TargetInstrInfo.h revision d2035203a0359eedbc1cf4ae77d43176e8455cd4
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29class MachineMemOperand;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  // Invariant opcodes: All instruction sets have these as their low opcodes.
49  enum {
50    PHI = 0,
51    INLINEASM = 1,
52    DBG_LABEL = 2,
53    EH_LABEL = 3,
54    GC_LABEL = 4,
55
56    /// KILL - This instruction is a noop that is used only to adjust the liveness
57    /// of registers. This can be useful when dealing with sub-registers.
58    KILL = 5,
59
60    /// EXTRACT_SUBREG - This instruction takes two operands: a register
61    /// that has subregisters, and a subregister index. It returns the
62    /// extracted subregister value. This is commonly used to implement
63    /// truncation operations on target architectures which support it.
64    EXTRACT_SUBREG = 6,
65
66    /// INSERT_SUBREG - This instruction takes three operands: a register
67    /// that has subregisters, a register providing an insert value, and a
68    /// subregister index. It returns the value of the first register with
69    /// the value of the second register inserted. The first register is
70    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
71    /// anyext operations on target architectures which support it.
72    INSERT_SUBREG = 7,
73
74    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
75    IMPLICIT_DEF = 8,
76
77    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
78    /// that the first operand is an immediate integer constant. This constant
79    /// is often zero, as is commonly used to implement zext operations on
80    /// target architectures which support it, such as with x86-64 (with
81    /// zext from i32 to i64 via implicit zero-extension).
82    SUBREG_TO_REG = 9,
83
84    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
85    /// register-to-register copy into a specific register class. This is only
86    /// used between instruction selection and MachineInstr creation, before
87    /// virtual registers have been created for all the instructions, and it's
88    /// only needed in cases where the register classes implied by the
89    /// instructions are insufficient. The actual MachineInstrs to perform
90    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
91    COPY_TO_REGCLASS = 10,
92
93    // DEBUG_VALUE - a mapping of the llvm.dbg.value intrinsic
94    DEBUG_VALUE = 11,
95
96    // DEBUG_DECLARE - a mapping of the llvm.dbg.declare intrinsic
97    DEBUG_DECLARE = 12
98  };
99
100  unsigned getNumOpcodes() const { return NumOpcodes; }
101
102  /// get - Return the machine instruction descriptor that corresponds to the
103  /// specified instruction opcode.
104  ///
105  const TargetInstrDesc &get(unsigned Opcode) const {
106    assert(Opcode < NumOpcodes && "Invalid opcode!");
107    return Descriptors[Opcode];
108  }
109
110  /// isTriviallyReMaterializable - Return true if the instruction is trivially
111  /// rematerializable, meaning it has no side effects and requires no operands
112  /// that aren't always available.
113  bool isTriviallyReMaterializable(const MachineInstr *MI,
114                                   AliasAnalysis *AA = 0) const {
115    return MI->getOpcode() == IMPLICIT_DEF ||
116           (MI->getDesc().isRematerializable() &&
117            (isReallyTriviallyReMaterializable(MI, AA) ||
118             isReallyTriviallyReMaterializableGeneric(MI, AA)));
119  }
120
121protected:
122  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
123  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
124  /// specify whether the instruction is actually trivially rematerializable,
125  /// taking into consideration its operands. This predicate must return false
126  /// if the instruction has any side effects other than producing a value, or
127  /// if it requres any address registers that are not always available.
128  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
129                                                 AliasAnalysis *AA) const {
130    return false;
131  }
132
133private:
134  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
135  /// for which the M_REMATERIALIZABLE flag is set and the target hook
136  /// isReallyTriviallyReMaterializable returns false, this function does
137  /// target-independent tests to determine if the instruction is really
138  /// trivially rematerializable.
139  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
140                                                AliasAnalysis *AA) const;
141
142public:
143  /// isMoveInstr - Return true if the instruction is a register to register
144  /// move and return the source and dest operands and their sub-register
145  /// indices by reference.
146  virtual bool isMoveInstr(const MachineInstr& MI,
147                           unsigned& SrcReg, unsigned& DstReg,
148                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
149    return false;
150  }
151
152  /// isIdentityCopy - Return true if the instruction is a copy (or
153  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
154  /// destination registers are the same.
155  bool isIdentityCopy(const MachineInstr &MI) const {
156    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
157    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
158        SrcReg == DstReg)
159      return true;
160
161    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
162        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
163    return true;
164
165    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
166         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
167        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
168      return true;
169    return false;
170  }
171
172  /// isLoadFromStackSlot - If the specified machine instruction is a direct
173  /// load from a stack slot, return the virtual or physical register number of
174  /// the destination along with the FrameIndex of the loaded stack slot.  If
175  /// not, return 0.  This predicate must return 0 if the instruction has
176  /// any side effects other than loading from the stack slot.
177  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
178                                       int &FrameIndex) const {
179    return 0;
180  }
181
182  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
183  /// stack locations as well.  This uses a heuristic so it isn't
184  /// reliable for correctness.
185  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
186                                             int &FrameIndex) const {
187    return 0;
188  }
189
190  /// hasLoadFromStackSlot - If the specified machine instruction has
191  /// a load from a stack slot, return true along with the FrameIndex
192  /// of the loaded stack slot and the machine mem operand containing
193  /// the reference.  If not, return false.  Unlike
194  /// isLoadFromStackSlot, this returns true for any instructions that
195  /// loads from the stack.  This is just a hint, as some cases may be
196  /// missed.
197  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
198                                    const MachineMemOperand *&MMO,
199                                    int &FrameIndex) const {
200    return 0;
201  }
202
203  /// isStoreToStackSlot - If the specified machine instruction is a direct
204  /// store to a stack slot, return the virtual or physical register number of
205  /// the source reg along with the FrameIndex of the loaded stack slot.  If
206  /// not, return 0.  This predicate must return 0 if the instruction has
207  /// any side effects other than storing to the stack slot.
208  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
209                                      int &FrameIndex) const {
210    return 0;
211  }
212
213  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
214  /// stack locations as well.  This uses a heuristic so it isn't
215  /// reliable for correctness.
216  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
217                                            int &FrameIndex) const {
218    return 0;
219  }
220
221  /// hasStoreToStackSlot - If the specified machine instruction has a
222  /// store to a stack slot, return true along with the FrameIndex of
223  /// the loaded stack slot and the machine mem operand containing the
224  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
225  /// this returns true for any instructions that loads from the
226  /// stack.  This is just a hint, as some cases may be missed.
227  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
228                                   const MachineMemOperand *&MMO,
229                                   int &FrameIndex) const {
230    return 0;
231  }
232
233  /// reMaterialize - Re-issue the specified 'original' instruction at the
234  /// specific location targeting a new destination register.
235  virtual void reMaterialize(MachineBasicBlock &MBB,
236                             MachineBasicBlock::iterator MI,
237                             unsigned DestReg, unsigned SubIdx,
238                             const MachineInstr *Orig,
239                             const TargetRegisterInfo *TRI) const = 0;
240
241  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
242  /// MachineFunction::CloneMachineInstr(), but the target may update operands
243  /// that are required to be unique.
244  ///
245  /// The instruction must be duplicable as indicated by isNotDuplicable().
246  virtual MachineInstr *duplicate(MachineInstr *Orig,
247                                  MachineFunction &MF) const = 0;
248
249  /// convertToThreeAddress - This method must be implemented by targets that
250  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
251  /// may be able to convert a two-address instruction into one or more true
252  /// three-address instructions on demand.  This allows the X86 target (for
253  /// example) to convert ADD and SHL instructions into LEA instructions if they
254  /// would require register copies due to two-addressness.
255  ///
256  /// This method returns a null pointer if the transformation cannot be
257  /// performed, otherwise it returns the last new instruction.
258  ///
259  virtual MachineInstr *
260  convertToThreeAddress(MachineFunction::iterator &MFI,
261                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
262    return 0;
263  }
264
265  /// commuteInstruction - If a target has any instructions that are commutable,
266  /// but require converting to a different instruction or making non-trivial
267  /// changes to commute them, this method can overloaded to do this.  The
268  /// default implementation of this method simply swaps the first two operands
269  /// of MI and returns it.
270  ///
271  /// If a target wants to make more aggressive changes, they can construct and
272  /// return a new machine instruction.  If an instruction cannot commute, it
273  /// can also return null.
274  ///
275  /// If NewMI is true, then a new machine instruction must be created.
276  ///
277  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
278                                           bool NewMI = false) const = 0;
279
280  /// findCommutedOpIndices - If specified MI is commutable, return the two
281  /// operand indices that would swap value. Return true if the instruction
282  /// is not in a form which this routine understands.
283  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
284                                     unsigned &SrcOpIdx2) const = 0;
285
286  /// isIdentical - Return true if two instructions are identical. This differs
287  /// from MachineInstr::isIdenticalTo() in that it does not require the
288  /// virtual destination registers to be the same. This is used by MachineLICM
289  /// and other MI passes to perform CSE.
290  virtual bool isIdentical(const MachineInstr *MI,
291                           const MachineInstr *Other,
292                           const MachineRegisterInfo *MRI) const = 0;
293
294  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
295  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
296  /// implemented for a target).  Upon success, this returns false and returns
297  /// with the following information in various cases:
298  ///
299  /// 1. If this block ends with no branches (it just falls through to its succ)
300  ///    just return false, leaving TBB/FBB null.
301  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
302  ///    the destination block.
303  /// 3. If this block ends with a conditional branch and it falls through to a
304  ///    successor block, it sets TBB to be the branch destination block and a
305  ///    list of operands that evaluate the condition. These operands can be
306  ///    passed to other TargetInstrInfo methods to create new branches.
307  /// 4. If this block ends with a conditional branch followed by an
308  ///    unconditional branch, it returns the 'true' destination in TBB, the
309  ///    'false' destination in FBB, and a list of operands that evaluate the
310  ///    condition.  These operands can be passed to other TargetInstrInfo
311  ///    methods to create new branches.
312  ///
313  /// Note that RemoveBranch and InsertBranch must be implemented to support
314  /// cases where this method returns success.
315  ///
316  /// If AllowModify is true, then this routine is allowed to modify the basic
317  /// block (e.g. delete instructions after the unconditional branch).
318  ///
319  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
320                             MachineBasicBlock *&FBB,
321                             SmallVectorImpl<MachineOperand> &Cond,
322                             bool AllowModify = false) const {
323    return true;
324  }
325
326  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
327  /// This is only invoked in cases where AnalyzeBranch returns success. It
328  /// returns the number of instructions that were removed.
329  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
330    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
331    return 0;
332  }
333
334  /// InsertBranch - Insert branch code into the end of the specified
335  /// MachineBasicBlock.  The operands to this method are the same as those
336  /// returned by AnalyzeBranch.  This is only invoked in cases where
337  /// AnalyzeBranch returns success. It returns the number of instructions
338  /// inserted.
339  ///
340  /// It is also invoked by tail merging to add unconditional branches in
341  /// cases where AnalyzeBranch doesn't apply because there was no original
342  /// branch to analyze.  At least this much must be implemented, else tail
343  /// merging needs to be disabled.
344  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
345                            MachineBasicBlock *FBB,
346                            const SmallVectorImpl<MachineOperand> &Cond) const {
347    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
348    return 0;
349  }
350
351  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
352  /// returns false if the target does not how to copy between the specified
353  /// registers.
354  virtual bool copyRegToReg(MachineBasicBlock &MBB,
355                            MachineBasicBlock::iterator MI,
356                            unsigned DestReg, unsigned SrcReg,
357                            const TargetRegisterClass *DestRC,
358                            const TargetRegisterClass *SrcRC) const {
359    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
360    return false;
361  }
362
363  /// storeRegToStackSlot - Store the specified register of the given register
364  /// class to the specified stack frame index. The store instruction is to be
365  /// added to the given machine basic block before the specified machine
366  /// instruction. If isKill is true, the register operand is the last use and
367  /// must be marked kill.
368  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
369                                   MachineBasicBlock::iterator MI,
370                                   unsigned SrcReg, bool isKill, int FrameIndex,
371                                   const TargetRegisterClass *RC) const {
372    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
373  }
374
375  /// loadRegFromStackSlot - Load the specified register of the given register
376  /// class from the specified stack frame index. The load instruction is to be
377  /// added to the given machine basic block before the specified machine
378  /// instruction.
379  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
380                                    MachineBasicBlock::iterator MI,
381                                    unsigned DestReg, int FrameIndex,
382                                    const TargetRegisterClass *RC) const {
383    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
384  }
385
386  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
387  /// saved registers and returns true if it isn't possible / profitable to do
388  /// so by issuing a series of store instructions via
389  /// storeRegToStackSlot(). Returns false otherwise.
390  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
391                                         MachineBasicBlock::iterator MI,
392                                const std::vector<CalleeSavedInfo> &CSI) const {
393    return false;
394  }
395
396  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
397  /// saved registers and returns true if it isn't possible / profitable to do
398  /// so by issuing a series of load instructions via loadRegToStackSlot().
399  /// Returns false otherwise.
400  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
401                                           MachineBasicBlock::iterator MI,
402                                const std::vector<CalleeSavedInfo> &CSI) const {
403    return false;
404  }
405
406  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
407  /// slot into the specified machine instruction for the specified operand(s).
408  /// If this is possible, a new instruction is returned with the specified
409  /// operand folded, otherwise NULL is returned. The client is responsible for
410  /// removing the old instruction and adding the new one in the instruction
411  /// stream.
412  MachineInstr* foldMemoryOperand(MachineFunction &MF,
413                                  MachineInstr* MI,
414                                  const SmallVectorImpl<unsigned> &Ops,
415                                  int FrameIndex) const;
416
417  /// foldMemoryOperand - Same as the previous version except it allows folding
418  /// of any load and store from / to any address, not just from a specific
419  /// stack slot.
420  MachineInstr* foldMemoryOperand(MachineFunction &MF,
421                                  MachineInstr* MI,
422                                  const SmallVectorImpl<unsigned> &Ops,
423                                  MachineInstr* LoadMI) const;
424
425protected:
426  /// foldMemoryOperandImpl - Target-dependent implementation for
427  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
428  /// take care of adding a MachineMemOperand to the newly created instruction.
429  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
430                                          MachineInstr* MI,
431                                          const SmallVectorImpl<unsigned> &Ops,
432                                          int FrameIndex) const {
433    return 0;
434  }
435
436  /// foldMemoryOperandImpl - Target-dependent implementation for
437  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
438  /// take care of adding a MachineMemOperand to the newly created instruction.
439  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
440                                              MachineInstr* MI,
441                                              const SmallVectorImpl<unsigned> &Ops,
442                                              MachineInstr* LoadMI) const {
443    return 0;
444  }
445
446public:
447  /// canFoldMemoryOperand - Returns true for the specified load / store if
448  /// folding is possible.
449  virtual
450  bool canFoldMemoryOperand(const MachineInstr *MI,
451                            const SmallVectorImpl<unsigned> &Ops) const {
452    return false;
453  }
454
455  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
456  /// a store or a load and a store into two or more instruction. If this is
457  /// possible, returns true as well as the new instructions by reference.
458  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
459                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
460                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
461    return false;
462  }
463
464  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
465                                   SmallVectorImpl<SDNode*> &NewNodes) const {
466    return false;
467  }
468
469  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
470  /// instruction after load / store are unfolded from an instruction of the
471  /// specified opcode. It returns zero if the specified unfolding is not
472  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
473  /// index of the operand which will hold the register holding the loaded
474  /// value.
475  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
476                                      bool UnfoldLoad, bool UnfoldStore,
477                                      unsigned *LoadRegIndex = 0) const {
478    return 0;
479  }
480
481  /// ReverseBranchCondition - Reverses the branch condition of the specified
482  /// condition list, returning false on success and true if it cannot be
483  /// reversed.
484  virtual
485  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
486    return true;
487  }
488
489  /// insertNoop - Insert a noop into the instruction stream at the specified
490  /// point.
491  virtual void insertNoop(MachineBasicBlock &MBB,
492                          MachineBasicBlock::iterator MI) const;
493
494  /// isPredicated - Returns true if the instruction is already predicated.
495  ///
496  virtual bool isPredicated(const MachineInstr *MI) const {
497    return false;
498  }
499
500  /// isUnpredicatedTerminator - Returns true if the instruction is a
501  /// terminator instruction that has not been predicated.
502  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
503
504  /// PredicateInstruction - Convert the instruction into a predicated
505  /// instruction. It returns true if the operation was successful.
506  virtual
507  bool PredicateInstruction(MachineInstr *MI,
508                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
509
510  /// SubsumesPredicate - Returns true if the first specified predicate
511  /// subsumes the second, e.g. GE subsumes GT.
512  virtual
513  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
514                         const SmallVectorImpl<MachineOperand> &Pred2) const {
515    return false;
516  }
517
518  /// DefinesPredicate - If the specified instruction defines any predicate
519  /// or condition code register(s) used for predication, returns true as well
520  /// as the definition predicate(s) by reference.
521  virtual bool DefinesPredicate(MachineInstr *MI,
522                                std::vector<MachineOperand> &Pred) const {
523    return false;
524  }
525
526  /// isPredicable - Return true if the specified instruction can be predicated.
527  /// By default, this returns true for every instruction with a
528  /// PredicateOperand.
529  virtual bool isPredicable(MachineInstr *MI) const {
530    return MI->getDesc().isPredicable();
531  }
532
533  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
534  /// instruction that defines the specified register class.
535  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
536    return true;
537  }
538
539  /// GetInstSize - Returns the size of the specified Instruction.
540  ///
541  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
542    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
543    return 0;
544  }
545
546  /// GetFunctionSizeInBytes - Returns the size of the specified
547  /// MachineFunction.
548  ///
549  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
550
551  /// Measure the specified inline asm to determine an approximation of its
552  /// length.
553  virtual unsigned getInlineAsmLength(const char *Str,
554                                      const MCAsmInfo &MAI) const;
555};
556
557/// TargetInstrInfoImpl - This is the default implementation of
558/// TargetInstrInfo, which just provides a couple of default implementations
559/// for various methods.  This separated out because it is implemented in
560/// libcodegen, not in libtarget.
561class TargetInstrInfoImpl : public TargetInstrInfo {
562protected:
563  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
564  : TargetInstrInfo(desc, NumOpcodes) {}
565public:
566  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
567                                           bool NewMI = false) const;
568  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
569                                     unsigned &SrcOpIdx2) const;
570  virtual bool PredicateInstruction(MachineInstr *MI,
571                            const SmallVectorImpl<MachineOperand> &Pred) const;
572  virtual void reMaterialize(MachineBasicBlock &MBB,
573                             MachineBasicBlock::iterator MI,
574                             unsigned DestReg, unsigned SubReg,
575                             const MachineInstr *Orig,
576                             const TargetRegisterInfo *TRI) const;
577  virtual MachineInstr *duplicate(MachineInstr *Orig,
578                                  MachineFunction &MF) const;
579  virtual bool isIdentical(const MachineInstr *MI,
580                           const MachineInstr *Other,
581                           const MachineRegisterInfo *MRI) const;
582
583  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
584};
585
586} // End llvm namespace
587
588#endif
589