TargetInstrInfo.h revision f20db159541bf27f5d2fdf8d4ba1c8b270b936df
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instructions
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    LABEL = 2,
50    DECLARE = 3,
51    EXTRACT_SUBREG = 4,
52    INSERT_SUBREG = 5
53  };
54
55  unsigned getNumOpcodes() const { return NumOpcodes; }
56
57  /// get - Return the machine instruction descriptor that corresponds to the
58  /// specified instruction opcode.
59  ///
60  const TargetInstrDesc &get(unsigned Opcode) const {
61    assert(Opcode < NumOpcodes && "Invalid opcode!");
62    return Descriptors[Opcode];
63  }
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(MachineInstr *MI) const {
69    return MI->getDesc().isRematerializable() &&
70           isReallyTriviallyReMaterializable(MI);
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
76  /// instruction itself is actually trivially rematerializable, considering
77  /// its operands.  This is used for targets that have instructions that are
78  /// only trivially rematerializable for specific uses.  This predicate must
79  /// return false if the instruction has any side effects other than
80  /// producing a value, or if it requres any address registers that are not
81  /// always available.
82  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
83    return true;
84  }
85
86public:
87  /// Return true if the instruction is a register to register move
88  /// and leave the source and dest operands in the passed parameters.
89  virtual bool isMoveInstr(const MachineInstr& MI,
90                           unsigned& sourceReg,
91                           unsigned& destReg) const {
92    return false;
93  }
94
95  /// isLoadFromStackSlot - If the specified machine instruction is a direct
96  /// load from a stack slot, return the virtual or physical register number of
97  /// the destination along with the FrameIndex of the loaded stack slot.  If
98  /// not, return 0.  This predicate must return 0 if the instruction has
99  /// any side effects other than loading from the stack slot.
100  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
101    return 0;
102  }
103
104  /// isStoreToStackSlot - If the specified machine instruction is a direct
105  /// store to a stack slot, return the virtual or physical register number of
106  /// the source reg along with the FrameIndex of the loaded stack slot.  If
107  /// not, return 0.  This predicate must return 0 if the instruction has
108  /// any side effects other than storing to the stack slot.
109  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
110    return 0;
111  }
112
113  /// isInvariantLoad - Return true if the specified instruction (which is
114  /// marked mayLoad) is loading from a location whose value is invariant across
115  /// the function.  For example, loading a value from the constant pool or from
116  /// from the argument area of a function if it does not change.  This should
117  /// only return true of *all* loads the instruction does are invariant (if it
118  /// does multiple loads).
119  virtual bool isInvariantLoad(MachineInstr *MI) const {
120    return false;
121  }
122
123
124  /// convertToThreeAddress - This method must be implemented by targets that
125  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
126  /// may be able to convert a two-address instruction into one or more true
127  /// three-address instructions on demand.  This allows the X86 target (for
128  /// example) to convert ADD and SHL instructions into LEA instructions if they
129  /// would require register copies due to two-addressness.
130  ///
131  /// This method returns a null pointer if the transformation cannot be
132  /// performed, otherwise it returns the last new instruction.
133  ///
134  virtual MachineInstr *
135  convertToThreeAddress(MachineFunction::iterator &MFI,
136                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
137    return 0;
138  }
139
140  /// commuteInstruction - If a target has any instructions that are commutable,
141  /// but require converting to a different instruction or making non-trivial
142  /// changes to commute them, this method can overloaded to do this.  The
143  /// default implementation of this method simply swaps the first two operands
144  /// of MI and returns it.
145  ///
146  /// If a target wants to make more aggressive changes, they can construct and
147  /// return a new machine instruction.  If an instruction cannot commute, it
148  /// can also return null.
149  ///
150  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
151
152  /// CommuteChangesDestination - Return true if commuting the specified
153  /// instruction will also changes the destination operand. Also return the
154  /// current operand index of the would be new destination register by
155  /// reference. This can happen when the commutable instruction is also a
156  /// two-address instruction.
157  virtual bool CommuteChangesDestination(MachineInstr *MI,
158                                         unsigned &OpIdx) const = 0;
159
160  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
161  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
162  /// implemented for a target).  Upon success, this returns false and returns
163  /// with the following information in various cases:
164  ///
165  /// 1. If this block ends with no branches (it just falls through to its succ)
166  ///    just return false, leaving TBB/FBB null.
167  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
168  ///    the destination block.
169  /// 3. If this block ends with an conditional branch and it falls through to
170  ///    an successor block, it sets TBB to be the branch destination block and a
171  ///    list of operands that evaluate the condition. These
172  ///    operands can be passed to other TargetInstrInfo methods to create new
173  ///    branches.
174  /// 4. If this block ends with an conditional branch and an unconditional
175  ///    block, it returns the 'true' destination in TBB, the 'false' destination
176  ///    in FBB, and a list of operands that evaluate the condition. These
177  ///    operands can be passed to other TargetInstrInfo methods to create new
178  ///    branches.
179  ///
180  /// Note that RemoveBranch and InsertBranch must be implemented to support
181  /// cases where this method returns success.
182  ///
183  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
184                             MachineBasicBlock *&FBB,
185                             std::vector<MachineOperand> &Cond) const {
186    return true;
187  }
188
189  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
190  /// this is only invoked in cases where AnalyzeBranch returns success. It
191  /// returns the number of instructions that were removed.
192  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
193    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
194    return 0;
195  }
196
197  /// InsertBranch - Insert a branch into the end of the specified
198  /// MachineBasicBlock.  This operands to this method are the same as those
199  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
200  /// returns success and when an unconditional branch (TBB is non-null, FBB is
201  /// null, Cond is empty) needs to be inserted. It returns the number of
202  /// instructions inserted.
203  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
204                            MachineBasicBlock *FBB,
205                            const std::vector<MachineOperand> &Cond) const {
206    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
207    return 0;
208  }
209
210  /// copyRegToReg - Add a copy between a pair of registers
211  virtual void copyRegToReg(MachineBasicBlock &MBB,
212                            MachineBasicBlock::iterator MI,
213                            unsigned DestReg, unsigned SrcReg,
214                            const TargetRegisterClass *DestRC,
215                            const TargetRegisterClass *SrcRC) const {
216    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
217  }
218
219  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
220                                   MachineBasicBlock::iterator MI,
221                                   unsigned SrcReg, bool isKill, int FrameIndex,
222                                   const TargetRegisterClass *RC) const {
223    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
224  }
225
226  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
227                              SmallVectorImpl<MachineOperand> &Addr,
228                              const TargetRegisterClass *RC,
229                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
230    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
231  }
232
233  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
234                                    MachineBasicBlock::iterator MI,
235                                    unsigned DestReg, int FrameIndex,
236                                    const TargetRegisterClass *RC) const {
237    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
238  }
239
240  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
241                               SmallVectorImpl<MachineOperand> &Addr,
242                               const TargetRegisterClass *RC,
243                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
244    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
245  }
246
247  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
248  /// saved registers and returns true if it isn't possible / profitable to do
249  /// so by issuing a series of store instructions via
250  /// storeRegToStackSlot(). Returns false otherwise.
251  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
252                                         MachineBasicBlock::iterator MI,
253                                const std::vector<CalleeSavedInfo> &CSI) const {
254    return false;
255  }
256
257  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
258  /// saved registers and returns true if it isn't possible / profitable to do
259  /// so by issuing a series of load instructions via loadRegToStackSlot().
260  /// Returns false otherwise.
261  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
262                                           MachineBasicBlock::iterator MI,
263                                const std::vector<CalleeSavedInfo> &CSI) const {
264    return false;
265  }
266
267  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
268  /// slot into the specified machine instruction for the specified operand(s).
269  /// If this is possible, a new instruction is returned with the specified
270  /// operand folded, otherwise NULL is returned. The client is responsible for
271  /// removing the old instruction and adding the new one in the instruction
272  /// stream.
273  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
274                                          MachineInstr* MI,
275                                          SmallVectorImpl<unsigned> &Ops,
276                                          int FrameIndex) const {
277    return 0;
278  }
279
280  /// foldMemoryOperand - Same as the previous version except it allows folding
281  /// of any load and store from / to any address, not just from a specific
282  /// stack slot.
283  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
284                                          MachineInstr* MI,
285                                          SmallVectorImpl<unsigned> &Ops,
286                                          MachineInstr* LoadMI) const {
287    return 0;
288  }
289
290  /// canFoldMemoryOperand - Returns true if the specified load / store is
291  /// folding is possible.
292  virtual
293  bool canFoldMemoryOperand(MachineInstr *MI,
294                            SmallVectorImpl<unsigned> &Ops) const{
295    return false;
296  }
297
298  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
299  /// a store or a load and a store into two or more instruction. If this is
300  /// possible, returns true as well as the new instructions by reference.
301  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
302                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
303                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
304    return false;
305  }
306
307  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
308                                   SmallVectorImpl<SDNode*> &NewNodes) const {
309    return false;
310  }
311
312  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
313  /// instruction after load / store are unfolded from an instruction of the
314  /// specified opcode. It returns zero if the specified unfolding is not
315  /// possible.
316  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
317                                      bool UnfoldLoad, bool UnfoldStore) const {
318    return 0;
319  }
320
321  /// BlockHasNoFallThrough - Return true if the specified block does not
322  /// fall-through into its successor block.  This is primarily used when a
323  /// branch is unanalyzable.  It is useful for things like unconditional
324  /// indirect branches (jump tables).
325  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
326    return false;
327  }
328
329  /// ReverseBranchCondition - Reverses the branch condition of the specified
330  /// condition list, returning false on success and true if it cannot be
331  /// reversed.
332  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
333    return true;
334  }
335
336  /// insertNoop - Insert a noop into the instruction stream at the specified
337  /// point.
338  virtual void insertNoop(MachineBasicBlock &MBB,
339                          MachineBasicBlock::iterator MI) const {
340    assert(0 && "Target didn't implement insertNoop!");
341    abort();
342  }
343
344  /// isPredicated - Returns true if the instruction is already predicated.
345  ///
346  virtual bool isPredicated(const MachineInstr *MI) const {
347    return false;
348  }
349
350  /// isUnpredicatedTerminator - Returns true if the instruction is a
351  /// terminator instruction that has not been predicated.
352  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
353
354  /// PredicateInstruction - Convert the instruction into a predicated
355  /// instruction. It returns true if the operation was successful.
356  virtual
357  bool PredicateInstruction(MachineInstr *MI,
358                            const std::vector<MachineOperand> &Pred) const = 0;
359
360  /// SubsumesPredicate - Returns true if the first specified predicate
361  /// subsumes the second, e.g. GE subsumes GT.
362  virtual
363  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
364                         const std::vector<MachineOperand> &Pred2) const {
365    return false;
366  }
367
368  /// DefinesPredicate - If the specified instruction defines any predicate
369  /// or condition code register(s) used for predication, returns true as well
370  /// as the definition predicate(s) by reference.
371  virtual bool DefinesPredicate(MachineInstr *MI,
372                                std::vector<MachineOperand> &Pred) const {
373    return false;
374  }
375
376  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
377  /// values.
378  virtual const TargetRegisterClass *getPointerRegClass() const {
379    assert(0 && "Target didn't implement getPointerRegClass!");
380    abort();
381    return 0; // Must return a value in order to compile with VS 2005
382  }
383};
384
385/// TargetInstrInfoImpl - This is the default implementation of
386/// TargetInstrInfo, which just provides a couple of default implementations
387/// for various methods.  This separated out because it is implemented in
388/// libcodegen, not in libtarget.
389class TargetInstrInfoImpl : public TargetInstrInfo {
390protected:
391  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
392  : TargetInstrInfo(desc, NumOpcodes) {}
393public:
394  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
395  virtual bool CommuteChangesDestination(MachineInstr *MI,
396                                         unsigned &OpIdx) const;
397  virtual bool PredicateInstruction(MachineInstr *MI,
398                              const std::vector<MachineOperand> &Pred) const;
399
400};
401
402} // End llvm namespace
403
404#endif
405