TargetInstrInfo.h revision f5fe5e4e79689933ae9da99e5b62fc661e5421dd
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
77dbb3d5cf0c15f500944d211057644d6a2f37371Ben Murdoch//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file describes the target machine instruction set to the code generator.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
141320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci#ifndef LLVM_TARGET_TARGETINSTRINFO_H
151320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci#define LLVM_TARGET_TARGETINSTRINFO_H
16a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
171320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci#include "llvm/Target/TargetInstrDesc.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFunction.h"
192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)namespace llvm {
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class MCAsmInfo;
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class TargetRegisterClass;
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class TargetRegisterInfo;
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class LiveVariables;
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class CalleeSavedInfo;
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class SDNode;
285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)class SelectionDAG;
295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)template<class T> class SmallVectorImpl;
311320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci
325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//---------------------------------------------------------------------------
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)///
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// TargetInstrInfo - Interface to description of machine instruction set
365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)///
371320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucciclass TargetInstrInfo {
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned NumOpcodes;                // Number of entries in the desc array
4003b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)
4103b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
4203b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
4303b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)public:
4403b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
4503b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  virtual ~TargetInstrInfo();
4603b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)
4703b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  // Invariant opcodes: All instruction sets have these as their low opcodes.
4803b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)  enum {
4903b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)    PHI = 0,
5003b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)    INLINEASM = 1,
5103b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)    DBG_LABEL = 2,
5203b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)    EH_LABEL = 3,
5303b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)    GC_LABEL = 4,
5403b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)
551320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    /// KILL - This instruction is a noop that is used only to adjust the liveness
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// of registers. This can be useful when dealing with sub-registers.
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    KILL = 5,
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// EXTRACT_SUBREG - This instruction takes two operands: a register
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// that has subregisters, and a subregister index. It returns the
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// extracted subregister value. This is commonly used to implement
621320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    /// truncation operations on target architectures which support it.
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    EXTRACT_SUBREG = 6,
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// INSERT_SUBREG - This instruction takes three operands: a register
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// that has subregisters, a register providing an insert value, and a
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// subregister index. It returns the value of the first register with
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// the value of the second register inserted. The first register is
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    /// anyext operations on target architectures which support it.
715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    INSERT_SUBREG = 7,
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
73    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
74    IMPLICIT_DEF = 8,
75
76    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
77    /// that the first operand is an immediate integer constant. This constant
78    /// is often zero, as is commonly used to implement zext operations on
79    /// target architectures which support it, such as with x86-64 (with
80    /// zext from i32 to i64 via implicit zero-extension).
81    SUBREG_TO_REG = 9,
82
83    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
84    /// register-to-register copy into a specific register class. This is only
85    /// used between instruction selection and MachineInstr creation, before
86    /// virtual registers have been created for all the instructions, and it's
87    /// only needed in cases where the register classes implied by the
88    /// instructions are insufficient. The actual MachineInstrs to perform
89    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
90    COPY_TO_REGCLASS = 10
91  };
92
93  unsigned getNumOpcodes() const { return NumOpcodes; }
94
95  /// get - Return the machine instruction descriptor that corresponds to the
96  /// specified instruction opcode.
97  ///
98  const TargetInstrDesc &get(unsigned Opcode) const {
99    assert(Opcode < NumOpcodes && "Invalid opcode!");
100    return Descriptors[Opcode];
101  }
102
103  /// isTriviallyReMaterializable - Return true if the instruction is trivially
104  /// rematerializable, meaning it has no side effects and requires no operands
105  /// that aren't always available.
106  bool isTriviallyReMaterializable(const MachineInstr *MI,
107                                   AliasAnalysis *AA = 0) const {
108    return MI->getOpcode() == IMPLICIT_DEF ||
109           (MI->getDesc().isRematerializable() &&
110            (isReallyTriviallyReMaterializable(MI, AA) ||
111             isReallyTriviallyReMaterializableGeneric(MI, AA)));
112  }
113
114protected:
115  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
116  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
117  /// specify whether the instruction is actually trivially rematerializable,
118  /// taking into consideration its operands. This predicate must return false
119  /// if the instruction has any side effects other than producing a value, or
120  /// if it requres any address registers that are not always available.
121  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
122                                                 AliasAnalysis *AA) const {
123    return false;
124  }
125
126private:
127  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
128  /// for which the M_REMATERIALIZABLE flag is set and the target hook
129  /// isReallyTriviallyReMaterializable returns false, this function does
130  /// target-independent tests to determine if the instruction is really
131  /// trivially rematerializable.
132  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
133                                                AliasAnalysis *AA) const;
134
135public:
136  /// isMoveInstr - Return true if the instruction is a register to register
137  /// move and return the source and dest operands and their sub-register
138  /// indices by reference.
139  virtual bool isMoveInstr(const MachineInstr& MI,
140                           unsigned& SrcReg, unsigned& DstReg,
141                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
142    return false;
143  }
144
145  /// isIdentityCopy - Return true if the instruction is a copy (or
146  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
147  /// destination registers are the same.
148  bool isIdentityCopy(const MachineInstr &MI,
149                      unsigned &SrcReg, unsigned &DstReg,
150                      unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
151    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
152        SrcReg == DstReg)
153      return true;
154
155    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
156      DstReg = MI.getOperand(0).getReg();
157      DstSubIdx = MI.getOperand(0).getSubReg();
158      SrcReg = MI.getOperand(1).getReg();
159      SrcSubIdx = MI.getOperand(1).getSubReg();
160      return DstReg == SrcReg;
161    }
162
163    if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
164        MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
165      DstReg = MI.getOperand(0).getReg();
166      DstSubIdx = MI.getOperand(0).getSubReg();
167      SrcReg = MI.getOperand(2).getReg();
168      SrcSubIdx = MI.getOperand(2).getSubReg();
169      return DstReg == SrcReg;
170    }
171
172    return false;
173  }
174
175  /// isLoadFromStackSlot - If the specified machine instruction is a direct
176  /// load from a stack slot, return the virtual or physical register number of
177  /// the destination along with the FrameIndex of the loaded stack slot.  If
178  /// not, return 0.  This predicate must return 0 if the instruction has
179  /// any side effects other than loading from the stack slot.
180  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
181                                       int &FrameIndex) const {
182    return 0;
183  }
184
185  /// isStoreToStackSlot - If the specified machine instruction is a direct
186  /// store to a stack slot, return the virtual or physical register number of
187  /// the source reg along with the FrameIndex of the loaded stack slot.  If
188  /// not, return 0.  This predicate must return 0 if the instruction has
189  /// any side effects other than storing to the stack slot.
190  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
191                                      int &FrameIndex) const {
192    return 0;
193  }
194
195  /// reMaterialize - Re-issue the specified 'original' instruction at the
196  /// specific location targeting a new destination register.
197  virtual void reMaterialize(MachineBasicBlock &MBB,
198                             MachineBasicBlock::iterator MI,
199                             unsigned DestReg, unsigned SubIdx,
200                             const MachineInstr *Orig) const = 0;
201
202  /// convertToThreeAddress - This method must be implemented by targets that
203  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
204  /// may be able to convert a two-address instruction into one or more true
205  /// three-address instructions on demand.  This allows the X86 target (for
206  /// example) to convert ADD and SHL instructions into LEA instructions if they
207  /// would require register copies due to two-addressness.
208  ///
209  /// This method returns a null pointer if the transformation cannot be
210  /// performed, otherwise it returns the last new instruction.
211  ///
212  virtual MachineInstr *
213  convertToThreeAddress(MachineFunction::iterator &MFI,
214                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
215    return 0;
216  }
217
218  /// commuteInstruction - If a target has any instructions that are commutable,
219  /// but require converting to a different instruction or making non-trivial
220  /// changes to commute them, this method can overloaded to do this.  The
221  /// default implementation of this method simply swaps the first two operands
222  /// of MI and returns it.
223  ///
224  /// If a target wants to make more aggressive changes, they can construct and
225  /// return a new machine instruction.  If an instruction cannot commute, it
226  /// can also return null.
227  ///
228  /// If NewMI is true, then a new machine instruction must be created.
229  ///
230  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
231                                           bool NewMI = false) const = 0;
232
233  /// findCommutedOpIndices - If specified MI is commutable, return the two
234  /// operand indices that would swap value. Return true if the instruction
235  /// is not in a form which this routine understands.
236  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
237                                     unsigned &SrcOpIdx2) const = 0;
238
239  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
240  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
241  /// implemented for a target).  Upon success, this returns false and returns
242  /// with the following information in various cases:
243  ///
244  /// 1. If this block ends with no branches (it just falls through to its succ)
245  ///    just return false, leaving TBB/FBB null.
246  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
247  ///    the destination block.
248  /// 3. If this block ends with an conditional branch and it falls through to
249  ///    a successor block, it sets TBB to be the branch destination block and
250  ///    a list of operands that evaluate the condition. These
251  ///    operands can be passed to other TargetInstrInfo methods to create new
252  ///    branches.
253  /// 4. If this block ends with a conditional branch followed by an
254  ///    unconditional branch, it returns the 'true' destination in TBB, the
255  ///    'false' destination in FBB, and a list of operands that evaluate the
256  ///    condition.  These operands can be passed to other TargetInstrInfo
257  ///    methods to create new branches.
258  ///
259  /// Note that RemoveBranch and InsertBranch must be implemented to support
260  /// cases where this method returns success.
261  ///
262  /// If AllowModify is true, then this routine is allowed to modify the basic
263  /// block (e.g. delete instructions after the unconditional branch).
264  ///
265  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
266                             MachineBasicBlock *&FBB,
267                             SmallVectorImpl<MachineOperand> &Cond,
268                             bool AllowModify = false) const {
269    return true;
270  }
271
272  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
273  /// This is only invoked in cases where AnalyzeBranch returns success. It
274  /// returns the number of instructions that were removed.
275  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
276    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
277    return 0;
278  }
279
280  /// InsertBranch - Insert branch code into the end of the specified
281  /// MachineBasicBlock.  The operands to this method are the same as those
282  /// returned by AnalyzeBranch.  This is only invoked in cases where
283  /// AnalyzeBranch returns success. It returns the number of instructions
284  /// inserted.
285  ///
286  /// It is also invoked by tail merging to add unconditional branches in
287  /// cases where AnalyzeBranch doesn't apply because there was no original
288  /// branch to analyze.  At least this much must be implemented, else tail
289  /// merging needs to be disabled.
290  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
291                            MachineBasicBlock *FBB,
292                            const SmallVectorImpl<MachineOperand> &Cond) const {
293    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
294    return 0;
295  }
296
297  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
298  /// returns false if the target does not how to copy between the specified
299  /// registers.
300  virtual bool copyRegToReg(MachineBasicBlock &MBB,
301                            MachineBasicBlock::iterator MI,
302                            unsigned DestReg, unsigned SrcReg,
303                            const TargetRegisterClass *DestRC,
304                            const TargetRegisterClass *SrcRC) const {
305    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
306    return false;
307  }
308
309  /// storeRegToStackSlot - Store the specified register of the given register
310  /// class to the specified stack frame index. The store instruction is to be
311  /// added to the given machine basic block before the specified machine
312  /// instruction. If isKill is true, the register operand is the last use and
313  /// must be marked kill.
314  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
315                                   MachineBasicBlock::iterator MI,
316                                   unsigned SrcReg, bool isKill, int FrameIndex,
317                                   const TargetRegisterClass *RC) const {
318    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
319  }
320
321  /// loadRegFromStackSlot - Load the specified register of the given register
322  /// class from the specified stack frame index. The load instruction is to be
323  /// added to the given machine basic block before the specified machine
324  /// instruction.
325  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
326                                    MachineBasicBlock::iterator MI,
327                                    unsigned DestReg, int FrameIndex,
328                                    const TargetRegisterClass *RC) const {
329    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
330  }
331
332  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
333  /// saved registers and returns true if it isn't possible / profitable to do
334  /// so by issuing a series of store instructions via
335  /// storeRegToStackSlot(). Returns false otherwise.
336  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
337                                         MachineBasicBlock::iterator MI,
338                                const std::vector<CalleeSavedInfo> &CSI) const {
339    return false;
340  }
341
342  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
343  /// saved registers and returns true if it isn't possible / profitable to do
344  /// so by issuing a series of load instructions via loadRegToStackSlot().
345  /// Returns false otherwise.
346  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
347                                           MachineBasicBlock::iterator MI,
348                                const std::vector<CalleeSavedInfo> &CSI) const {
349    return false;
350  }
351
352  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
353  /// slot into the specified machine instruction for the specified operand(s).
354  /// If this is possible, a new instruction is returned with the specified
355  /// operand folded, otherwise NULL is returned. The client is responsible for
356  /// removing the old instruction and adding the new one in the instruction
357  /// stream.
358  MachineInstr* foldMemoryOperand(MachineFunction &MF,
359                                  MachineInstr* MI,
360                                  const SmallVectorImpl<unsigned> &Ops,
361                                  int FrameIndex) const;
362
363  /// foldMemoryOperand - Same as the previous version except it allows folding
364  /// of any load and store from / to any address, not just from a specific
365  /// stack slot.
366  MachineInstr* foldMemoryOperand(MachineFunction &MF,
367                                  MachineInstr* MI,
368                                  const SmallVectorImpl<unsigned> &Ops,
369                                  MachineInstr* LoadMI) const;
370
371protected:
372  /// foldMemoryOperandImpl - Target-dependent implementation for
373  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
374  /// take care of adding a MachineMemOperand to the newly created instruction.
375  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
376                                          MachineInstr* MI,
377                                          const SmallVectorImpl<unsigned> &Ops,
378                                          int FrameIndex) const {
379    return 0;
380  }
381
382  /// foldMemoryOperandImpl - Target-dependent implementation for
383  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
384  /// take care of adding a MachineMemOperand to the newly created instruction.
385  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
386                                              MachineInstr* MI,
387                                              const SmallVectorImpl<unsigned> &Ops,
388                                              MachineInstr* LoadMI) const {
389    return 0;
390  }
391
392public:
393  /// canFoldMemoryOperand - Returns true for the specified load / store if
394  /// folding is possible.
395  virtual
396  bool canFoldMemoryOperand(const MachineInstr *MI,
397                            const SmallVectorImpl<unsigned> &Ops) const {
398    return false;
399  }
400
401  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
402  /// a store or a load and a store into two or more instruction. If this is
403  /// possible, returns true as well as the new instructions by reference.
404  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
405                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
406                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
407    return false;
408  }
409
410  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
411                                   SmallVectorImpl<SDNode*> &NewNodes) const {
412    return false;
413  }
414
415  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
416  /// instruction after load / store are unfolded from an instruction of the
417  /// specified opcode. It returns zero if the specified unfolding is not
418  /// possible.
419  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
420                                      bool UnfoldLoad, bool UnfoldStore) const {
421    return 0;
422  }
423
424  /// BlockHasNoFallThrough - Return true if the specified block does not
425  /// fall-through into its successor block.  This is primarily used when a
426  /// branch is unanalyzable.  It is useful for things like unconditional
427  /// indirect branches (jump tables).
428  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
429    return false;
430  }
431
432  /// ReverseBranchCondition - Reverses the branch condition of the specified
433  /// condition list, returning false on success and true if it cannot be
434  /// reversed.
435  virtual
436  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
437    return true;
438  }
439
440  /// insertNoop - Insert a noop into the instruction stream at the specified
441  /// point.
442  virtual void insertNoop(MachineBasicBlock &MBB,
443                          MachineBasicBlock::iterator MI) const;
444
445  /// isPredicated - Returns true if the instruction is already predicated.
446  ///
447  virtual bool isPredicated(const MachineInstr *MI) const {
448    return false;
449  }
450
451  /// isUnpredicatedTerminator - Returns true if the instruction is a
452  /// terminator instruction that has not been predicated.
453  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
454
455  /// PredicateInstruction - Convert the instruction into a predicated
456  /// instruction. It returns true if the operation was successful.
457  virtual
458  bool PredicateInstruction(MachineInstr *MI,
459                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
460
461  /// SubsumesPredicate - Returns true if the first specified predicate
462  /// subsumes the second, e.g. GE subsumes GT.
463  virtual
464  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
465                         const SmallVectorImpl<MachineOperand> &Pred2) const {
466    return false;
467  }
468
469  /// DefinesPredicate - If the specified instruction defines any predicate
470  /// or condition code register(s) used for predication, returns true as well
471  /// as the definition predicate(s) by reference.
472  virtual bool DefinesPredicate(MachineInstr *MI,
473                                std::vector<MachineOperand> &Pred) const {
474    return false;
475  }
476
477  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
478  /// instruction that defines the specified register class.
479  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
480    return true;
481  }
482
483  /// GetInstSize - Returns the size of the specified Instruction.
484  ///
485  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
486    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
487    return 0;
488  }
489
490  /// GetFunctionSizeInBytes - Returns the size of the specified
491  /// MachineFunction.
492  ///
493  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
494
495  /// Measure the specified inline asm to determine an approximation of its
496  /// length.
497  virtual unsigned getInlineAsmLength(const char *Str,
498                                      const MCAsmInfo &MAI) const;
499};
500
501/// TargetInstrInfoImpl - This is the default implementation of
502/// TargetInstrInfo, which just provides a couple of default implementations
503/// for various methods.  This separated out because it is implemented in
504/// libcodegen, not in libtarget.
505class TargetInstrInfoImpl : public TargetInstrInfo {
506protected:
507  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
508  : TargetInstrInfo(desc, NumOpcodes) {}
509public:
510  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
511                                           bool NewMI = false) const;
512  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
513                                     unsigned &SrcOpIdx2) const;
514  virtual bool PredicateInstruction(MachineInstr *MI,
515                            const SmallVectorImpl<MachineOperand> &Pred) const;
516  virtual void reMaterialize(MachineBasicBlock &MBB,
517                             MachineBasicBlock::iterator MI,
518                             unsigned DestReg, unsigned SubReg,
519                             const MachineInstr *Orig) const;
520  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
521};
522
523} // End llvm namespace
524
525#endif
526