TargetInstrInfo.h revision d7908f679eeadc108e09e2aca5faba0b5410ea4a
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===----------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_TARGETINSTRINFO_H
8#define LLVM_TARGET_TARGETINSTRINFO_H
9
10#include "Support/DataTypes.h"
11#include <vector>
12#include <assert.h>
13
14class MachineInstr;
15class TargetMachine;
16class Value;
17class Instruction;
18class Constant;
19class Function;
20class MachineCodeForInstruction;
21
22//---------------------------------------------------------------------------
23// Data types used to define information about a single machine instruction
24//---------------------------------------------------------------------------
25
26typedef int MachineOpCode;
27typedef unsigned InstrSchedClass;
28
29const MachineOpCode INVALID_MACHINE_OPCODE = -1;
30
31
32//---------------------------------------------------------------------------
33// struct TargetInstrDescriptor:
34//	Predefined information about each machine instruction.
35//	Designed to initialized statically.
36//
37
38const unsigned M_NOP_FLAG		= 1 << 0;
39const unsigned M_BRANCH_FLAG		= 1 << 1;
40const unsigned M_CALL_FLAG		= 1 << 2;
41const unsigned M_RET_FLAG		= 1 << 3;
42const unsigned M_ARITH_FLAG		= 1 << 4;
43const unsigned M_CC_FLAG		= 1 << 6;
44const unsigned M_LOGICAL_FLAG		= 1 << 6;
45const unsigned M_INT_FLAG		= 1 << 7;
46const unsigned M_FLOAT_FLAG		= 1 << 8;
47const unsigned M_CONDL_FLAG		= 1 << 9;
48const unsigned M_LOAD_FLAG		= 1 << 10;
49const unsigned M_PREFETCH_FLAG		= 1 << 11;
50const unsigned M_STORE_FLAG		= 1 << 12;
51const unsigned M_DUMMY_PHI_FLAG	= 1 << 13;
52const unsigned M_PSEUDO_FLAG           = 1 << 14;       // Pseudo instruction
53// 3-addr instructions which really work like 2-addr ones, eg. X86 add/sub
54const unsigned M_2_ADDR_FLAG           = 1 << 15;
55
56// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
57// block?  Typically this is things like return and branch instructions.
58// Various passes use this to insert code into the bottom of a basic block, but
59// before control flow occurs.
60const unsigned M_TERMINATOR_FLAG       = 1 << 16;
61
62struct TargetInstrDescriptor {
63  const char *    Name;          // Assembly language mnemonic for the opcode.
64  int             numOperands;   // Number of args; -1 if variable #args
65  int             resultPos;     // Position of the result; -1 if no result
66  unsigned        maxImmedConst; // Largest +ve constant in IMMMED field or 0.
67  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
68                                 //   smallest -ve value is -(maxImmedConst+1).
69  unsigned        numDelaySlots; // Number of delay slots after instruction
70  unsigned        latency;       // Latency in machine cycles
71  InstrSchedClass schedClass;    // enum  identifying instr sched class
72  unsigned        Flags;         // flags identifying machine instr class
73  unsigned        TSFlags;       // Target Specific Flag values
74  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
75  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
76};
77
78
79//---------------------------------------------------------------------------
80///
81/// TargetInstrInfo - Interface to description of machine instructions
82///
83class TargetInstrInfo {
84  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
85  unsigned descSize;                    // number of entries in the desc array
86  unsigned numRealOpCodes;              // number of non-dummy op codes
87
88  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
89  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
90public:
91  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned descSize,
92		  unsigned numRealOpCodes);
93  virtual ~TargetInstrInfo();
94
95  // Invariant: All instruction sets use opcode #0 as the PHI instruction and
96  // opcode #1 as the noop instruction.
97  enum {
98    PHI = 0, NOOP = 1
99  };
100
101  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
102  unsigned getNumTotalOpCodes() const { return descSize; }
103
104  /// get - Return the machine instruction descriptor that corresponds to the
105  /// specified instruction opcode.
106  ///
107  const TargetInstrDescriptor& get(MachineOpCode opCode) const {
108    assert(opCode >= 0 && opCode < (int)descSize);
109    return desc[opCode];
110  }
111
112  const char *getName(MachineOpCode opCode) const {
113    return get(opCode).Name;
114  }
115
116  int getNumOperands(MachineOpCode opCode) const {
117    return get(opCode).numOperands;
118  }
119
120  int getResultPos(MachineOpCode opCode) const {
121    return get(opCode).resultPos;
122  }
123
124  unsigned getNumDelaySlots(MachineOpCode opCode) const {
125    return get(opCode).numDelaySlots;
126  }
127
128  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
129    return get(opCode).schedClass;
130  }
131
132  const unsigned *getImplicitUses(MachineOpCode opCode) const {
133    return get(opCode).ImplicitUses;
134  }
135
136  const unsigned *getImplicitDefs(MachineOpCode opCode) const {
137    return get(opCode).ImplicitDefs;
138  }
139
140  //
141  // Query instruction class flags according to the machine-independent
142  // flags listed above.
143  //
144  bool isNop(MachineOpCode opCode) const {
145    return get(opCode).Flags & M_NOP_FLAG;
146  }
147  bool isBranch(MachineOpCode opCode) const {
148    return get(opCode).Flags & M_BRANCH_FLAG;
149  }
150  bool isCall(MachineOpCode opCode) const {
151    return get(opCode).Flags & M_CALL_FLAG;
152  }
153  bool isReturn(MachineOpCode opCode) const {
154    return get(opCode).Flags & M_RET_FLAG;
155  }
156  bool isControlFlow(MachineOpCode opCode) const {
157    return get(opCode).Flags & M_BRANCH_FLAG
158        || get(opCode).Flags & M_CALL_FLAG
159        || get(opCode).Flags & M_RET_FLAG;
160  }
161  bool isArith(MachineOpCode opCode) const {
162    return get(opCode).Flags & M_ARITH_FLAG;
163  }
164  bool isCCInstr(MachineOpCode opCode) const {
165    return get(opCode).Flags & M_CC_FLAG;
166  }
167  bool isLogical(MachineOpCode opCode) const {
168    return get(opCode).Flags & M_LOGICAL_FLAG;
169  }
170  bool isIntInstr(MachineOpCode opCode) const {
171    return get(opCode).Flags & M_INT_FLAG;
172  }
173  bool isFloatInstr(MachineOpCode opCode) const {
174    return get(opCode).Flags & M_FLOAT_FLAG;
175  }
176  bool isConditional(MachineOpCode opCode) const {
177    return get(opCode).Flags & M_CONDL_FLAG;
178  }
179  bool isLoad(MachineOpCode opCode) const {
180    return get(opCode).Flags & M_LOAD_FLAG;
181  }
182  bool isPrefetch(MachineOpCode opCode) const {
183    return get(opCode).Flags & M_PREFETCH_FLAG;
184  }
185  bool isLoadOrPrefetch(MachineOpCode opCode) const {
186    return get(opCode).Flags & M_LOAD_FLAG
187        || get(opCode).Flags & M_PREFETCH_FLAG;
188  }
189  bool isStore(MachineOpCode opCode) const {
190    return get(opCode).Flags & M_STORE_FLAG;
191  }
192  bool isMemoryAccess(MachineOpCode opCode) const {
193    return get(opCode).Flags & M_LOAD_FLAG
194        || get(opCode).Flags & M_PREFETCH_FLAG
195        || get(opCode).Flags & M_STORE_FLAG;
196  }
197  bool isDummyPhiInstr(MachineOpCode opCode) const {
198    return get(opCode).Flags & M_DUMMY_PHI_FLAG;
199  }
200  bool isPseudoInstr(MachineOpCode opCode) const {
201    return get(opCode).Flags & M_PSEUDO_FLAG;
202  }
203  bool isTwoAddrInstr(MachineOpCode opCode) const {
204    return get(opCode).Flags & M_2_ADDR_FLAG;
205  }
206  bool isTerminatorInstr(unsigned Opcode) const {
207    return get(Opcode).Flags & M_TERMINATOR_FLAG;
208  }
209
210  // Check if an instruction can be issued before its operands are ready,
211  // or if a subsequent instruction that uses its result can be issued
212  // before the results are ready.
213  // Default to true since most instructions on many architectures allow this.
214  //
215  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
216    return true;
217  }
218
219  virtual bool hasResultInterlock(MachineOpCode opCode) const {
220    return true;
221  }
222
223  //
224  // Latencies for individual instructions and instruction pairs
225  //
226  virtual int minLatency(MachineOpCode opCode) const {
227    return get(opCode).latency;
228  }
229
230  virtual int maxLatency(MachineOpCode opCode) const {
231    return get(opCode).latency;
232  }
233
234  //
235  // Which operand holds an immediate constant?  Returns -1 if none
236  //
237  virtual int getImmedConstantPos(MachineOpCode opCode) const {
238    return -1; // immediate position is machine specific, so say -1 == "none"
239  }
240
241  // Check if the specified constant fits in the immediate field
242  // of this machine instruction
243  //
244  virtual bool constantFitsInImmedField(MachineOpCode opCode,
245					int64_t intValue) const;
246
247  // Return the largest +ve constant that can be held in the IMMMED field
248  // of this machine instruction.
249  // isSignExtended is set to true if the value is sign-extended before use
250  // (this is true for all immediate fields in SPARC instructions).
251  // Return 0 if the instruction has no IMMED field.
252  //
253  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
254				    bool &isSignExtended) const {
255    isSignExtended = get(opCode).immedIsSignExtended;
256    return get(opCode).maxImmedConst;
257  }
258
259  //-------------------------------------------------------------------------
260  // Queries about representation of LLVM quantities (e.g., constants)
261  //-------------------------------------------------------------------------
262
263  /// ConstantTypeMustBeLoaded - Test if this type of constant must be loaded
264  /// from memory into a register, i.e., cannot be set bitwise in register and
265  /// cannot use immediate fields of instructions.  Note that this only makes
266  /// sense for primitive types.
267  ///
268  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const;
269
270  // Test if this constant may not fit in the immediate field of the
271  // machine instructions (probably) generated for this instruction.
272  //
273  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
274                                             const Instruction* I) const {
275    return true;                        // safe but very conservative
276  }
277
278
279  /// createNOPinstr - returns the target's implementation of NOP, which is
280  /// usually a pseudo-instruction, implemented by a degenerate version of
281  /// another instruction, e.g. X86: xchg ax, ax; SparcV9: sethi g0, 0
282  ///
283  virtual MachineInstr* createNOPinstr() const = 0;
284
285  /// isNOPinstr - not having a special NOP opcode, we need to know if a given
286  /// instruction is interpreted as an `official' NOP instr, i.e., there may be
287  /// more than one way to `do nothing' but only one canonical way to slack off.
288  ///
289  virtual bool isNOPinstr(const MachineInstr &MI) const = 0;
290
291  //-------------------------------------------------------------------------
292  // Code generation support for creating individual machine instructions
293  //
294  // WARNING: These methods are Sparc specific
295  //
296  //-------------------------------------------------------------------------
297
298  // Get certain common op codes for the current target.  this and all the
299  // Create* methods below should be moved to a machine code generation class
300  //
301  virtual MachineOpCode getNOPOpCode() const { abort(); }
302
303  // Create an instruction sequence to put the constant `val' into
304  // the virtual register `dest'.  `val' may be a Constant or a
305  // GlobalValue, viz., the constant address of a global variable or function.
306  // The generated instructions are returned in `mvec'.
307  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
308  // Symbolic constants or constants that must be accessed from memory
309  // are added to the constant pool via MachineFunction::get(F).
310  //
311  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
312                                      Function* F,
313                                      Value* val,
314                                      Instruction* dest,
315                                      std::vector<MachineInstr*>& mvec,
316                                      MachineCodeForInstruction& mcfi) const {
317    abort();
318  }
319
320  // Create an instruction sequence to copy an integer value `val'
321  // to a floating point value `dest' by copying to memory and back.
322  // val must be an integral type.  dest must be a Float or Double.
323  // The generated instructions are returned in `mvec'.
324  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
325  // Any stack space required is allocated via mcff.
326  //
327  virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target,
328					  Function* F,
329					  Value* val,
330					  Instruction* dest,
331					  std::vector<MachineInstr*>& mvec,
332					  MachineCodeForInstruction& MI) const {
333    abort();
334  }
335
336  // Similarly, create an instruction sequence to copy an FP value
337  // `val' to an integer value `dest' by copying to memory and back.
338  // The generated instructions are returned in `mvec'.
339  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
340  // Any stack space required is allocated via mcff.
341  //
342  virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target,
343					  Function* F,
344					  Value* val,
345					  Instruction* dest,
346					  std::vector<MachineInstr*>& mvec,
347					  MachineCodeForInstruction& MI) const {
348    abort();
349  }
350
351  // Create instruction(s) to copy src to dest, for arbitrary types
352  // The generated instructions are returned in `mvec'.
353  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
354  // Any stack space required is allocated via mcff.
355  //
356  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
357					    Function* F,
358					    Value* src,
359					    Instruction* dest,
360					    std::vector<MachineInstr*>& mvec,
361                                          MachineCodeForInstruction& MI) const {
362    abort();
363  }
364
365  // Create instruction sequence to produce a sign-extended register value
366  // from an arbitrary sized value (sized in bits, not bytes).
367  // The generated instructions are appended to `mvec'.
368  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
369  // Any stack space required is allocated via mcff.
370  //
371  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
372                                       Function* F,
373                                       Value* srcVal,
374                                       Value* destVal,
375                                       unsigned numLowBits,
376                                       std::vector<MachineInstr*>& mvec,
377				       MachineCodeForInstruction& MI) const {
378    abort();
379  }
380
381  // Create instruction sequence to produce a zero-extended register value
382  // from an arbitrary sized value (sized in bits, not bytes).
383  // The generated instructions are appended to `mvec'.
384  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
385  // Any stack space required is allocated via mcff.
386  //
387  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
388                                       Function* F,
389                                       Value* srcVal,
390                                       Value* destVal,
391                                       unsigned srcSizeInBits,
392                                       std::vector<MachineInstr*>& mvec,
393                                       MachineCodeForInstruction& mcfi) const {
394    abort();
395  }
396};
397
398#endif
399