TargetInstrInfo.h revision fe30dd3f2390c26fe1f83868cd57a1e6b27d3075
1//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===---------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
8#define LLVM_TARGET_MACHINEINSTRINFO_H
9
10#include "Support/DataTypes.h"
11#include <vector>
12
13class MachineInstrDescriptor;
14class MachineInstr;
15class TargetMachine;
16class Value;
17class Instruction;
18class Constant;
19class Function;
20class MachineCodeForInstruction;
21
22//---------------------------------------------------------------------------
23// Data types used to define information about a single machine instruction
24//---------------------------------------------------------------------------
25
26typedef int MachineOpCode;
27typedef unsigned InstrSchedClass;
28
29const MachineOpCode INVALID_MACHINE_OPCODE = -1;
30
31
32//---------------------------------------------------------------------------
33// struct MachineInstrDescriptor:
34//	Predefined information about each machine instruction.
35//	Designed to initialized statically.
36//
37// class MachineInstructionInfo
38//	Interface to description of machine instructions
39//
40//---------------------------------------------------------------------------
41
42const unsigned	M_NOP_FLAG		= 1 << 0;
43const unsigned	M_BRANCH_FLAG		= 1 << 1;
44const unsigned	M_CALL_FLAG		= 1 << 2;
45const unsigned	M_RET_FLAG		= 1 << 3;
46const unsigned	M_ARITH_FLAG		= 1 << 4;
47const unsigned	M_CC_FLAG		= 1 << 6;
48const unsigned	M_LOGICAL_FLAG		= 1 << 6;
49const unsigned	M_INT_FLAG		= 1 << 7;
50const unsigned	M_FLOAT_FLAG		= 1 << 8;
51const unsigned	M_CONDL_FLAG		= 1 << 9;
52const unsigned	M_LOAD_FLAG		= 1 << 10;
53const unsigned	M_PREFETCH_FLAG		= 1 << 11;
54const unsigned	M_STORE_FLAG		= 1 << 12;
55const unsigned	M_DUMMY_PHI_FLAG	= 1 << 13;
56const unsigned  M_PSEUDO_FLAG           = 1 << 14;
57
58
59struct MachineInstrDescriptor {
60  const char *    Name;          // Assembly language mnemonic for the opcode.
61  int             numOperands;   // Number of args; -1 if variable #args
62  int             resultPos;     // Position of the result; -1 if no result
63  unsigned        maxImmedConst; // Largest +ve constant in IMMMED field or 0.
64  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
65                                 //   smallest -ve value is -(maxImmedConst+1).
66  unsigned        numDelaySlots; // Number of delay slots after instruction
67  unsigned        latency;       // Latency in machine cycles
68  InstrSchedClass schedClass;    // enum  identifying instr sched class
69  unsigned        Flags;         // flags identifying machine instr class
70  unsigned        TSFlags;       // Target Specific Flag values
71};
72
73
74class MachineInstrInfo {
75  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
76  unsigned descSize;		// number of entries in the desc array
77  unsigned numRealOpCodes;		// number of non-dummy op codes
78
79  MachineInstrInfo(const MachineInstrInfo &); // DO NOT IMPLEMENT
80  void operator=(const MachineInstrInfo &);   // DO NOT IMPLEMENT
81public:
82  MachineInstrInfo(const MachineInstrDescriptor *desc, unsigned descSize,
83		   unsigned numRealOpCodes);
84  virtual ~MachineInstrInfo();
85
86  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
87  unsigned getNumTotalOpCodes() const { return descSize; }
88
89  /// get - Return the machine instruction descriptor that corresponds to the
90  /// specified instruction opcode.
91  ///
92  const MachineInstrDescriptor& get(MachineOpCode opCode) const {
93    assert(opCode >= 0 && opCode < (int)descSize);
94    return desc[opCode];
95  }
96
97  /// print - Print out the specified machine instruction in the appropriate
98  /// target specific assembly language.  If this method is not overridden, the
99  /// default implementation uses the crummy machine independant printer.
100  ///
101  virtual void print(const MachineInstr *MI, std::ostream &O,
102                     const TargetMachine &TM) const;
103
104  const char *getName(MachineOpCode opCode) const {
105    return get(opCode).Name;
106  }
107
108  int getNumOperands(MachineOpCode opCode) const {
109    return get(opCode).numOperands;
110  }
111
112  int getResultPos(MachineOpCode opCode) const {
113    return get(opCode).resultPos;
114  }
115
116  unsigned getNumDelaySlots(MachineOpCode opCode) const {
117    return get(opCode).numDelaySlots;
118  }
119
120  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
121    return get(opCode).schedClass;
122  }
123
124  //
125  // Query instruction class flags according to the machine-independent
126  // flags listed above.
127  //
128  bool isNop(MachineOpCode opCode) const {
129    return get(opCode).Flags & M_NOP_FLAG;
130  }
131  bool isBranch(MachineOpCode opCode) const {
132    return get(opCode).Flags & M_BRANCH_FLAG;
133  }
134  bool isCall(MachineOpCode opCode) const {
135    return get(opCode).Flags & M_CALL_FLAG;
136  }
137  bool isReturn(MachineOpCode opCode) const {
138    return get(opCode).Flags & M_RET_FLAG;
139  }
140  bool isControlFlow(MachineOpCode opCode) const {
141    return get(opCode).Flags & M_BRANCH_FLAG
142        || get(opCode).Flags & M_CALL_FLAG
143        || get(opCode).Flags & M_RET_FLAG;
144  }
145  bool isArith(MachineOpCode opCode) const {
146    return get(opCode).Flags & M_ARITH_FLAG;
147  }
148  bool isCCInstr(MachineOpCode opCode) const {
149    return get(opCode).Flags & M_CC_FLAG;
150  }
151  bool isLogical(MachineOpCode opCode) const {
152    return get(opCode).Flags & M_LOGICAL_FLAG;
153  }
154  bool isIntInstr(MachineOpCode opCode) const {
155    return get(opCode).Flags & M_INT_FLAG;
156  }
157  bool isFloatInstr(MachineOpCode opCode) const {
158    return get(opCode).Flags & M_FLOAT_FLAG;
159  }
160  bool isConditional(MachineOpCode opCode) const {
161    return get(opCode).Flags & M_CONDL_FLAG;
162  }
163  bool isLoad(MachineOpCode opCode) const {
164    return get(opCode).Flags & M_LOAD_FLAG;
165  }
166  bool isPrefetch(MachineOpCode opCode) const {
167    return get(opCode).Flags & M_PREFETCH_FLAG;
168  }
169  bool isLoadOrPrefetch(MachineOpCode opCode) const {
170    return get(opCode).Flags & M_LOAD_FLAG
171        || get(opCode).Flags & M_PREFETCH_FLAG;
172  }
173  bool isStore(MachineOpCode opCode) const {
174    return get(opCode).Flags & M_STORE_FLAG;
175  }
176  bool isMemoryAccess(MachineOpCode opCode) const {
177    return get(opCode).Flags & M_LOAD_FLAG
178        || get(opCode).Flags & M_PREFETCH_FLAG
179        || get(opCode).Flags & M_STORE_FLAG;
180  }
181  bool isDummyPhiInstr(const MachineOpCode opCode) const {
182    return get(opCode).Flags & M_DUMMY_PHI_FLAG;
183  }
184  bool isPseudoInstr(const MachineOpCode opCode) const {
185    return get(opCode).Flags & M_PSEUDO_FLAG;
186  }
187
188  // Check if an instruction can be issued before its operands are ready,
189  // or if a subsequent instruction that uses its result can be issued
190  // before the results are ready.
191  // Default to true since most instructions on many architectures allow this.
192  //
193  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
194    return true;
195  }
196
197  virtual bool hasResultInterlock(MachineOpCode opCode) const {
198    return true;
199  }
200
201  //
202  // Latencies for individual instructions and instruction pairs
203  //
204  virtual int minLatency(MachineOpCode opCode) const {
205    return get(opCode).latency;
206  }
207
208  virtual int maxLatency(MachineOpCode opCode) const {
209    return get(opCode).latency;
210  }
211
212  //
213  // Which operand holds an immediate constant?  Returns -1 if none
214  //
215  virtual int getImmedConstantPos(MachineOpCode opCode) const {
216    return -1; // immediate position is machine specific, so say -1 == "none"
217  }
218
219  // Check if the specified constant fits in the immediate field
220  // of this machine instruction
221  //
222  virtual bool constantFitsInImmedField(MachineOpCode opCode,
223					int64_t intValue) const;
224
225  // Return the largest +ve constant that can be held in the IMMMED field
226  // of this machine instruction.
227  // isSignExtended is set to true if the value is sign-extended before use
228  // (this is true for all immediate fields in SPARC instructions).
229  // Return 0 if the instruction has no IMMED field.
230  //
231  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
232				    bool &isSignExtended) const {
233    isSignExtended = get(opCode).immedIsSignExtended;
234    return get(opCode).maxImmedConst;
235  }
236
237  //-------------------------------------------------------------------------
238  // Queries about representation of LLVM quantities (e.g., constants)
239  //-------------------------------------------------------------------------
240
241  /// ConstantTypeMustBeLoaded - Test if this type of constant must be loaded
242  /// from memory into a register, i.e., cannot be set bitwise in register and
243  /// cannot use immediate fields of instructions.  Note that this only makes
244  /// sense for primitive types.
245  ///
246  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const;
247
248  // Test if this constant may not fit in the immediate field of the
249  // machine instructions (probably) generated for this instruction.
250  //
251  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
252                                             const Instruction* I) const {
253    return true;                        // safe but very conservative
254  }
255
256  //-------------------------------------------------------------------------
257  // Code generation support for creating individual machine instructions
258  //-------------------------------------------------------------------------
259
260  // Get certain common op codes for the current target.  this and all the
261  // Create* methods below should be moved to a machine code generation class
262  //
263  virtual MachineOpCode getNOPOpCode() const = 0;
264
265  // Create an instruction sequence to put the constant `val' into
266  // the virtual register `dest'.  `val' may be a Constant or a
267  // GlobalValue, viz., the constant address of a global variable or function.
268  // The generated instructions are returned in `mvec'.
269  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
270  // Symbolic constants or constants that must be accessed from memory
271  // are added to the constant pool via MachineFunction::get(F).
272  //
273  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
274                                      Function* F,
275                                      Value* val,
276                                      Instruction* dest,
277                                      std::vector<MachineInstr*>& mvec,
278                                      MachineCodeForInstruction& mcfi) const=0;
279
280  // Create an instruction sequence to copy an integer value `val'
281  // to a floating point value `dest' by copying to memory and back.
282  // val must be an integral type.  dest must be a Float or Double.
283  // The generated instructions are returned in `mvec'.
284  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
285  // Any stack space required is allocated via mcff.
286  //
287  virtual void  CreateCodeToCopyIntToFloat(const TargetMachine& target,
288                                       Function* F,
289                                       Value* val,
290                                       Instruction* dest,
291                                       std::vector<MachineInstr*>& mvec,
292                                       MachineCodeForInstruction& mcfi)const=0;
293
294  // Similarly, create an instruction sequence to copy an FP value
295  // `val' to an integer value `dest' by copying to memory and back.
296  // The generated instructions are returned in `mvec'.
297  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
298  // Any stack space required is allocated via mcff.
299  //
300  virtual void  CreateCodeToCopyFloatToInt(const TargetMachine& target,
301                                       Function* F,
302                                       Value* val,
303                                       Instruction* dest,
304                                       std::vector<MachineInstr*>& mvec,
305                                       MachineCodeForInstruction& mcfi)const=0;
306
307  // Create instruction(s) to copy src to dest, for arbitrary types
308  // The generated instructions are returned in `mvec'.
309  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
310  // Any stack space required is allocated via mcff.
311  //
312  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
313                                       Function* F,
314                                       Value* src,
315                                       Instruction* dest,
316                                       std::vector<MachineInstr*>& mvec,
317                                       MachineCodeForInstruction& mcfi)const=0;
318
319  // Create instruction sequence to produce a sign-extended register value
320  // from an arbitrary sized value (sized in bits, not bytes).
321  // The generated instructions are appended to `mvec'.
322  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
323  // Any stack space required is allocated via mcff.
324  //
325  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
326                                       Function* F,
327                                       Value* srcVal,
328                                       Value* destVal,
329                                       unsigned numLowBits,
330                                       std::vector<MachineInstr*>& mvec,
331                                       MachineCodeForInstruction& mcfi) const=0;
332
333  // Create instruction sequence to produce a zero-extended register value
334  // from an arbitrary sized value (sized in bits, not bytes).
335  // The generated instructions are appended to `mvec'.
336  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
337  // Any stack space required is allocated via mcff.
338  //
339  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
340                                       Function* F,
341                                       Value* srcVal,
342                                       Value* destVal,
343                                       unsigned srcSizeInBits,
344                                       std::vector<MachineInstr*>& mvec,
345                                       MachineCodeForInstruction& mcfi) const=0;
346};
347
348#endif
349