TargetInstrInfo.h revision e33f44cfc547359bc28526e4c5e1852b600b4448
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29
30template<class T> class SmallVectorImpl;
31
32
33//---------------------------------------------------------------------------
34///
35/// TargetInstrInfo - Interface to description of machine instruction set
36///
37class TargetInstrInfo {
38  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
39  unsigned NumOpcodes;                // Number of entries in the desc array
40
41  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
42  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
43public:
44  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
45  virtual ~TargetInstrInfo();
46
47  // Invariant opcodes: All instruction sets have these as their low opcodes.
48  enum {
49    PHI = 0,
50    INLINEASM = 1,
51    DBG_LABEL = 2,
52    EH_LABEL = 3,
53    GC_LABEL = 4,
54
55    /// KILL - This instruction is a noop that is used only to adjust the liveness
56    /// of registers. This can be useful when dealing with sub-registers.
57    KILL = 5,
58
59    /// EXTRACT_SUBREG - This instruction takes two operands: a register
60    /// that has subregisters, and a subregister index. It returns the
61    /// extracted subregister value. This is commonly used to implement
62    /// truncation operations on target architectures which support it.
63    EXTRACT_SUBREG = 6,
64
65    /// INSERT_SUBREG - This instruction takes three operands: a register
66    /// that has subregisters, a register providing an insert value, and a
67    /// subregister index. It returns the value of the first register with
68    /// the value of the second register inserted. The first register is
69    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
70    /// anyext operations on target architectures which support it.
71    INSERT_SUBREG = 7,
72
73    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
74    IMPLICIT_DEF = 8,
75
76    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
77    /// that the first operand is an immediate integer constant. This constant
78    /// is often zero, as is commonly used to implement zext operations on
79    /// target architectures which support it, such as with x86-64 (with
80    /// zext from i32 to i64 via implicit zero-extension).
81    SUBREG_TO_REG = 9,
82
83    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
84    /// register-to-register copy into a specific register class. This is only
85    /// used between instruction selection and MachineInstr creation, before
86    /// virtual registers have been created for all the instructions, and it's
87    /// only needed in cases where the register classes implied by the
88    /// instructions are insufficient. The actual MachineInstrs to perform
89    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
90    COPY_TO_REGCLASS = 10
91  };
92
93  unsigned getNumOpcodes() const { return NumOpcodes; }
94
95  /// get - Return the machine instruction descriptor that corresponds to the
96  /// specified instruction opcode.
97  ///
98  const TargetInstrDesc &get(unsigned Opcode) const {
99    assert(Opcode < NumOpcodes && "Invalid opcode!");
100    return Descriptors[Opcode];
101  }
102
103  /// isTriviallyReMaterializable - Return true if the instruction is trivially
104  /// rematerializable, meaning it has no side effects and requires no operands
105  /// that aren't always available.
106  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
107    return MI->getDesc().isRematerializable() &&
108           isReallyTriviallyReMaterializable(MI);
109  }
110
111protected:
112  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
113  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
114  /// instruction itself is actually trivially rematerializable, considering
115  /// its operands.  This is used for targets that have instructions that are
116  /// only trivially rematerializable for specific uses.  This predicate must
117  /// return false if the instruction has any side effects other than
118  /// producing a value, or if it requres any address registers that are not
119  /// always available.
120  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
121    return true;
122  }
123
124public:
125  /// Return true if the instruction is a register to register move and return
126  /// the source and dest operands and their sub-register indices by reference.
127  virtual bool isMoveInstr(const MachineInstr& MI,
128                           unsigned& SrcReg, unsigned& DstReg,
129                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
130    return false;
131  }
132
133  /// isLoadFromStackSlot - If the specified machine instruction is a direct
134  /// load from a stack slot, return the virtual or physical register number of
135  /// the destination along with the FrameIndex of the loaded stack slot.  If
136  /// not, return 0.  This predicate must return 0 if the instruction has
137  /// any side effects other than loading from the stack slot.
138  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
139                                       int &FrameIndex) const {
140    return 0;
141  }
142
143  /// isStoreToStackSlot - If the specified machine instruction is a direct
144  /// store to a stack slot, return the virtual or physical register number of
145  /// the source reg along with the FrameIndex of the loaded stack slot.  If
146  /// not, return 0.  This predicate must return 0 if the instruction has
147  /// any side effects other than storing to the stack slot.
148  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
149                                      int &FrameIndex) const {
150    return 0;
151  }
152
153  /// reMaterialize - Re-issue the specified 'original' instruction at the
154  /// specific location targeting a new destination register.
155  virtual void reMaterialize(MachineBasicBlock &MBB,
156                             MachineBasicBlock::iterator MI,
157                             unsigned DestReg, unsigned SubIdx,
158                             const MachineInstr *Orig) const = 0;
159
160  /// convertToThreeAddress - This method must be implemented by targets that
161  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
162  /// may be able to convert a two-address instruction into one or more true
163  /// three-address instructions on demand.  This allows the X86 target (for
164  /// example) to convert ADD and SHL instructions into LEA instructions if they
165  /// would require register copies due to two-addressness.
166  ///
167  /// This method returns a null pointer if the transformation cannot be
168  /// performed, otherwise it returns the last new instruction.
169  ///
170  virtual MachineInstr *
171  convertToThreeAddress(MachineFunction::iterator &MFI,
172                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
173    return 0;
174  }
175
176  /// commuteInstruction - If a target has any instructions that are commutable,
177  /// but require converting to a different instruction or making non-trivial
178  /// changes to commute them, this method can overloaded to do this.  The
179  /// default implementation of this method simply swaps the first two operands
180  /// of MI and returns it.
181  ///
182  /// If a target wants to make more aggressive changes, they can construct and
183  /// return a new machine instruction.  If an instruction cannot commute, it
184  /// can also return null.
185  ///
186  /// If NewMI is true, then a new machine instruction must be created.
187  ///
188  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
189                                           bool NewMI = false) const = 0;
190
191  /// findCommutedOpIndices - If specified MI is commutable, return the two
192  /// operand indices that would swap value. Return true if the instruction
193  /// is not in a form which this routine understands.
194  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
195                                     unsigned &SrcOpIdx2) const = 0;
196
197  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
198  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
199  /// implemented for a target).  Upon success, this returns false and returns
200  /// with the following information in various cases:
201  ///
202  /// 1. If this block ends with no branches (it just falls through to its succ)
203  ///    just return false, leaving TBB/FBB null.
204  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
205  ///    the destination block.
206  /// 3. If this block ends with an conditional branch and it falls through to
207  ///    a successor block, it sets TBB to be the branch destination block and
208  ///    a list of operands that evaluate the condition. These
209  ///    operands can be passed to other TargetInstrInfo methods to create new
210  ///    branches.
211  /// 4. If this block ends with a conditional branch followed by an
212  ///    unconditional branch, it returns the 'true' destination in TBB, the
213  ///    'false' destination in FBB, and a list of operands that evaluate the
214  ///    condition.  These operands can be passed to other TargetInstrInfo
215  ///    methods to create new branches.
216  ///
217  /// Note that RemoveBranch and InsertBranch must be implemented to support
218  /// cases where this method returns success.
219  ///
220  /// If AllowModify is true, then this routine is allowed to modify the basic
221  /// block (e.g. delete instructions after the unconditional branch).
222  ///
223  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
224                             MachineBasicBlock *&FBB,
225                             SmallVectorImpl<MachineOperand> &Cond,
226                             bool AllowModify = false) const {
227    return true;
228  }
229
230  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
231  /// This is only invoked in cases where AnalyzeBranch returns success. It
232  /// returns the number of instructions that were removed.
233  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
234    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
235    return 0;
236  }
237
238  /// InsertBranch - Insert branch code into the end of the specified
239  /// MachineBasicBlock.  The operands to this method are the same as those
240  /// returned by AnalyzeBranch.  This is only invoked in cases where
241  /// AnalyzeBranch returns success. It returns the number of instructions
242  /// inserted.
243  ///
244  /// It is also invoked by tail merging to add unconditional branches in
245  /// cases where AnalyzeBranch doesn't apply because there was no original
246  /// branch to analyze.  At least this much must be implemented, else tail
247  /// merging needs to be disabled.
248  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
249                            MachineBasicBlock *FBB,
250                            const SmallVectorImpl<MachineOperand> &Cond) const {
251    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
252    return 0;
253  }
254
255  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
256  /// returns false if the target does not how to copy between the specified
257  /// registers.
258  virtual bool copyRegToReg(MachineBasicBlock &MBB,
259                            MachineBasicBlock::iterator MI,
260                            unsigned DestReg, unsigned SrcReg,
261                            const TargetRegisterClass *DestRC,
262                            const TargetRegisterClass *SrcRC) const {
263    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
264    return false;
265  }
266
267  /// storeRegToStackSlot - Store the specified register of the given register
268  /// class to the specified stack frame index. The store instruction is to be
269  /// added to the given machine basic block before the specified machine
270  /// instruction. If isKill is true, the register operand is the last use and
271  /// must be marked kill.
272  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
273                                   MachineBasicBlock::iterator MI,
274                                   unsigned SrcReg, bool isKill, int FrameIndex,
275                                   const TargetRegisterClass *RC) const {
276    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
277  }
278
279  /// loadRegFromStackSlot - Load the specified register of the given register
280  /// class from the specified stack frame index. The load instruction is to be
281  /// added to the given machine basic block before the specified machine
282  /// instruction.
283  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
284                                    MachineBasicBlock::iterator MI,
285                                    unsigned DestReg, int FrameIndex,
286                                    const TargetRegisterClass *RC) const {
287    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
288  }
289
290  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
291  /// saved registers and returns true if it isn't possible / profitable to do
292  /// so by issuing a series of store instructions via
293  /// storeRegToStackSlot(). Returns false otherwise.
294  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
295                                         MachineBasicBlock::iterator MI,
296                                const std::vector<CalleeSavedInfo> &CSI) const {
297    return false;
298  }
299
300  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
301  /// saved registers and returns true if it isn't possible / profitable to do
302  /// so by issuing a series of load instructions via loadRegToStackSlot().
303  /// Returns false otherwise.
304  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
305                                           MachineBasicBlock::iterator MI,
306                                const std::vector<CalleeSavedInfo> &CSI) const {
307    return false;
308  }
309
310  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
311  /// slot into the specified machine instruction for the specified operand(s).
312  /// If this is possible, a new instruction is returned with the specified
313  /// operand folded, otherwise NULL is returned. The client is responsible for
314  /// removing the old instruction and adding the new one in the instruction
315  /// stream.
316  MachineInstr* foldMemoryOperand(MachineFunction &MF,
317                                  MachineInstr* MI,
318                                  const SmallVectorImpl<unsigned> &Ops,
319                                  int FrameIndex) const;
320
321  /// foldMemoryOperand - Same as the previous version except it allows folding
322  /// of any load and store from / to any address, not just from a specific
323  /// stack slot.
324  MachineInstr* foldMemoryOperand(MachineFunction &MF,
325                                  MachineInstr* MI,
326                                  const SmallVectorImpl<unsigned> &Ops,
327                                  MachineInstr* LoadMI) const;
328
329protected:
330  /// foldMemoryOperandImpl - Target-dependent implementation for
331  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
332  /// take care of adding a MachineMemOperand to the newly created instruction.
333  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
334                                          MachineInstr* MI,
335                                          const SmallVectorImpl<unsigned> &Ops,
336                                          int FrameIndex) const {
337    return 0;
338  }
339
340  /// foldMemoryOperandImpl - Target-dependent implementation for
341  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
342  /// take care of adding a MachineMemOperand to the newly created instruction.
343  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
344                                              MachineInstr* MI,
345                                              const SmallVectorImpl<unsigned> &Ops,
346                                              MachineInstr* LoadMI) const {
347    return 0;
348  }
349
350public:
351  /// canFoldMemoryOperand - Returns true for the specified load / store if
352  /// folding is possible.
353  virtual
354  bool canFoldMemoryOperand(const MachineInstr *MI,
355                            const SmallVectorImpl<unsigned> &Ops) const {
356    return false;
357  }
358
359  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
360  /// a store or a load and a store into two or more instruction. If this is
361  /// possible, returns true as well as the new instructions by reference.
362  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
363                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
364                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
365    return false;
366  }
367
368  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
369                                   SmallVectorImpl<SDNode*> &NewNodes) const {
370    return false;
371  }
372
373  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
374  /// instruction after load / store are unfolded from an instruction of the
375  /// specified opcode. It returns zero if the specified unfolding is not
376  /// possible.
377  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
378                                      bool UnfoldLoad, bool UnfoldStore) const {
379    return 0;
380  }
381
382  /// BlockHasNoFallThrough - Return true if the specified block does not
383  /// fall-through into its successor block.  This is primarily used when a
384  /// branch is unanalyzable.  It is useful for things like unconditional
385  /// indirect branches (jump tables).
386  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
387    return false;
388  }
389
390  /// ReverseBranchCondition - Reverses the branch condition of the specified
391  /// condition list, returning false on success and true if it cannot be
392  /// reversed.
393  virtual
394  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
395    return true;
396  }
397
398  /// insertNoop - Insert a noop into the instruction stream at the specified
399  /// point.
400  virtual void insertNoop(MachineBasicBlock &MBB,
401                          MachineBasicBlock::iterator MI) const;
402
403  /// isPredicated - Returns true if the instruction is already predicated.
404  ///
405  virtual bool isPredicated(const MachineInstr *MI) const {
406    return false;
407  }
408
409  /// isUnpredicatedTerminator - Returns true if the instruction is a
410  /// terminator instruction that has not been predicated.
411  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
412
413  /// PredicateInstruction - Convert the instruction into a predicated
414  /// instruction. It returns true if the operation was successful.
415  virtual
416  bool PredicateInstruction(MachineInstr *MI,
417                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
418
419  /// SubsumesPredicate - Returns true if the first specified predicate
420  /// subsumes the second, e.g. GE subsumes GT.
421  virtual
422  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
423                         const SmallVectorImpl<MachineOperand> &Pred2) const {
424    return false;
425  }
426
427  /// DefinesPredicate - If the specified instruction defines any predicate
428  /// or condition code register(s) used for predication, returns true as well
429  /// as the definition predicate(s) by reference.
430  virtual bool DefinesPredicate(MachineInstr *MI,
431                                std::vector<MachineOperand> &Pred) const {
432    return false;
433  }
434
435  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
436  /// instruction that defines the specified register class.
437  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
438    return true;
439  }
440
441  /// isDeadInstruction - Return true if the instruction is considered dead.
442  /// This allows some late codegen passes to delete them.
443  virtual bool isDeadInstruction(const MachineInstr *MI) const = 0;
444
445  /// GetInstSize - Returns the size of the specified Instruction.
446  ///
447  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
448    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
449    return 0;
450  }
451
452  /// GetFunctionSizeInBytes - Returns the size of the specified
453  /// MachineFunction.
454  ///
455  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
456
457  /// Measure the specified inline asm to determine an approximation of its
458  /// length.
459  virtual unsigned getInlineAsmLength(const char *Str,
460                                      const MCAsmInfo &MAI) const;
461};
462
463/// TargetInstrInfoImpl - This is the default implementation of
464/// TargetInstrInfo, which just provides a couple of default implementations
465/// for various methods.  This separated out because it is implemented in
466/// libcodegen, not in libtarget.
467class TargetInstrInfoImpl : public TargetInstrInfo {
468protected:
469  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
470  : TargetInstrInfo(desc, NumOpcodes) {}
471public:
472  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
473                                           bool NewMI = false) const;
474  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
475                                     unsigned &SrcOpIdx2) const;
476  virtual bool PredicateInstruction(MachineInstr *MI,
477                            const SmallVectorImpl<MachineOperand> &Pred) const;
478  virtual void reMaterialize(MachineBasicBlock &MBB,
479                             MachineBasicBlock::iterator MI,
480                             unsigned DestReg, unsigned SubReg,
481                             const MachineInstr *Orig) const;
482  virtual bool isDeadInstruction(const MachineInstr *MI) const;
483
484  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
485};
486
487} // End llvm namespace
488
489#endif
490