TargetLowering.h revision 00ffed0468ad406062b7c08c2ff46d79d2d1be4d
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/Support/DataTypes.h"
29#include <vector>
30
31namespace llvm {
32  class Value;
33  class Function;
34  class TargetMachine;
35  class TargetData;
36  class TargetRegisterClass;
37  class SDNode;
38  class SDOperand;
39  class SelectionDAG;
40  class MachineBasicBlock;
41  class MachineInstr;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData &getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// isSetCCExpensive - Return true if the setcc operation is expensive for
91  /// this target.
92  bool isSetCCExpensive() const { return SetCCIsExpensive; }
93
94  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
95  /// a sequence of several shifts, adds, and multiplies for this target.
96  bool isIntDivCheap() const { return IntDivIsCheap; }
97
98  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
99  /// srl/add/sra.
100  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
101
102  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
103  ///
104  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
105
106  /// getSetCCResultContents - For targets without boolean registers, this flag
107  /// returns information about the contents of the high-bits in the setcc
108  /// result register.
109  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
110
111  /// getSchedulingPreference - Return target scheduling preference.
112  SchedPreference getSchedulingPreference() const {
113    return SchedPreferenceInfo;
114  }
115
116  /// getRegClassFor - Return the register class that should be used for the
117  /// specified value type.  This may only be called on legal types.
118  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
119    TargetRegisterClass *RC = RegClassForVT[VT];
120    assert(RC && "This value type is not natively supported!");
121    return RC;
122  }
123
124  /// isTypeLegal - Return true if the target has native support for the
125  /// specified value type.  This means that it has a register that directly
126  /// holds it without promotions or expansions.
127  bool isTypeLegal(MVT::ValueType VT) const {
128    return RegClassForVT[VT] != 0;
129  }
130
131  class ValueTypeActionImpl {
132    /// ValueTypeActions - This is a bitvector that contains two bits for each
133    /// value type, where the two bits correspond to the LegalizeAction enum.
134    /// This can be queried with "getTypeAction(VT)".
135    uint32_t ValueTypeActions[2];
136  public:
137    ValueTypeActionImpl() {
138      ValueTypeActions[0] = ValueTypeActions[1] = 0;
139    }
140    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
141      ValueTypeActions[0] = RHS.ValueTypeActions[0];
142      ValueTypeActions[1] = RHS.ValueTypeActions[1];
143    }
144
145    LegalizeAction getTypeAction(MVT::ValueType VT) const {
146      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
147    }
148    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
149      assert(unsigned(VT >> 4) <
150             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
151      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
152    }
153  };
154
155  const ValueTypeActionImpl &getValueTypeActions() const {
156    return ValueTypeActions;
157  }
158
159  /// getTypeAction - Return how we should legalize values of this type, either
160  /// it is already legal (return 'Legal') or we need to promote it to a larger
161  /// type (return 'Promote'), or we need to expand it into multiple registers
162  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
163  LegalizeAction getTypeAction(MVT::ValueType VT) const {
164    return ValueTypeActions.getTypeAction(VT);
165  }
166
167  /// getTypeToTransformTo - For types supported by the target, this is an
168  /// identity function.  For types that must be promoted to larger types, this
169  /// returns the larger type to promote to.  For types that are larger than the
170  /// largest integer register, this contains one step in the expansion to get
171  /// to the smaller register.
172  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
173    return TransformToType[VT];
174  }
175
176  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
177  legal_fpimm_iterator legal_fpimm_begin() const {
178    return LegalFPImmediates.begin();
179  }
180  legal_fpimm_iterator legal_fpimm_end() const {
181    return LegalFPImmediates.end();
182  }
183
184  /// getOperationAction - Return how this operation should be treated: either
185  /// it is legal, needs to be promoted to a larger size, needs to be
186  /// expanded to some other code sequence, or the target has a custom expander
187  /// for it.
188  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
189    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
190  }
191
192  /// isOperationLegal - Return true if the specified operation is legal on this
193  /// target.
194  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
195    return getOperationAction(Op, VT) == Legal;
196  }
197
198  /// getTypeToPromoteTo - If the action for this operation is to promote, this
199  /// method returns the ValueType to promote to.
200  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
201    assert(getOperationAction(Op, VT) == Promote &&
202           "This operation isn't promoted!");
203    MVT::ValueType NVT = VT;
204    do {
205      NVT = (MVT::ValueType)(NVT+1);
206      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
207             "Didn't find type to promote to!");
208    } while (!isTypeLegal(NVT) ||
209              getOperationAction(Op, NVT) == Promote);
210    return NVT;
211  }
212
213  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
214  /// This is fixed by the LLVM operations except for the pointer size.
215  MVT::ValueType getValueType(const Type *Ty) const {
216    switch (Ty->getTypeID()) {
217    default: assert(0 && "Unknown type!");
218    case Type::VoidTyID:    return MVT::isVoid;
219    case Type::BoolTyID:    return MVT::i1;
220    case Type::UByteTyID:
221    case Type::SByteTyID:   return MVT::i8;
222    case Type::ShortTyID:
223    case Type::UShortTyID:  return MVT::i16;
224    case Type::IntTyID:
225    case Type::UIntTyID:    return MVT::i32;
226    case Type::LongTyID:
227    case Type::ULongTyID:   return MVT::i64;
228    case Type::FloatTyID:   return MVT::f32;
229    case Type::DoubleTyID:  return MVT::f64;
230    case Type::PointerTyID: return PointerTy;
231    case Type::PackedTyID:  return MVT::Vector;
232    }
233  }
234
235  /// getNumElements - Return the number of registers that this ValueType will
236  /// eventually require.  This is always one for all non-integer types, is
237  /// one for any types promoted to live in larger registers, but may be more
238  /// than one for types (like i64) that are split into pieces.
239  unsigned getNumElements(MVT::ValueType VT) const {
240    return NumElementsForVT[VT];
241  }
242
243  /// hasTargetDAGCombine - If true, the target has custom DAG combine
244  /// transformations that it can perform for the specified node.
245  bool hasTargetDAGCombine(ISD::NodeType NT) const {
246    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
247  }
248
249  /// This function returns the maximum number of store operations permitted
250  /// to replace a call to llvm.memset. The value is set by the target at the
251  /// performance threshold for such a replacement.
252  /// @brief Get maximum # of store operations permitted for llvm.memset
253  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
254
255  /// This function returns the maximum number of store operations permitted
256  /// to replace a call to llvm.memcpy. The value is set by the target at the
257  /// performance threshold for such a replacement.
258  /// @brief Get maximum # of store operations permitted for llvm.memcpy
259  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
260
261  /// This function returns the maximum number of store operations permitted
262  /// to replace a call to llvm.memmove. The value is set by the target at the
263  /// performance threshold for such a replacement.
264  /// @brief Get maximum # of store operations permitted for llvm.memmove
265  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
266
267  /// This function returns true if the target allows unaligned memory accesses.
268  /// This is used, for example, in situations where an array copy/move/set is
269  /// converted to a sequence of store operations. It's use helps to ensure that
270  /// such replacements don't generate code that causes an alignment error
271  /// (trap) on the target machine.
272  /// @brief Determine if the target supports unaligned memory accesses.
273  bool allowsUnalignedMemoryAccesses() const {
274    return allowUnalignedMemoryAccesses;
275  }
276
277  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
278  /// to implement llvm.setjmp.
279  bool usesUnderscoreSetJmpLongJmp() const {
280    return UseUnderscoreSetJmpLongJmp;
281  }
282
283  /// getStackPointerRegisterToSaveRestore - If a physical register, this
284  /// specifies the register that llvm.savestack/llvm.restorestack should save
285  /// and restore.
286  unsigned getStackPointerRegisterToSaveRestore() const {
287    return StackPointerRegisterToSaveRestore;
288  }
289
290  //===--------------------------------------------------------------------===//
291  // TargetLowering Optimization Methods
292  //
293
294  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
295  /// SDOperands for returning information from TargetLowering to its clients
296  /// that want to combine
297  struct TargetLoweringOpt {
298    SelectionDAG &DAG;
299    SDOperand Old;
300    SDOperand New;
301
302    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
303
304    bool CombineTo(SDOperand O, SDOperand N) {
305      Old = O;
306      New = N;
307      return true;
308    }
309
310    /// ShrinkDemandedConstant - Check to see if the specified operand of the
311    /// specified instruction is a constant integer.  If so, check to see if there
312    /// are any bits set in the constant that are not demanded.  If so, shrink the
313    /// constant and return true.
314    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
315  };
316
317  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
318  /// use this predicate to simplify operations downstream.  Op and Mask are
319  /// known to be the same type.
320  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
321    const;
322
323  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
324  /// known to be either zero or one and return them in the KnownZero/KnownOne
325  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
326  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
327  /// method, to allow target nodes to be understood.
328  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
329                         uint64_t &KnownOne, unsigned Depth = 0) const;
330
331  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
332  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
333  /// use this information to simplify Op, create a new simplified DAG node and
334  /// return true, returning the original and new nodes in Old and New.
335  /// Otherwise, analyze the expression and return a mask of KnownOne and
336  /// KnownZero bits for the expression (used to simplify the caller).
337  /// The KnownZero/One bits may only be accurate for those bits in the
338  /// DemandedMask.
339  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
340                            uint64_t &KnownZero, uint64_t &KnownOne,
341                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
342
343  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
344  /// Mask are known to be either zero or one and return them in the
345  /// KnownZero/KnownOne bitsets.
346  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
347                                              uint64_t Mask,
348                                              uint64_t &KnownZero,
349                                              uint64_t &KnownOne,
350                                              unsigned Depth = 0) const;
351
352  struct DAGCombinerInfo {
353    void *DC;  // The DAG Combiner object.
354    bool BeforeLegalize;
355  public:
356    SelectionDAG &DAG;
357
358    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
359      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
360
361    bool isBeforeLegalize() const { return BeforeLegalize; }
362
363    void AddToWorklist(SDNode *N);
364    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
365    SDOperand CombineTo(SDNode *N, SDOperand Res);
366    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
367  };
368
369  /// PerformDAGCombine - This method will be invoked for all target nodes and
370  /// for any target-independent nodes that the target has registered with
371  /// invoke it for.
372  ///
373  /// The semantics are as follows:
374  /// Return Value:
375  ///   SDOperand.Val == 0   - No change was made
376  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
377  ///   otherwise            - N should be replaced by the returned Operand.
378  ///
379  /// In addition, methods provided by DAGCombinerInfo may be used to perform
380  /// more complex transformations.
381  ///
382  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
383
384  //===--------------------------------------------------------------------===//
385  // TargetLowering Configuration Methods - These methods should be invoked by
386  // the derived class constructor to configure this object for the target.
387  //
388
389protected:
390
391  /// setShiftAmountType - Describe the type that should be used for shift
392  /// amounts.  This type defaults to the pointer type.
393  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
394
395  /// setSetCCResultType - Describe the type that shoudl be used as the result
396  /// of a setcc operation.  This defaults to the pointer type.
397  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
398
399  /// setSetCCResultContents - Specify how the target extends the result of a
400  /// setcc operation in a register.
401  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
402
403  /// setSchedulingPreference - Specify the target scheduling preference.
404  void setSchedulingPreference(SchedPreference Pref) {
405    SchedPreferenceInfo = Pref;
406  }
407
408  /// setShiftAmountFlavor - Describe how the target handles out of range shift
409  /// amounts.
410  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
411    ShiftAmtHandling = OORSA;
412  }
413
414  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
415  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
416  /// the non _ versions.  Defaults to false.
417  void setUseUnderscoreSetJmpLongJmp(bool Val) {
418    UseUnderscoreSetJmpLongJmp = Val;
419  }
420
421  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
422  /// specifies the register that llvm.savestack/llvm.restorestack should save
423  /// and restore.
424  void setStackPointerRegisterToSaveRestore(unsigned R) {
425    StackPointerRegisterToSaveRestore = R;
426  }
427
428  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
429  /// setcc as a conditional branch.  This encourages the code generator to fold
430  /// setcc operations into other operations if possible.
431  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
432
433  /// setIntDivIsCheap - Tells the code generator that integer divide is
434  /// expensive, and if possible, should be replaced by an alternate sequence
435  /// of instructions not containing an integer divide.
436  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
437
438  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
439  /// srl/add/sra for a signed divide by power of two, and let the target handle
440  /// it.
441  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
442
443  /// addRegisterClass - Add the specified register class as an available
444  /// regclass for the specified value type.  This indicates the selector can
445  /// handle values of that class natively.
446  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
447    AvailableRegClasses.push_back(std::make_pair(VT, RC));
448    RegClassForVT[VT] = RC;
449  }
450
451  /// computeRegisterProperties - Once all of the register classes are added,
452  /// this allows us to compute derived properties we expose.
453  void computeRegisterProperties();
454
455  /// setOperationAction - Indicate that the specified operation does not work
456  /// with the specified type and indicate what to do about it.
457  void setOperationAction(unsigned Op, MVT::ValueType VT,
458                          LegalizeAction Action) {
459    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
460           "Table isn't big enough!");
461    OpActions[Op] &= ~(3ULL << VT*2);
462    OpActions[Op] |= (uint64_t)Action << VT*2;
463  }
464
465  /// addLegalFPImmediate - Indicate that this target can instruction select
466  /// the specified FP immediate natively.
467  void addLegalFPImmediate(double Imm) {
468    LegalFPImmediates.push_back(Imm);
469  }
470
471  /// setTargetDAGCombine - Targets should invoke this method for each target
472  /// independent node that they want to provide a custom DAG combiner for by
473  /// implementing the PerformDAGCombine virtual method.
474  void setTargetDAGCombine(ISD::NodeType NT) {
475    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
476  }
477
478public:
479
480  //===--------------------------------------------------------------------===//
481  // Lowering methods - These methods must be implemented by targets so that
482  // the SelectionDAGLowering code knows how to lower these.
483  //
484
485  /// LowerArguments - This hook must be implemented to indicate how we should
486  /// lower the arguments for the specified function, into the specified DAG.
487  virtual std::vector<SDOperand>
488  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
489
490  /// LowerCallTo - This hook lowers an abstract call to a function into an
491  /// actual call.  This returns a pair of operands.  The first element is the
492  /// return value for the function (if RetTy is not VoidTy).  The second
493  /// element is the outgoing token chain.
494  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
495  virtual std::pair<SDOperand, SDOperand>
496  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
497              unsigned CallingConv, bool isTailCall, SDOperand Callee,
498              ArgListTy &Args, SelectionDAG &DAG) = 0;
499
500  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
501  /// llvm.frameaddress (depending on the value of the first argument).  The
502  /// return values are the result pointer and the resultant token chain.  If
503  /// not implemented, both of these intrinsics will return null.
504  virtual std::pair<SDOperand, SDOperand>
505  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
506                          SelectionDAG &DAG);
507
508  /// LowerOperation - This callback is invoked for operations that are
509  /// unsupported by the target, which are registered to use 'custom' lowering,
510  /// and whose defined values are all legal.
511  /// If the target has no operations that require custom lowering, it need not
512  /// implement this.  The default implementation of this aborts.
513  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
514
515  /// CustomPromoteOperation - This callback is invoked for operations that are
516  /// unsupported by the target, are registered to use 'custom' lowering, and
517  /// whose type needs to be promoted.
518  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
519
520  /// getTargetNodeName() - This method returns the name of a target specific
521  /// DAG node.
522  virtual const char *getTargetNodeName(unsigned Opcode) const;
523
524  //===--------------------------------------------------------------------===//
525  // Inline Asm Support hooks
526  //
527
528  enum ConstraintType {
529    C_Register,            // Constraint represents a single register.
530    C_RegisterClass,       // Constraint represents one or more registers.
531    C_Memory,              // Memory constraint.
532    C_Other,               // Something else.
533    C_Unknown              // Unsupported constraint.
534  };
535
536  /// getConstraintType - Given a constraint letter, return the type of
537  /// constraint it is for this target.
538  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
539
540
541  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
542  /// return a list of registers that can be used to satisfy the constraint.
543  /// This should only be used for C_RegisterClass constraints.
544  virtual std::vector<unsigned>
545  getRegClassForInlineAsmConstraint(const std::string &Constraint,
546                                    MVT::ValueType VT) const;
547
548  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
549  /// {edx}), return the register number and the register class for the
550  /// register.  This should only be used for C_Register constraints.  On error,
551  /// this returns a register number of 0.
552  virtual std::pair<unsigned, const TargetRegisterClass*>
553    getRegForInlineAsmConstraint(const std::string &Constraint,
554                                 MVT::ValueType VT) const;
555
556
557  /// isOperandValidForConstraint - Return true if the specified SDOperand is
558  /// valid for the specified target constraint letter.
559  virtual bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter);
560
561  //===--------------------------------------------------------------------===//
562  // Scheduler hooks
563  //
564
565  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
566  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
567  // instructions are special in various ways, which require special support to
568  // insert.  The specified MachineInstr is created but not inserted into any
569  // basic blocks, and the scheduler passes ownership of it to this method.
570  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
571                                                     MachineBasicBlock *MBB);
572
573private:
574  TargetMachine &TM;
575  const TargetData &TD;
576
577  /// IsLittleEndian - True if this is a little endian target.
578  ///
579  bool IsLittleEndian;
580
581  /// PointerTy - The type to use for pointers, usually i32 or i64.
582  ///
583  MVT::ValueType PointerTy;
584
585  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
586  /// PointerTy is.
587  MVT::ValueType ShiftAmountTy;
588
589  OutOfRangeShiftAmount ShiftAmtHandling;
590
591  /// SetCCIsExpensive - This is a short term hack for targets that codegen
592  /// setcc as a conditional branch.  This encourages the code generator to fold
593  /// setcc operations into other operations if possible.
594  bool SetCCIsExpensive;
595
596  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
597  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
598  /// a real cost model is in place.  If we ever optimize for size, this will be
599  /// set to true unconditionally.
600  bool IntDivIsCheap;
601
602  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
603  /// srl/add/sra for a signed divide by power of two, and let the target handle
604  /// it.
605  bool Pow2DivIsCheap;
606
607  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
608  /// PointerTy.
609  MVT::ValueType SetCCResultTy;
610
611  /// SetCCResultContents - Information about the contents of the high-bits in
612  /// the result of a setcc comparison operation.
613  SetCCResultValue SetCCResultContents;
614
615  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
616  /// total cycles or lowest register usage.
617  SchedPreference SchedPreferenceInfo;
618
619  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
620  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
621  bool UseUnderscoreSetJmpLongJmp;
622
623  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
624  /// specifies the register that llvm.savestack/llvm.restorestack should save
625  /// and restore.
626  unsigned StackPointerRegisterToSaveRestore;
627
628  /// RegClassForVT - This indicates the default register class to use for
629  /// each ValueType the target supports natively.
630  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
631  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
632
633  /// TransformToType - For any value types we are promoting or expanding, this
634  /// contains the value type that we are changing to.  For Expanded types, this
635  /// contains one step of the expand (e.g. i64 -> i32), even if there are
636  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
637  /// by the system, this holds the same type (e.g. i32 -> i32).
638  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
639
640  /// OpActions - For each operation and each value type, keep a LegalizeAction
641  /// that indicates how instruction selection should deal with the operation.
642  /// Most operations are Legal (aka, supported natively by the target), but
643  /// operations that are not should be described.  Note that operations on
644  /// non-legal value types are not described here.
645  uint64_t OpActions[128];
646
647  ValueTypeActionImpl ValueTypeActions;
648
649  std::vector<double> LegalFPImmediates;
650
651  std::vector<std::pair<MVT::ValueType,
652                        TargetRegisterClass*> > AvailableRegClasses;
653
654  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
655  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
656  /// which sets a bit in this array.
657  unsigned char TargetDAGCombineArray[128/(sizeof(unsigned char)*8)];
658
659protected:
660  /// When lowering %llvm.memset this field specifies the maximum number of
661  /// store operations that may be substituted for the call to memset. Targets
662  /// must set this value based on the cost threshold for that target. Targets
663  /// should assume that the memset will be done using as many of the largest
664  /// store operations first, followed by smaller ones, if necessary, per
665  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
666  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
667  /// store.  This only applies to setting a constant array of a constant size.
668  /// @brief Specify maximum number of store instructions per memset call.
669  unsigned maxStoresPerMemset;
670
671  /// When lowering %llvm.memcpy this field specifies the maximum number of
672  /// store operations that may be substituted for a call to memcpy. Targets
673  /// must set this value based on the cost threshold for that target. Targets
674  /// should assume that the memcpy will be done using as many of the largest
675  /// store operations first, followed by smaller ones, if necessary, per
676  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
677  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
678  /// and one 1-byte store. This only applies to copying a constant array of
679  /// constant size.
680  /// @brief Specify maximum bytes of store instructions per memcpy call.
681  unsigned maxStoresPerMemcpy;
682
683  /// When lowering %llvm.memmove this field specifies the maximum number of
684  /// store instructions that may be substituted for a call to memmove. Targets
685  /// must set this value based on the cost threshold for that target. Targets
686  /// should assume that the memmove will be done using as many of the largest
687  /// store operations first, followed by smaller ones, if necessary, per
688  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
689  /// with 8-bit alignment would result in nine 1-byte stores.  This only
690  /// applies to copying a constant array of constant size.
691  /// @brief Specify maximum bytes of store instructions per memmove call.
692  unsigned maxStoresPerMemmove;
693
694  /// This field specifies whether the target machine permits unaligned memory
695  /// accesses.  This is used, for example, to determine the size of store
696  /// operations when copying small arrays and other similar tasks.
697  /// @brief Indicate whether the target permits unaligned memory accesses.
698  bool allowUnalignedMemoryAccesses;
699};
700} // end llvm namespace
701
702#endif
703