TargetInstrInfo.h revision f8c7394781f7cf27ac52ca087e289436d36844da
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instruction set
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    DBG_LABEL = 2,
50    EH_LABEL = 3,
51    GC_LABEL = 4,
52    DECLARE = 5,
53
54    /// EXTRACT_SUBREG - This instruction takes two operands: a register
55    /// that has subregisters, and a subregister index. It returns the
56    /// extracted subregister value. This is commonly used to implement
57    /// truncation operations on target architectures which support it.
58    EXTRACT_SUBREG = 6,
59
60    /// INSERT_SUBREG - This instruction takes three operands: a register
61    /// that has subregisters, a register providing an insert value, and a
62    /// subregister index. It returns the value of the first register with
63    /// the value of the second register inserted. The first register is
64    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
65    /// anyext operations on target architectures which support it.
66    INSERT_SUBREG = 7,
67
68    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
69    IMPLICIT_DEF = 8,
70
71    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
72    /// that the first operand is an immediate integer constant. This constant
73    /// is often zero, as is commonly used to implement zext operations on
74    /// target architectures which support it, such as with x86-64 (with
75    /// zext from i32 to i64 via implicit zero-extension).
76    SUBREG_TO_REG = 9,
77
78    /// COPY_TO_SUBCLASS - This instruction is a placeholder for a plain
79    /// register-to-register copy into a specific register class. This is only
80    /// used between instruction selection and MachineInstr creation, before
81    /// virtual registers have been created for all the instructions. As with
82    /// normal copies, these may be optimized away by the coalescer.
83    COPY_TO_SUBCLASS = 10
84  };
85
86  unsigned getNumOpcodes() const { return NumOpcodes; }
87
88  /// get - Return the machine instruction descriptor that corresponds to the
89  /// specified instruction opcode.
90  ///
91  const TargetInstrDesc &get(unsigned Opcode) const {
92    assert(Opcode < NumOpcodes && "Invalid opcode!");
93    return Descriptors[Opcode];
94  }
95
96  /// isTriviallyReMaterializable - Return true if the instruction is trivially
97  /// rematerializable, meaning it has no side effects and requires no operands
98  /// that aren't always available.
99  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
100    return MI->getDesc().isRematerializable() &&
101           isReallyTriviallyReMaterializable(MI);
102  }
103
104protected:
105  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
106  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
107  /// instruction itself is actually trivially rematerializable, considering
108  /// its operands.  This is used for targets that have instructions that are
109  /// only trivially rematerializable for specific uses.  This predicate must
110  /// return false if the instruction has any side effects other than
111  /// producing a value, or if it requres any address registers that are not
112  /// always available.
113  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
114    return true;
115  }
116
117public:
118  /// Return true if the instruction is a register to register move and return
119  /// the source and dest operands and their sub-register indices by reference.
120  virtual bool isMoveInstr(const MachineInstr& MI,
121                           unsigned& SrcReg, unsigned& DstReg,
122                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
123    return false;
124  }
125
126  /// isLoadFromStackSlot - If the specified machine instruction is a direct
127  /// load from a stack slot, return the virtual or physical register number of
128  /// the destination along with the FrameIndex of the loaded stack slot.  If
129  /// not, return 0.  This predicate must return 0 if the instruction has
130  /// any side effects other than loading from the stack slot.
131  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
132                                       int &FrameIndex) const {
133    return 0;
134  }
135
136  /// isStoreToStackSlot - If the specified machine instruction is a direct
137  /// store to a stack slot, return the virtual or physical register number of
138  /// the source reg along with the FrameIndex of the loaded stack slot.  If
139  /// not, return 0.  This predicate must return 0 if the instruction has
140  /// any side effects other than storing to the stack slot.
141  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
142                                      int &FrameIndex) const {
143    return 0;
144  }
145
146  /// reMaterialize - Re-issue the specified 'original' instruction at the
147  /// specific location targeting a new destination register.
148  virtual void reMaterialize(MachineBasicBlock &MBB,
149                             MachineBasicBlock::iterator MI,
150                             unsigned DestReg,
151                             const MachineInstr *Orig) const = 0;
152
153  /// isInvariantLoad - Return true if the specified instruction (which is
154  /// marked mayLoad) is loading from a location whose value is invariant across
155  /// the function.  For example, loading a value from the constant pool or from
156  /// from the argument area of a function if it does not change.  This should
157  /// only return true of *all* loads the instruction does are invariant (if it
158  /// does multiple loads).
159  virtual bool isInvariantLoad(const MachineInstr *MI) const {
160    return false;
161  }
162
163  /// convertToThreeAddress - This method must be implemented by targets that
164  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
165  /// may be able to convert a two-address instruction into one or more true
166  /// three-address instructions on demand.  This allows the X86 target (for
167  /// example) to convert ADD and SHL instructions into LEA instructions if they
168  /// would require register copies due to two-addressness.
169  ///
170  /// This method returns a null pointer if the transformation cannot be
171  /// performed, otherwise it returns the last new instruction.
172  ///
173  virtual MachineInstr *
174  convertToThreeAddress(MachineFunction::iterator &MFI,
175                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
176    return 0;
177  }
178
179  /// commuteInstruction - If a target has any instructions that are commutable,
180  /// but require converting to a different instruction or making non-trivial
181  /// changes to commute them, this method can overloaded to do this.  The
182  /// default implementation of this method simply swaps the first two operands
183  /// of MI and returns it.
184  ///
185  /// If a target wants to make more aggressive changes, they can construct and
186  /// return a new machine instruction.  If an instruction cannot commute, it
187  /// can also return null.
188  ///
189  /// If NewMI is true, then a new machine instruction must be created.
190  ///
191  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
192                                           bool NewMI = false) const = 0;
193
194  /// CommuteChangesDestination - Return true if commuting the specified
195  /// instruction will also changes the destination operand. Also return the
196  /// current operand index of the would be new destination register by
197  /// reference. This can happen when the commutable instruction is also a
198  /// two-address instruction.
199  virtual bool CommuteChangesDestination(MachineInstr *MI,
200                                         unsigned &OpIdx) const = 0;
201
202  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
203  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
204  /// implemented for a target).  Upon success, this returns false and returns
205  /// with the following information in various cases:
206  ///
207  /// 1. If this block ends with no branches (it just falls through to its succ)
208  ///    just return false, leaving TBB/FBB null.
209  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
210  ///    the destination block.
211  /// 3. If this block ends with an conditional branch and it falls through to
212  ///    an successor block, it sets TBB to be the branch destination block and
213  ///    a list of operands that evaluate the condition. These
214  ///    operands can be passed to other TargetInstrInfo methods to create new
215  ///    branches.
216  /// 4. If this block ends with an conditional branch and an unconditional
217  ///    block, it returns the 'true' destination in TBB, the 'false'
218  ///    destination in FBB, and a list of operands that evaluate the condition.
219  ///    These operands can be passed to other TargetInstrInfo methods to create
220  ///    new branches.
221  ///
222  /// Note that RemoveBranch and InsertBranch must be implemented to support
223  /// cases where this method returns success.
224  ///
225  /// If AllowModify is true, then this routine is allowed to modify the basic
226  /// block (e.g. delete instructions after the unconditional branch).
227  ///
228  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
229                             MachineBasicBlock *&FBB,
230                             SmallVectorImpl<MachineOperand> &Cond,
231                             bool AllowModify = false) const {
232    return true;
233  }
234
235  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
236  /// This is only invoked in cases where AnalyzeBranch returns success. It
237  /// returns the number of instructions that were removed.
238  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
239    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
240    return 0;
241  }
242
243  /// InsertBranch - Insert a branch into the end of the specified
244  /// MachineBasicBlock.  This operands to this method are the same as those
245  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
246  /// returns success and when an unconditional branch (TBB is non-null, FBB is
247  /// null, Cond is empty) needs to be inserted. It returns the number of
248  /// instructions inserted.
249  ///
250  /// It is also invoked by tail merging to add unconditional branches in
251  /// cases where AnalyzeBranch doesn't apply because there was no original
252  /// branch to analyze.  At least this much must be implemented, else tail
253  /// merging needs to be disabled.
254  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
255                            MachineBasicBlock *FBB,
256                            const SmallVectorImpl<MachineOperand> &Cond) const {
257    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
258    return 0;
259  }
260
261  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
262  /// returns false if the target does not how to copy between the specified
263  /// registers.
264  virtual bool copyRegToReg(MachineBasicBlock &MBB,
265                            MachineBasicBlock::iterator MI,
266                            unsigned DestReg, unsigned SrcReg,
267                            const TargetRegisterClass *DestRC,
268                            const TargetRegisterClass *SrcRC) const {
269    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
270    return false;
271  }
272
273  /// storeRegToStackSlot - Store the specified register of the given register
274  /// class to the specified stack frame index. The store instruction is to be
275  /// added to the given machine basic block before the specified machine
276  /// instruction. If isKill is true, the register operand is the last use and
277  /// must be marked kill.
278  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
279                                   MachineBasicBlock::iterator MI,
280                                   unsigned SrcReg, bool isKill, int FrameIndex,
281                                   const TargetRegisterClass *RC) const {
282    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
283  }
284
285  /// storeRegToAddr - Store the specified register of the given register class
286  /// to the specified address. The store instruction is to be added to the
287  /// given machine basic block before the specified machine instruction. If
288  /// isKill is true, the register operand is the last use and must be marked
289  /// kill.
290  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
291                              SmallVectorImpl<MachineOperand> &Addr,
292                              const TargetRegisterClass *RC,
293                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
294    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
295  }
296
297  /// loadRegFromStackSlot - Load the specified register of the given register
298  /// class from the specified stack frame index. The load instruction is to be
299  /// added to the given machine basic block before the specified machine
300  /// instruction.
301  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
302                                    MachineBasicBlock::iterator MI,
303                                    unsigned DestReg, int FrameIndex,
304                                    const TargetRegisterClass *RC) const {
305    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
306  }
307
308  /// loadRegFromAddr - Load the specified register of the given register class
309  /// class from the specified address. The load instruction is to be added to
310  /// the given machine basic block before the specified machine instruction.
311  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
312                               SmallVectorImpl<MachineOperand> &Addr,
313                               const TargetRegisterClass *RC,
314                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
315    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
316  }
317
318  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
319  /// saved registers and returns true if it isn't possible / profitable to do
320  /// so by issuing a series of store instructions via
321  /// storeRegToStackSlot(). Returns false otherwise.
322  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
323                                         MachineBasicBlock::iterator MI,
324                                const std::vector<CalleeSavedInfo> &CSI) const {
325    return false;
326  }
327
328  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
329  /// saved registers and returns true if it isn't possible / profitable to do
330  /// so by issuing a series of load instructions via loadRegToStackSlot().
331  /// Returns false otherwise.
332  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
333                                           MachineBasicBlock::iterator MI,
334                                const std::vector<CalleeSavedInfo> &CSI) const {
335    return false;
336  }
337
338  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
339  /// slot into the specified machine instruction for the specified operand(s).
340  /// If this is possible, a new instruction is returned with the specified
341  /// operand folded, otherwise NULL is returned. The client is responsible for
342  /// removing the old instruction and adding the new one in the instruction
343  /// stream.
344  MachineInstr* foldMemoryOperand(MachineFunction &MF,
345                                  MachineInstr* MI,
346                                  const SmallVectorImpl<unsigned> &Ops,
347                                  int FrameIndex) const;
348
349  /// foldMemoryOperand - Same as the previous version except it allows folding
350  /// of any load and store from / to any address, not just from a specific
351  /// stack slot.
352  MachineInstr* foldMemoryOperand(MachineFunction &MF,
353                                  MachineInstr* MI,
354                                  const SmallVectorImpl<unsigned> &Ops,
355                                  MachineInstr* LoadMI) const;
356
357protected:
358  /// foldMemoryOperandImpl - Target-dependent implementation for
359  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
360  /// take care of adding a MachineMemOperand to the newly created instruction.
361  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
362                                          MachineInstr* MI,
363                                          const SmallVectorImpl<unsigned> &Ops,
364                                          int FrameIndex) const {
365    return 0;
366  }
367
368  /// foldMemoryOperandImpl - Target-dependent implementation for
369  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
370  /// take care of adding a MachineMemOperand to the newly created instruction.
371  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
372                                              MachineInstr* MI,
373                                              const SmallVectorImpl<unsigned> &Ops,
374                                              MachineInstr* LoadMI) const {
375    return 0;
376  }
377
378public:
379  /// canFoldMemoryOperand - Returns true for the specified load / store if
380  /// folding is possible.
381  virtual
382  bool canFoldMemoryOperand(const MachineInstr *MI,
383                            const SmallVectorImpl<unsigned> &Ops) const {
384    return false;
385  }
386
387  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
388  /// a store or a load and a store into two or more instruction. If this is
389  /// possible, returns true as well as the new instructions by reference.
390  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
391                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
392                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
393    return false;
394  }
395
396  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
397                                   SmallVectorImpl<SDNode*> &NewNodes) const {
398    return false;
399  }
400
401  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
402  /// instruction after load / store are unfolded from an instruction of the
403  /// specified opcode. It returns zero if the specified unfolding is not
404  /// possible.
405  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
406                                      bool UnfoldLoad, bool UnfoldStore) const {
407    return 0;
408  }
409
410  /// BlockHasNoFallThrough - Return true if the specified block does not
411  /// fall-through into its successor block.  This is primarily used when a
412  /// branch is unanalyzable.  It is useful for things like unconditional
413  /// indirect branches (jump tables).
414  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
415    return false;
416  }
417
418  /// ReverseBranchCondition - Reverses the branch condition of the specified
419  /// condition list, returning false on success and true if it cannot be
420  /// reversed.
421  virtual
422  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
423    return true;
424  }
425
426  /// insertNoop - Insert a noop into the instruction stream at the specified
427  /// point.
428  virtual void insertNoop(MachineBasicBlock &MBB,
429                          MachineBasicBlock::iterator MI) const {
430    assert(0 && "Target didn't implement insertNoop!");
431    abort();
432  }
433
434  /// isPredicated - Returns true if the instruction is already predicated.
435  ///
436  virtual bool isPredicated(const MachineInstr *MI) const {
437    return false;
438  }
439
440  /// isUnpredicatedTerminator - Returns true if the instruction is a
441  /// terminator instruction that has not been predicated.
442  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
443
444  /// PredicateInstruction - Convert the instruction into a predicated
445  /// instruction. It returns true if the operation was successful.
446  virtual
447  bool PredicateInstruction(MachineInstr *MI,
448                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
449
450  /// SubsumesPredicate - Returns true if the first specified predicate
451  /// subsumes the second, e.g. GE subsumes GT.
452  virtual
453  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
454                         const SmallVectorImpl<MachineOperand> &Pred2) const {
455    return false;
456  }
457
458  /// DefinesPredicate - If the specified instruction defines any predicate
459  /// or condition code register(s) used for predication, returns true as well
460  /// as the definition predicate(s) by reference.
461  virtual bool DefinesPredicate(MachineInstr *MI,
462                                std::vector<MachineOperand> &Pred) const {
463    return false;
464  }
465
466  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
467  /// instruction that defines the specified register class.
468  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
469    return true;
470  }
471
472  /// GetInstSize - Returns the size of the specified Instruction.
473  ///
474  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
475    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
476    return 0;
477  }
478
479  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
480  ///
481  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
482};
483
484/// TargetInstrInfoImpl - This is the default implementation of
485/// TargetInstrInfo, which just provides a couple of default implementations
486/// for various methods.  This separated out because it is implemented in
487/// libcodegen, not in libtarget.
488class TargetInstrInfoImpl : public TargetInstrInfo {
489protected:
490  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
491  : TargetInstrInfo(desc, NumOpcodes) {}
492public:
493  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
494                                           bool NewMI = false) const;
495  virtual bool CommuteChangesDestination(MachineInstr *MI,
496                                         unsigned &OpIdx) const;
497  virtual bool PredicateInstruction(MachineInstr *MI,
498                            const SmallVectorImpl<MachineOperand> &Pred) const;
499  virtual void reMaterialize(MachineBasicBlock &MBB,
500                             MachineBasicBlock::iterator MI,
501                             unsigned DestReg,
502                             const MachineInstr *Orig) const;
503  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
504};
505
506} // End llvm namespace
507
508#endif
509