frame index. The load instruction is to be
488  /// added to the given machine basic block before the specified machine
489  /// instruction.
490  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
491                                    MachineBasicBlock::iterator MI,
492                                    unsigned DestReg, int FrameIndex,
493                                    const TargetRegisterClass *RC,
494                                    const TargetRegisterInfo *TRI) const {
495    llvm_unreachable("Target didn't implement "
496                     "TargetInstrInfo::loadRegFromStackSlot!");
497  }
498
499  /// expandPostRAPseudo - This function is called for all pseudo instructions
500  /// that remain after register allocation. Many pseudo instructions are
501  /// created to help register allocation. This is the place to convert them
502  /// into real instructions. The target can edit MI in place, or it can insert
503  /// new instructions and erase MI. The function should return true if
504  /// anything was changed.
505  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
506    return false;
507  }
508
509  /// emitFrameIndexDebugValue - Emit a target-dependent form of
510  /// DBG_VALUE encoding the address of a frame index.  Addresses would
511  /// normally be lowered the same way as other addresses on the target,
512  /// e.g. in load instructions.  For targets that do not support this
513  /// the debug info is simply lost.
514  /// If you add this for a target you should handle this DBG_VALUE in the
515  /// target-specific AsmPrinter code as well; you will probably get invalid
516  /// assembly output if you don't.
517  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
518                                                 int FrameIx,
519                                                 uint64_t Offset,
520                                                 const MDNode *MDPtr,
521                                                 DebugLoc dl) const {
522    return 0;
523  }
524
525  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
526  /// slot into the specified machine instruction for the specified operand(s).
527  /// If this is possible, a new instruction is returned with the specified
528  /// operand folded, otherwise NULL is returned.
529  /// The new instruction is inserted before MI, and the client is responsible
530  /// for removing the old instruction.
531  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
532                                  const SmallVectorImpl<unsigned> &Ops,
533                                  int FrameIndex) const;
534
535  /// foldMemoryOperand - Same as the previous version except it allows folding
536  /// of any load and store from / to any address, not just from a specific
537  /// stack slot.
538  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
539                                  const SmallVectorImpl<unsigned> &Ops,
540                                  MachineInstr* LoadMI) const;
541
542protected:
543  /// foldMemoryOperandImpl - Target-dependent implementation for
544  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
545  /// take care of adding a MachineMemOperand to the newly created instruction.
546  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
547                                          MachineInstr* MI,
548                                          const SmallVectorImpl<unsigned> &Ops,
549                                          int FrameIndex) const {
550    return 0;
551  }
552
553  /// foldMemoryOperandImpl - Target-dependent implementation for
554  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
555  /// take care of adding a MachineMemOperand to the newly created instruction.
556  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
557                                              MachineInstr* MI,
558                                          const SmallVectorImpl<unsigned> &Ops,
559                                              MachineInstr* LoadMI) const {
560    return 0;
561  }
562
563public:
564  /// canFoldMemoryOperand - Returns true for the specified load / store if
565  /// folding is possible.
566  virtual
567  bool canFoldMemoryOperand(const MachineInstr *MI,
568                            const SmallVectorImpl<unsigned> &Ops) const;
569
570  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
571  /// a store or a load and a store into two or more instruction. If this is
572  /// possible, returns true as well as the new instructions by reference.
573  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
574                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
575                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
576    return false;
577  }
578
579  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
580                                   SmallVectorImpl<SDNode*> &NewNodes) const {
581    return false;
582  }
583
584  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
585  /// instruction after load / store are unfolded from an instruction of the
586  /// specified opcode. It returns zero if the specified unfolding is not
587  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
588  /// index of the operand which will hold the register holding the loaded
589  /// value.
590  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
591                                      bool UnfoldLoad, bool UnfoldStore,
592                                      unsigned *LoadRegIndex = 0) const {
593    return 0;
594  }
595
596  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
597  /// to determine if two loads are loading from the same base address. It
598  /// should only return true if the base pointers are the same and the
599  /// only differences between the two addresses are the offset. It also returns
600  /// the offsets by reference.
601  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
602                                    int64_t &Offset1, int64_t &Offset2) const {
603    return false;
604  }
605
606  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
607  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
608  /// be scheduled togther. On some targets if two loads are loading from
609  /// addresses in the same cache line, it's better if they are scheduled
610  /// together. This function takes two integers that represent the load offsets
611  /// from the common base address. It returns true if it decides it's desirable
612  /// to schedule the two loads together. "NumLoads" is the number of loads that
613  /// have already been scheduled after Load1.
614  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
615                                       int64_t Offset1, int64_t Offset2,
616                                       unsigned NumLoads) const {
617    return false;
618  }
619
620  /// \brief Get the base register and byte offset of a load/store instr.
621  virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
622                                    unsigned &BaseReg, unsigned &Offset,
623                                    const TargetRegisterInfo *TRI) const {
624    return false;
625  }
626
627  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
628                                  MachineInstr *SecondLdSt,
629                                  unsigned NumLoads) const {
630    return false;
631  }
632
633  /// \brief Can this target fuse the given instructions if they are scheduled
634  /// adjacent.
635  virtual bool shouldScheduleAdjacent(MachineInstr* First,
636                                      MachineInstr *Second) const {
637    return false;
638  }
639
640  /// ReverseBranchCondition - Reverses the branch condition of the specified
641  /// condition list, returning false on success and true if it cannot be
642  /// reversed.
643  virtual
644  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
645    return true;
646  }
647
648  /// insertNoop - Insert a noop into the instruction stream at the specified
649  /// point.
650  virtual void insertNoop(MachineBasicBlock &MBB,
651                          MachineBasicBlock::iterator MI) const;
652
653
654  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
655  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
656    // Default to just using 'nop' string.
657  }
658
659
660  /// isPredicated - Returns true if the instruction is already predicated.
661  ///
662  virtual bool isPredicated(const MachineInstr *MI) const {
663    return false;
664  }
665
666  /// isUnpredicatedTerminator - Returns true if the instruction is a
667  /// terminator instruction that has not been predicated.
668  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
669
670  /// PredicateInstruction - Convert the instruction into a predicated
671  /// instruction. It returns true if the operation was successful.
672  virtual
673  bool PredicateInstruction(MachineInstr *MI,
674                        const SmallVectorImpl<MachineOperand> &Pred) const;
675
676  /// SubsumesPredicate - Returns true if the first specified predicate
677  /// subsumes the second, e.g. GE subsumes GT.
678  virtual
679  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
680                         const SmallVectorImpl<MachineOperand> &Pred2) const {
681    return false;
682  }
683
684  /// DefinesPredicate - If the specified instruction defines any predicate
685  /// or condition code register(s) used for predication, returns true as well
686  /// as the definition predicate(s) by reference.
687  virtual bool DefinesPredicate(MachineInstr *MI,
688                                std::vector<MachineOperand> &Pred) const {
689    return false;
690  }
691
692  /// isPredicable - Return true if the specified instruction can be predicated.
693  /// By default, this returns true for every instruction with a
694  /// PredicateOperand.
695  virtual bool isPredicable(MachineInstr *MI) const {
696    return MI->getDesc().isPredicable();
697  }
698
699  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
700  /// instruction that defines the specified register class.
701  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
702    return true;
703  }
704
705  /// isSchedulingBoundary - Test if the given instruction should be
706  /// considered a scheduling boundary. This primarily includes labels and
707  /// terminators.
708  virtual bool isSchedulingBoundary(const MachineInstr *MI,
709                                    const MachineBasicBlock *MBB,
710                                    const MachineFunction &MF) const;
711
712  /// Measure the specified inline asm to determine an approximation of its
713  /// length.
714  virtual unsigned getInlineAsmLength(const char *Str,
715                                      const MCAsmInfo &MAI) const;
716
717  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
718  /// use for this target when scheduling the machine instructions before
719  /// register allocation.
720  virtual ScheduleHazardRecognizer*
721  CreateTargetHazardRecognizer(const TargetMachine *TM,
722                               const ScheduleDAG *DAG) const;
723
724  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
725  /// to use for this target when scheduling the machine instructions before
726  /// register allocation.
727  virtual ScheduleHazardRecognizer*
728  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
729                                 const ScheduleDAG *DAG) const;
730
731  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
732  /// recognizer to use for this target when scheduling the machine instructions
733  /// after register allocation.
734  virtual ScheduleHazardRecognizer*
735  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
736                                     const ScheduleDAG *DAG) const;
737
738  /// Provide a global flag for disabling the PreRA hazard recognizer that
739  /// targets may choose to honor.
740  bool usePreRAHazardRecognizer() const;
741
742  /// analyzeCompare - For a comparison instruction, return the source registers
743  /// in SrcReg and SrcReg2 if having two register operands, and the value it
744  /// compares against in CmpValue. Return true if the comparison instruction
745  /// can be analyzed.
746  virtual bool analyzeCompare(const MachineInstr *MI,
747                              unsigned &SrcReg, unsigned &SrcReg2,
748                              int &Mask, int &Value) const {
749    return false;
750  }
751
752  /// optimizeCompareInstr - See if the comparison instruction can be converted
753  /// into something more efficient. E.g., on ARM most instructions can set the
754  /// flags register, obviating the need for a separate CMP.
755  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
756                                    unsigned SrcReg, unsigned SrcReg2,
757                                    int Mask, int Value,
758                                    const MachineRegisterInfo *MRI) const {
759    return false;
760  }
761
762  /// optimizeLoadInstr - Try to remove the load by folding it to a register
763  /// operand at the use. We fold the load instructions if and only if the
764  /// def and use are in the same BB. We only look at one load and see
765  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
766  /// defined by the load we are trying to fold. DefMI returns the machine
767  /// instruction that defines FoldAsLoadDefReg, and the function returns
768  /// the machine instruction generated due to folding.
769  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
770                        const MachineRegisterInfo *MRI,
771                        unsigned &FoldAsLoadDefReg,
772                        MachineInstr *&DefMI) const {
773    return 0;
774  }
775
776  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
777  /// instruction, try to fold the immediate into the use instruction.
778  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
779                             unsigned Reg, MachineRegisterInfo *MRI) const {
780    return false;
781  }
782
783  /// getNumMicroOps - Return the number of u-operations the given machine
784  /// instruction will be decoded to on the target cpu. The itinerary's
785  /// IssueWidth is the number of microops that can be dispatched each
786  /// cycle. An instruction with zero microops takes no dispatch resources.
787  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
788                                  const MachineInstr *MI) const;
789
790  /// isZeroCost - Return true for pseudo instructions that don't consume any
791  /// machine resources in their current form. These are common cases that the
792  /// scheduler should consider free, rather than conservatively handling them
793  /// as instructions with no itinerary.
794  bool isZeroCost(unsigned Opcode) const {
795    return Opcode <= TargetOpcode::COPY;
796  }
797
798  virtual int getOperandLatency(const InstrItineraryData *ItinData,
799                                SDNode *DefNode, unsigned DefIdx,
800                                SDNode *UseNode, unsigned UseIdx) const;
801
802  /// getOperandLatency - Compute and return the use operand latency of a given
803  /// pair of def and use.
804  /// In most cases, the static scheduling itinerary was enough to determine the
805  /// operand latency. But it may not be possible for instructions with variable
806  /// number of defs / uses.
807  ///
808  /// This is a raw interface to the itinerary that may be directly overriden by
809  /// a target. Use computeOperandLatency to get the best estimate of latency.
810  virtual int getOperandLatency(const InstrItineraryData *ItinData,
811                                const MachineInstr *DefMI, unsigned DefIdx,
812                                const MachineInstr *UseMI,
813                                unsigned UseIdx) const;
814
815  /// computeOperandLatency - Compute and return the latency of the given data
816  /// dependent def and use when the operand indices are already known.
817  ///
818  /// FindMin may be set to get the minimum vs. expected latency.
819  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
820                                 const MachineInstr *DefMI, unsigned DefIdx,
821                                 const MachineInstr *UseMI, unsigned UseIdx,
822                                 bool FindMin = false) const;
823
824  /// getInstrLatency - Compute the instruction latency of a given instruction.
825  /// If the instruction has higher cost when predicated, it's returned via
826  /// PredCost.
827  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
828                                   const MachineInstr *MI,
829                                   unsigned *PredCost = 0) const;
830
831  virtual int getInstrLatency(const InstrItineraryData *ItinData,
832                              SDNode *Node) const;
833
834  /// Return the default expected latency for a def based on it's opcode.
835  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
836                             const MachineInstr *DefMI) const;
837
838  int computeDefOperandLatency(const InstrItineraryData *ItinData,
839                               const MachineInstr *DefMI, bool FindMin) const;
840
841  /// isHighLatencyDef - Return true if this opcode has high latency to its
842  /// result.
843  virtual bool isHighLatencyDef(int opc) const { return false; }
844
845  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
846  /// and an use in the current loop, return true if the target considered
847  /// it 'high'. This is used by optimization passes such as machine LICM to
848  /// determine whether it makes sense to hoist an instruction out even in
849  /// high register pressure situation.
850  virtual
851  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
852                             const MachineRegisterInfo *MRI,
853                             const MachineInstr *DefMI, unsigned DefIdx,
854                             const MachineInstr *UseMI, unsigned UseIdx) const {
855    return false;
856  }
857
858  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
859  /// if the target considered it 'low'.
860  virtual
861  bool hasLowDefLatency(const InstrItineraryData *ItinData,
862                        const MachineInstr *DefMI, unsigned DefIdx) const;
863
864  /// verifyInstruction - Perform target specific instruction verification.
865  virtual
866  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
867    return true;
868  }
869
870  /// getExecutionDomain - Return the current execution domain and bit mask of
871  /// possible domains for instruction.
872  ///
873  /// Some micro-architectures have multiple execution domains, and multiple
874  /// opcodes that perform the same operation in different domains.  For
875  /// example, the x86 architecture provides the por, orps, and orpd
876  /// instructions that all do the same thing.  There is a latency penalty if a
877  /// register is written in one domain and read in another.
878  ///
879  /// This function returns a pair (domain, mask) containing the execution
880  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
881  /// function can be used to change the opcode to one of the domains in the
882  /// bit mask.  Instructions whose execution domain can't be changed should
883  /// return a 0 mask.
884  ///
885  /// The execution domain numbers don't have any special meaning except domain
886  /// 0 is used for instructions that are not associated with any interesting
887  /// execution domain.
888  ///
889  virtual std::pair<uint16_t, uint16_t>
890  getExecutionDomain(const MachineInstr *MI) const {
891    return std::make_pair(0, 0);
892  }
893
894  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
895  ///
896  /// The bit (1 << Domain) must be set in the mask returned from
897  /// getExecutionDomain(MI).
898  ///
899  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
900
901
902  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
903  /// before an instruction with an unwanted partial register update.
904  ///
905  /// Some instructions only write part of a register, and implicitly need to
906  /// read the other parts of the register.  This may cause unwanted stalls
907  /// preventing otherwise unrelated instructions from executing in parallel in
908  /// an out-of-order CPU.
909  ///
910  /// For example, the x86 instruction cvtsi2ss writes its result to bits
911  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
912  /// the instruction needs to wait for the old value of the register to become
913  /// available:
914  ///
915  ///   addps %xmm1, %xmm0
916  ///   movaps %xmm0, (%rax)
917  ///   cvtsi2ss %rbx, %xmm0
918  ///
919  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
920  /// instruction before it can issue, even though the high bits of %xmm0
921  /// probably aren't needed.
922  ///
923  /// This hook returns the preferred clearance before MI, measured in
924  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
925  /// instructions before MI.  It should only return a positive value for
926  /// unwanted dependencies.  If the old bits of the defined register have
927  /// useful values, or if MI is determined to otherwise read the dependency,
928  /// the hook should return 0.
929  ///
930  /// The unwanted dependency may be handled by:
931  ///
932  /// 1. Allocating the same register for an MI def and use.  That makes the
933  ///    unwanted dependency identical to a required dependency.
934  ///
935  /// 2. Allocating a register for the def that has no defs in the previous N
936  ///    instructions.
937  ///
938  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
939  ///    allows the target to insert a dependency breaking instruction.
940  ///
941  virtual unsigned
942  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
943                               const TargetRegisterInfo *TRI) const {
944    // The default implementation returns 0 for no partial register dependency.
945    return 0;
946  }
947
948  /// breakPartialRegDependency - Insert a dependency-breaking instruction
949  /// before MI to eliminate an unwanted dependency on OpNum.
950  ///
951  /// If it wasn't possible to avoid a def in the last N instructions before MI
952  /// (see getPartialRegUpdateClearance), this hook will be called to break the
953  /// unwanted dependency.
954  ///
955  /// On x86, an xorps instruction can be used as a dependency breaker:
956  ///
957  ///   addps %xmm1, %xmm0
958  ///   movaps %xmm0, (%rax)
959  ///   xorps %xmm0, %xmm0
960  ///   cvtsi2ss %rbx, %xmm0
961  ///
962  /// An <imp-kill> operand should be added to MI if an instruction was
963  /// inserted.  This ties the instructions together in the post-ra scheduler.
964  ///
965  virtual void
966  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
967                            const TargetRegisterInfo *TRI) const {}
968
969  /// Create machine specific model for scheduling.
970  virtual DFAPacketizer*
971    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
972    return NULL;
973  }
974
975private:
976  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
977};
978
979} // End llvm namespace
980
981#endif
982