TargetLowering.h revision 1317d26461a18424509ab1078ea361d1856e535d
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/AddressingMode.h"
27#include "llvm/Attributes.h"
28#include "llvm/CallingConv.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
82  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
94  /// target, and if not, what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector      // This vector should be widened into a larger vector.
104  };
105
106  /// LegalizeKind holds the legalization kind that needs to happen to EVT
107  /// in order to type-legalize it.
108  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  enum SelectSupportKind {
117    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
118    ScalarCondVectorVal,  // The target supports selects with a scalar condition
119                          // and vector values (ex: cmov).
120    VectorMaskSelect      // The target supports vector selects with a vector
121                          // mask (ex: x86 blends).
122  };
123
124  static ISD::NodeType getExtendForContent(BooleanContent Content) {
125    switch (Content) {
126    case UndefinedBooleanContent:
127      // Extend by adding rubbish bits.
128      return ISD::ANY_EXTEND;
129    case ZeroOrOneBooleanContent:
130      // Extend by adding zero bits.
131      return ISD::ZERO_EXTEND;
132    case ZeroOrNegativeOneBooleanContent:
133      // Extend by copying the sign bit.
134      return ISD::SIGN_EXTEND;
135    }
136    llvm_unreachable("Invalid content kind");
137  }
138
139  /// NOTE: The constructor takes ownership of TLOF.
140  explicit TargetLowering(const TargetMachine &TM,
141                          const TargetLoweringObjectFile *TLOF);
142  virtual ~TargetLowering();
143
144  const TargetMachine &getTargetMachine() const { return TM; }
145  const DataLayout *getDataLayout() const { return TD; }
146  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
147
148  bool isBigEndian() const { return !IsLittleEndian; }
149  bool isLittleEndian() const { return IsLittleEndian; }
150  // Return the pointer type for the given address space, defaults to
151  // the pointer type from the data layout.
152  // FIXME: The default needs to be removed once all the code is updated.
153  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
154  virtual MVT getShiftAmountTy(EVT LHSTy) const;
155
156  /// isSelectExpensive - Return true if the select operation is expensive for
157  /// this target.
158  bool isSelectExpensive() const { return SelectIsExpensive; }
159
160  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
161
162  /// shouldSplitVectorElementType - Return true if a vector of the given type
163  /// should be split (TypeSplitVector) instead of promoted
164  /// (TypePromoteInteger) during type legalization.
165  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
166
167  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
168  /// a sequence of several shifts, adds, and multiplies for this target.
169  bool isIntDivCheap() const { return IntDivIsCheap; }
170
171  /// isSlowDivBypassed - Returns true if target has indicated at least one
172  /// type should be bypassed.
173  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
174
175  /// getBypassSlowDivTypes - Returns map of slow types for division or
176  /// remainder with corresponding fast types
177  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
178    return BypassSlowDivWidths;
179  }
180
181  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
182  /// srl/add/sra.
183  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
184
185  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
186  /// that should be avoided.
187  bool isJumpExpensive() const { return JumpIsExpensive; }
188
189  /// isPredictableSelectExpensive - Return true if selects are only cheaper
190  /// than branches if the branch is unlikely to be predicted right.
191  bool isPredictableSelectExpensive() const {
192    return predictableSelectIsExpensive;
193  }
194
195  /// getSetCCResultType - Return the ValueType of the result of SETCC
196  /// operations.  Also used to obtain the target's preferred type for
197  /// the condition operand of SELECT and BRCOND nodes.  In the case of
198  /// BRCOND the argument passed is MVT::Other since there are no other
199  /// operands to get a type hint from.
200  virtual EVT getSetCCResultType(EVT VT) const;
201
202  /// getCmpLibcallReturnType - Return the ValueType for comparison
203  /// libcalls. Comparions libcalls include floating point comparion calls,
204  /// and Ordered/Unordered check calls on floating point numbers.
205  virtual
206  MVT::SimpleValueType getCmpLibcallReturnType() const;
207
208  /// getBooleanContents - For targets without i1 registers, this gives the
209  /// nature of the high-bits of boolean values held in types wider than i1.
210  /// "Boolean values" are special true/false values produced by nodes like
211  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
212  /// Not to be confused with general values promoted from i1.
213  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
214  /// parameter selects between the two kinds.  For example on X86 a scalar
215  /// boolean should be zero extended from i1, while the elements of a vector
216  /// of booleans should be sign extended from i1.
217  BooleanContent getBooleanContents(bool isVec) const {
218    return isVec ? BooleanVectorContents : BooleanContents;
219  }
220
221  /// getSchedulingPreference - Return target scheduling preference.
222  Sched::Preference getSchedulingPreference() const {
223    return SchedPreferenceInfo;
224  }
225
226  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
227  /// different scheduling heuristics for different nodes. This function returns
228  /// the preference (or none) for the given node.
229  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
230    return Sched::None;
231  }
232
233  /// getRegClassFor - Return the register class that should be used for the
234  /// specified value type.
235  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
236    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
237    assert(RC && "This value type is not natively supported!");
238    return RC;
239  }
240
241  /// getRepRegClassFor - Return the 'representative' register class for the
242  /// specified value type. The 'representative' register class is the largest
243  /// legal super-reg register class for the register class of the value type.
244  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
245  /// while the rep register class is GR64 on x86_64.
246  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
247    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
248    return RC;
249  }
250
251  /// getRepRegClassCostFor - Return the cost of the 'representative' register
252  /// class for the specified value type.
253  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
254    return RepRegClassCostForVT[VT.SimpleTy];
255  }
256
257  /// isTypeLegal - Return true if the target has native support for the
258  /// specified value type.  This means that it has a register that directly
259  /// holds it without promotions or expansions.
260  bool isTypeLegal(EVT VT) const {
261    assert(!VT.isSimple() ||
262           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
263    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
264  }
265
266  class ValueTypeActionImpl {
267    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
268    /// that indicates how instruction selection should deal with the type.
269    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
270
271  public:
272    ValueTypeActionImpl() {
273      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
274    }
275
276    LegalizeTypeAction getTypeAction(MVT VT) const {
277      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
278    }
279
280    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
281      unsigned I = VT.SimpleTy;
282      ValueTypeActions[I] = Action;
283    }
284  };
285
286  const ValueTypeActionImpl &getValueTypeActions() const {
287    return ValueTypeActions;
288  }
289
290  /// getTypeAction - Return how we should legalize values of this type, either
291  /// it is already legal (return 'Legal') or we need to promote it to a larger
292  /// type (return 'Promote'), or we need to expand it into multiple registers
293  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
294  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
295    return getTypeConversion(Context, VT).first;
296  }
297  LegalizeTypeAction getTypeAction(MVT VT) const {
298    return ValueTypeActions.getTypeAction(VT);
299  }
300
301  /// getTypeToTransformTo - For types supported by the target, this is an
302  /// identity function.  For types that must be promoted to larger types, this
303  /// returns the larger type to promote to.  For integer types that are larger
304  /// than the largest integer register, this contains one step in the expansion
305  /// to get to the smaller register. For illegal floating point types, this
306  /// returns the integer type to transform to.
307  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
308    return getTypeConversion(Context, VT).second;
309  }
310
311  /// getTypeToExpandTo - For types supported by the target, this is an
312  /// identity function.  For types that must be expanded (i.e. integer types
313  /// that are larger than the largest integer register or illegal floating
314  /// point types), this returns the largest legal type it will be expanded to.
315  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
316    assert(!VT.isVector());
317    while (true) {
318      switch (getTypeAction(Context, VT)) {
319      case TypeLegal:
320        return VT;
321      case TypeExpandInteger:
322        VT = getTypeToTransformTo(Context, VT);
323        break;
324      default:
325        llvm_unreachable("Type is not legal nor is it to be expanded!");
326      }
327    }
328  }
329
330  /// getVectorTypeBreakdown - Vector types are broken down into some number of
331  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
332  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
333  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
334  ///
335  /// This method returns the number of registers needed, and the VT for each
336  /// register.  It also returns the VT and quantity of the intermediate values
337  /// before they are promoted/expanded.
338  ///
339  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
340                                  EVT &IntermediateVT,
341                                  unsigned &NumIntermediates,
342                                  EVT &RegisterVT) const;
343
344  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
345  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
346  /// this is the case, it returns true and store the intrinsic
347  /// information into the IntrinsicInfo that was passed to the function.
348  struct IntrinsicInfo {
349    unsigned     opc;         // target opcode
350    EVT          memVT;       // memory VT
351    const Value* ptrVal;      // value representing memory location
352    int          offset;      // offset off of ptrVal
353    unsigned     align;       // alignment
354    bool         vol;         // is volatile?
355    bool         readMem;     // reads memory?
356    bool         writeMem;    // writes memory?
357  };
358
359  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
360                                  unsigned /*Intrinsic*/) const {
361    return false;
362  }
363
364  /// isFPImmLegal - Returns true if the target can instruction select the
365  /// specified FP immediate natively. If false, the legalizer will materialize
366  /// the FP immediate as a load from a constant pool.
367  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
368    return false;
369  }
370
371  /// isShuffleMaskLegal - Targets can use this to indicate that they only
372  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
373  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
374  /// are assumed to be legal.
375  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
376                                  EVT /*VT*/) const {
377    return true;
378  }
379
380  /// canOpTrap - Returns true if the operation can trap for the value type.
381  /// VT must be a legal type. By default, we optimistically assume most
382  /// operations don't trap except for divide and remainder.
383  virtual bool canOpTrap(unsigned Op, EVT VT) const;
384
385  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
386  /// used by Targets can use this to indicate if there is a suitable
387  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
388  /// pool entry.
389  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
390                                      EVT /*VT*/) const {
391    return false;
392  }
393
394  /// getOperationAction - Return how this operation should be treated: either
395  /// it is legal, needs to be promoted to a larger size, needs to be
396  /// expanded to some other code sequence, or the target has a custom expander
397  /// for it.
398  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
399    if (VT.isExtended()) return Expand;
400    // If a target-specific SDNode requires legalization, require the target
401    // to provide custom legalization for it.
402    if (Op > array_lengthof(OpActions[0])) return Custom;
403    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
404    return (LegalizeAction)OpActions[I][Op];
405  }
406
407  /// isOperationLegalOrCustom - Return true if the specified operation is
408  /// legal on this target or can be made legal with custom lowering. This
409  /// is used to help guide high-level lowering decisions.
410  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
411    return (VT == MVT::Other || isTypeLegal(VT)) &&
412      (getOperationAction(Op, VT) == Legal ||
413       getOperationAction(Op, VT) == Custom);
414  }
415
416  /// isOperationExpand - Return true if the specified operation is illegal on
417  /// this target or unlikely to be made legal with custom lowering. This is
418  /// used to help guide high-level lowering decisions.
419  bool isOperationExpand(unsigned Op, EVT VT) const {
420    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
421  }
422
423  /// isOperationLegal - Return true if the specified operation is legal on this
424  /// target.
425  bool isOperationLegal(unsigned Op, EVT VT) const {
426    return (VT == MVT::Other || isTypeLegal(VT)) &&
427           getOperationAction(Op, VT) == Legal;
428  }
429
430  /// getLoadExtAction - Return how this load with extension should be treated:
431  /// either it is legal, needs to be promoted to a larger size, needs to be
432  /// expanded to some other code sequence, or the target has a custom expander
433  /// for it.
434  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
435    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
436           "Table isn't big enough!");
437    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
438  }
439
440  /// isLoadExtLegal - Return true if the specified load with extension is legal
441  /// on this target.
442  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
443    return VT.isSimple() &&
444      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
445  }
446
447  /// getTruncStoreAction - Return how this store with truncation should be
448  /// treated: either it is legal, needs to be promoted to a larger size, needs
449  /// to be expanded to some other code sequence, or the target has a custom
450  /// expander for it.
451  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
452    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
453           "Table isn't big enough!");
454    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
455                                            [MemVT.SimpleTy];
456  }
457
458  /// isTruncStoreLegal - Return true if the specified store with truncation is
459  /// legal on this target.
460  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
461    return isTypeLegal(ValVT) && MemVT.isSimple() &&
462      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
463  }
464
465  /// getIndexedLoadAction - Return how the indexed load should be treated:
466  /// either it is legal, needs to be promoted to a larger size, needs to be
467  /// expanded to some other code sequence, or the target has a custom expander
468  /// for it.
469  LegalizeAction
470  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
471    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
472           "Table isn't big enough!");
473    unsigned Ty = (unsigned)VT.SimpleTy;
474    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
475  }
476
477  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
478  /// on this target.
479  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
480    return VT.isSimple() &&
481      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
482       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
483  }
484
485  /// getIndexedStoreAction - Return how the indexed store should be treated:
486  /// either it is legal, needs to be promoted to a larger size, needs to be
487  /// expanded to some other code sequence, or the target has a custom expander
488  /// for it.
489  LegalizeAction
490  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
491    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
492           "Table isn't big enough!");
493    unsigned Ty = (unsigned)VT.SimpleTy;
494    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
495  }
496
497  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
498  /// on this target.
499  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
500    return VT.isSimple() &&
501      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
502       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
503  }
504
505  /// getCondCodeAction - Return how the condition code should be treated:
506  /// either it is legal, needs to be expanded to some other code sequence,
507  /// or the target has a custom expander for it.
508  LegalizeAction
509  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
510    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
511           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
512           "Table isn't big enough!");
513    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
514    /// value and the upper 27 bits index into the second dimension of the
515    /// array to select what 64bit value to use.
516    LegalizeAction Action = (LegalizeAction)
517      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
518    assert(Action != Promote && "Can't promote condition code!");
519    return Action;
520  }
521
522  /// isCondCodeLegal - Return true if the specified condition code is legal
523  /// on this target.
524  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
525    return
526      getCondCodeAction(CC, VT) == Legal ||
527      getCondCodeAction(CC, VT) == Custom;
528  }
529
530
531  /// getTypeToPromoteTo - If the action for this operation is to promote, this
532  /// method returns the ValueType to promote to.
533  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
534    assert(getOperationAction(Op, VT) == Promote &&
535           "This operation isn't promoted!");
536
537    // See if this has an explicit type specified.
538    std::map<std::pair<unsigned, MVT::SimpleValueType>,
539             MVT::SimpleValueType>::const_iterator PTTI =
540      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
541    if (PTTI != PromoteToType.end()) return PTTI->second;
542
543    assert((VT.isInteger() || VT.isFloatingPoint()) &&
544           "Cannot autopromote this type, add it with AddPromotedToType.");
545
546    MVT NVT = VT;
547    do {
548      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
549      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
550             "Didn't find type to promote to!");
551    } while (!isTypeLegal(NVT) ||
552              getOperationAction(Op, NVT) == Promote);
553    return NVT;
554  }
555
556  /// getValueType - Return the EVT corresponding to this LLVM type.
557  /// This is fixed by the LLVM operations except for the pointer size.  If
558  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
559  /// counterpart (e.g. structs), otherwise it will assert.
560  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
561    // Lower scalar pointers to native pointer types.
562    if (Ty->isPointerTy()) return PointerTy;
563
564    if (Ty->isVectorTy()) {
565      VectorType *VTy = cast<VectorType>(Ty);
566      Type *Elm = VTy->getElementType();
567      // Lower vectors of pointers to native pointer types.
568      if (Elm->isPointerTy())
569        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
570      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
571                       VTy->getNumElements());
572    }
573    return EVT::getEVT(Ty, AllowUnknown);
574  }
575
576  /// Return the MVT corresponding to this LLVM type. See getValueType.
577  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
578    return getValueType(Ty, AllowUnknown).getSimpleVT();
579  }
580
581  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
582  /// function arguments in the caller parameter area.  This is the actual
583  /// alignment, not its logarithm.
584  virtual unsigned getByValTypeAlignment(Type *Ty) const;
585
586  /// getRegisterType - Return the type of registers that this ValueType will
587  /// eventually require.
588  EVT getRegisterType(MVT VT) const {
589    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
590    return RegisterTypeForVT[VT.SimpleTy];
591  }
592
593  /// getRegisterType - Return the type of registers that this ValueType will
594  /// eventually require.
595  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
596    if (VT.isSimple()) {
597      assert((unsigned)VT.getSimpleVT().SimpleTy <
598                array_lengthof(RegisterTypeForVT));
599      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
600    }
601    if (VT.isVector()) {
602      EVT VT1, RegisterVT;
603      unsigned NumIntermediates;
604      (void)getVectorTypeBreakdown(Context, VT, VT1,
605                                   NumIntermediates, RegisterVT);
606      return RegisterVT;
607    }
608    if (VT.isInteger()) {
609      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
610    }
611    llvm_unreachable("Unsupported extended type!");
612  }
613
614  /// getNumRegisters - Return the number of registers that this ValueType will
615  /// eventually require.  This is one for any types promoted to live in larger
616  /// registers, but may be more than one for types (like i64) that are split
617  /// into pieces.  For types like i140, which are first promoted then expanded,
618  /// it is the number of registers needed to hold all the bits of the original
619  /// type.  For an i140 on a 32 bit machine this means 5 registers.
620  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
621    if (VT.isSimple()) {
622      assert((unsigned)VT.getSimpleVT().SimpleTy <
623                array_lengthof(NumRegistersForVT));
624      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
625    }
626    if (VT.isVector()) {
627      EVT VT1, VT2;
628      unsigned NumIntermediates;
629      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
630    }
631    if (VT.isInteger()) {
632      unsigned BitWidth = VT.getSizeInBits();
633      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
634      return (BitWidth + RegWidth - 1) / RegWidth;
635    }
636    llvm_unreachable("Unsupported extended type!");
637  }
638
639  /// ShouldShrinkFPConstant - If true, then instruction selection should
640  /// seek to shrink the FP constant of the specified type to a smaller type
641  /// in order to save space and / or reduce runtime.
642  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
643
644  /// hasTargetDAGCombine - If true, the target has custom DAG combine
645  /// transformations that it can perform for the specified node.
646  bool hasTargetDAGCombine(ISD::NodeType NT) const {
647    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
648    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
649  }
650
651  /// This function returns the maximum number of store operations permitted
652  /// to replace a call to llvm.memset. The value is set by the target at the
653  /// performance threshold for such a replacement. If OptSize is true,
654  /// return the limit for functions that have OptSize attribute.
655  /// @brief Get maximum # of store operations permitted for llvm.memset
656  unsigned getMaxStoresPerMemset(bool OptSize) const {
657    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
658  }
659
660  /// This function returns the maximum number of store operations permitted
661  /// to replace a call to llvm.memcpy. The value is set by the target at the
662  /// performance threshold for such a replacement. If OptSize is true,
663  /// return the limit for functions that have OptSize attribute.
664  /// @brief Get maximum # of store operations permitted for llvm.memcpy
665  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
666    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
667  }
668
669  /// This function returns the maximum number of store operations permitted
670  /// to replace a call to llvm.memmove. The value is set by the target at the
671  /// performance threshold for such a replacement. If OptSize is true,
672  /// return the limit for functions that have OptSize attribute.
673  /// @brief Get maximum # of store operations permitted for llvm.memmove
674  unsigned getMaxStoresPerMemmove(bool OptSize) const {
675    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
676  }
677
678  /// This function returns true if the target allows unaligned memory accesses.
679  /// of the specified type. If true, it also returns whether the unaligned
680  /// memory access is "fast" in the second argument by reference. This is used,
681  /// for example, in situations where an array copy/move/set is  converted to a
682  /// sequence of store operations. It's use helps to ensure that such
683  /// replacements don't generate code that causes an alignment error  (trap) on
684  /// the target machine.
685  /// @brief Determine if the target supports unaligned memory accesses.
686  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
687    return false;
688  }
689
690  /// This function returns true if the target would benefit from code placement
691  /// optimization.
692  /// @brief Determine if the target should perform code placement optimization.
693  bool shouldOptimizeCodePlacement() const {
694    return benefitFromCodePlacementOpt;
695  }
696
697  /// getOptimalMemOpType - Returns the target specific optimal type for load
698  /// and store operations as a result of memset, memcpy, and memmove
699  /// lowering. If DstAlign is zero that means it's safe to destination
700  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
701  /// means there isn't a need to check it against alignment requirement,
702  /// probably because the source does not need to be loaded. If 'IsMemset' is
703  /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
704  /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
705  /// source is constant so it does not need to be loaded.
706  /// It returns EVT::Other if the type should be determined using generic
707  /// target-independent logic.
708  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
709                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
710                                  bool /*IsMemset*/,
711                                  bool /*ZeroMemset*/,
712                                  bool /*MemcpyStrSrc*/,
713                                  MachineFunction &/*MF*/) const {
714    return MVT::Other;
715  }
716
717  /// isSafeMemOpType - Returns true if it's safe to use load / store of the
718  /// specified type to expand memcpy / memset inline. This is mostly true
719  /// for all types except for some special cases. For example, on X86
720  /// targets without SSE2 f64 load / store are done with fldl / fstpl which
721  /// also does type conversion. Note the specified type doesn't have to be
722  /// legal as the hook is used before type legalization.
723  virtual bool isSafeMemOpType(MVT VT) const {
724    return true;
725  }
726
727  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
728  /// to implement llvm.setjmp.
729  bool usesUnderscoreSetJmp() const {
730    return UseUnderscoreSetJmp;
731  }
732
733  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
734  /// to implement llvm.longjmp.
735  bool usesUnderscoreLongJmp() const {
736    return UseUnderscoreLongJmp;
737  }
738
739  /// supportJumpTables - return whether the target can generate code for
740  /// jump tables.
741  bool supportJumpTables() const {
742    return SupportJumpTables;
743  }
744
745  /// getMinimumJumpTableEntries - return integer threshold on number of
746  /// blocks to use jump tables rather than if sequence.
747  int getMinimumJumpTableEntries() const {
748    return MinimumJumpTableEntries;
749  }
750
751  /// getStackPointerRegisterToSaveRestore - If a physical register, this
752  /// specifies the register that llvm.savestack/llvm.restorestack should save
753  /// and restore.
754  unsigned getStackPointerRegisterToSaveRestore() const {
755    return StackPointerRegisterToSaveRestore;
756  }
757
758  /// getExceptionPointerRegister - If a physical register, this returns
759  /// the register that receives the exception address on entry to a landing
760  /// pad.
761  unsigned getExceptionPointerRegister() const {
762    return ExceptionPointerRegister;
763  }
764
765  /// getExceptionSelectorRegister - If a physical register, this returns
766  /// the register that receives the exception typeid on entry to a landing
767  /// pad.
768  unsigned getExceptionSelectorRegister() const {
769    return ExceptionSelectorRegister;
770  }
771
772  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
773  /// set, the default is 200)
774  unsigned getJumpBufSize() const {
775    return JumpBufSize;
776  }
777
778  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
779  /// (if never set, the default is 0)
780  unsigned getJumpBufAlignment() const {
781    return JumpBufAlignment;
782  }
783
784  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
785  /// argument.
786  unsigned getMinStackArgumentAlignment() const {
787    return MinStackArgumentAlignment;
788  }
789
790  /// getMinFunctionAlignment - return the minimum function alignment.
791  ///
792  unsigned getMinFunctionAlignment() const {
793    return MinFunctionAlignment;
794  }
795
796  /// getPrefFunctionAlignment - return the preferred function alignment.
797  ///
798  unsigned getPrefFunctionAlignment() const {
799    return PrefFunctionAlignment;
800  }
801
802  /// getPrefLoopAlignment - return the preferred loop alignment.
803  ///
804  unsigned getPrefLoopAlignment() const {
805    return PrefLoopAlignment;
806  }
807
808  /// getShouldFoldAtomicFences - return whether the combiner should fold
809  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
810  ///
811  bool getShouldFoldAtomicFences() const {
812    return ShouldFoldAtomicFences;
813  }
814
815  /// getInsertFencesFor - return whether the DAG builder should automatically
816  /// insert fences and reduce ordering for atomics.
817  ///
818  bool getInsertFencesForAtomic() const {
819    return InsertFencesForAtomic;
820  }
821
822  /// getPreIndexedAddressParts - returns true by value, base pointer and
823  /// offset pointer and addressing mode by reference if the node's address
824  /// can be legally represented as pre-indexed load / store address.
825  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
826                                         SDValue &/*Offset*/,
827                                         ISD::MemIndexedMode &/*AM*/,
828                                         SelectionDAG &/*DAG*/) const {
829    return false;
830  }
831
832  /// getPostIndexedAddressParts - returns true by value, base pointer and
833  /// offset pointer and addressing mode by reference if this node can be
834  /// combined with a load / store to form a post-indexed load / store.
835  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
836                                          SDValue &/*Base*/, SDValue &/*Offset*/,
837                                          ISD::MemIndexedMode &/*AM*/,
838                                          SelectionDAG &/*DAG*/) const {
839    return false;
840  }
841
842  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
843  /// current function.  The returned value is a member of the
844  /// MachineJumpTableInfo::JTEntryKind enum.
845  virtual unsigned getJumpTableEncoding() const;
846
847  virtual const MCExpr *
848  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
849                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
850                            MCContext &/*Ctx*/) const {
851    llvm_unreachable("Need to implement this hook if target has custom JTIs");
852  }
853
854  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
855  /// jumptable.
856  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
857                                           SelectionDAG &DAG) const;
858
859  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
860  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
861  /// MCExpr.
862  virtual const MCExpr *
863  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
864                               unsigned JTI, MCContext &Ctx) const;
865
866  /// isOffsetFoldingLegal - Return true if folding a constant offset
867  /// with the given GlobalAddress is legal.  It is frequently not legal in
868  /// PIC relocation models.
869  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
870
871  /// getStackCookieLocation - Return true if the target stores stack
872  /// protector cookies at a fixed offset in some non-standard address
873  /// space, and populates the address space and offset as
874  /// appropriate.
875  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
876                                      unsigned &/*Offset*/) const {
877    return false;
878  }
879
880  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
881  /// used for loads / stores from the global.
882  virtual unsigned getMaximalGlobalOffset() const {
883    return 0;
884  }
885
886  //===--------------------------------------------------------------------===//
887  // TargetLowering Optimization Methods
888  //
889
890  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
891  /// SDValues for returning information from TargetLowering to its clients
892  /// that want to combine
893  struct TargetLoweringOpt {
894    SelectionDAG &DAG;
895    bool LegalTys;
896    bool LegalOps;
897    SDValue Old;
898    SDValue New;
899
900    explicit TargetLoweringOpt(SelectionDAG &InDAG,
901                               bool LT, bool LO) :
902      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
903
904    bool LegalTypes() const { return LegalTys; }
905    bool LegalOperations() const { return LegalOps; }
906
907    bool CombineTo(SDValue O, SDValue N) {
908      Old = O;
909      New = N;
910      return true;
911    }
912
913    /// ShrinkDemandedConstant - Check to see if the specified operand of the
914    /// specified instruction is a constant integer.  If so, check to see if
915    /// there are any bits set in the constant that are not demanded.  If so,
916    /// shrink the constant and return true.
917    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
918
919    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
920    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
921    /// cast, but it could be generalized for targets with other types of
922    /// implicit widening casts.
923    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
924                          DebugLoc dl);
925  };
926
927  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
928  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
929  /// use this information to simplify Op, create a new simplified DAG node and
930  /// return true, returning the original and new nodes in Old and New.
931  /// Otherwise, analyze the expression and return a mask of KnownOne and
932  /// KnownZero bits for the expression (used to simplify the caller).
933  /// The KnownZero/One bits may only be accurate for those bits in the
934  /// DemandedMask.
935  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
936                            APInt &KnownZero, APInt &KnownOne,
937                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
938
939  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
940  /// Mask are known to be either zero or one and return them in the
941  /// KnownZero/KnownOne bitsets.
942  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
943                                              APInt &KnownZero,
944                                              APInt &KnownOne,
945                                              const SelectionDAG &DAG,
946                                              unsigned Depth = 0) const;
947
948  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
949  /// targets that want to expose additional information about sign bits to the
950  /// DAG Combiner.
951  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
952                                                   unsigned Depth = 0) const;
953
954  struct DAGCombinerInfo {
955    void *DC;  // The DAG Combiner object.
956    bool BeforeLegalize;
957    bool BeforeLegalizeOps;
958    bool CalledByLegalizer;
959  public:
960    SelectionDAG &DAG;
961
962    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
963      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
964        CalledByLegalizer(cl), DAG(dag) {}
965
966    bool isBeforeLegalize() const { return BeforeLegalize; }
967    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
968    bool isCalledByLegalizer() const { return CalledByLegalizer; }
969
970    void AddToWorklist(SDNode *N);
971    void RemoveFromWorklist(SDNode *N);
972    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
973                      bool AddTo = true);
974    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
975    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
976
977    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
978  };
979
980  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
981  /// and cc. If it is unable to simplify it, return a null SDValue.
982  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
983                          ISD::CondCode Cond, bool foldBooleans,
984                          DAGCombinerInfo &DCI, DebugLoc dl) const;
985
986  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
987  /// node is a GlobalAddress + offset.
988  virtual bool
989  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
990
991  /// PerformDAGCombine - This method will be invoked for all target nodes and
992  /// for any target-independent nodes that the target has registered with
993  /// invoke it for.
994  ///
995  /// The semantics are as follows:
996  /// Return Value:
997  ///   SDValue.Val == 0   - No change was made
998  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
999  ///   otherwise          - N should be replaced by the returned Operand.
1000  ///
1001  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1002  /// more complex transformations.
1003  ///
1004  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1005
1006  /// isTypeDesirableForOp - Return true if the target has native support for
1007  /// the specified value type and it is 'desirable' to use the type for the
1008  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1009  /// instruction encodings are longer and some i16 instructions are slow.
1010  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1011    // By default, assume all legal types are desirable.
1012    return isTypeLegal(VT);
1013  }
1014
1015  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1016  /// to transform a floating point op of specified opcode to a equivalent op of
1017  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1018  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1019                                                 EVT /*VT*/) const {
1020    return false;
1021  }
1022
1023  /// IsDesirableToPromoteOp - This method query the target whether it is
1024  /// beneficial for dag combiner to promote the specified node. If true, it
1025  /// should return the desired promotion type by reference.
1026  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1027    return false;
1028  }
1029
1030  //===--------------------------------------------------------------------===//
1031  // TargetLowering Configuration Methods - These methods should be invoked by
1032  // the derived class constructor to configure this object for the target.
1033  //
1034
1035protected:
1036  /// setBooleanContents - Specify how the target extends the result of a
1037  /// boolean value from i1 to a wider type.  See getBooleanContents.
1038  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1039  /// setBooleanVectorContents - Specify how the target extends the result
1040  /// of a vector boolean value from a vector of i1 to a wider type.  See
1041  /// getBooleanContents.
1042  void setBooleanVectorContents(BooleanContent Ty) {
1043    BooleanVectorContents = Ty;
1044  }
1045
1046  /// setSchedulingPreference - Specify the target scheduling preference.
1047  void setSchedulingPreference(Sched::Preference Pref) {
1048    SchedPreferenceInfo = Pref;
1049  }
1050
1051  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1052  /// use _setjmp to implement llvm.setjmp or the non _ version.
1053  /// Defaults to false.
1054  void setUseUnderscoreSetJmp(bool Val) {
1055    UseUnderscoreSetJmp = Val;
1056  }
1057
1058  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1059  /// use _longjmp to implement llvm.longjmp or the non _ version.
1060  /// Defaults to false.
1061  void setUseUnderscoreLongJmp(bool Val) {
1062    UseUnderscoreLongJmp = Val;
1063  }
1064
1065  /// setSupportJumpTables - Indicate whether the target can generate code for
1066  /// jump tables.
1067  void setSupportJumpTables(bool Val) {
1068    SupportJumpTables = Val;
1069  }
1070
1071  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1072  /// jump tables rather than if sequence.
1073  void setMinimumJumpTableEntries(int Val) {
1074    MinimumJumpTableEntries = Val;
1075  }
1076
1077  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1078  /// specifies the register that llvm.savestack/llvm.restorestack should save
1079  /// and restore.
1080  void setStackPointerRegisterToSaveRestore(unsigned R) {
1081    StackPointerRegisterToSaveRestore = R;
1082  }
1083
1084  /// setExceptionPointerRegister - If set to a physical register, this sets
1085  /// the register that receives the exception address on entry to a landing
1086  /// pad.
1087  void setExceptionPointerRegister(unsigned R) {
1088    ExceptionPointerRegister = R;
1089  }
1090
1091  /// setExceptionSelectorRegister - If set to a physical register, this sets
1092  /// the register that receives the exception typeid on entry to a landing
1093  /// pad.
1094  void setExceptionSelectorRegister(unsigned R) {
1095    ExceptionSelectorRegister = R;
1096  }
1097
1098  /// SelectIsExpensive - Tells the code generator not to expand operations
1099  /// into sequences that use the select operations if possible.
1100  void setSelectIsExpensive(bool isExpensive = true) {
1101    SelectIsExpensive = isExpensive;
1102  }
1103
1104  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1105  /// operations into a separate sequences that increases the amount of
1106  /// flow control.
1107  void setJumpIsExpensive(bool isExpensive = true) {
1108    JumpIsExpensive = isExpensive;
1109  }
1110
1111  /// setIntDivIsCheap - Tells the code generator that integer divide is
1112  /// expensive, and if possible, should be replaced by an alternate sequence
1113  /// of instructions not containing an integer divide.
1114  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1115
1116  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1117  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1118    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1119  }
1120
1121  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1122  /// srl/add/sra for a signed divide by power of two, and let the target handle
1123  /// it.
1124  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1125
1126  /// addRegisterClass - Add the specified register class as an available
1127  /// regclass for the specified value type.  This indicates the selector can
1128  /// handle values of that class natively.
1129  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1130    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1131    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1132    RegClassForVT[VT.SimpleTy] = RC;
1133  }
1134
1135  /// findRepresentativeClass - Return the largest legal super-reg register class
1136  /// of the register class for the specified type and its associated "cost".
1137  virtual std::pair<const TargetRegisterClass*, uint8_t>
1138  findRepresentativeClass(MVT VT) const;
1139
1140  /// computeRegisterProperties - Once all of the register classes are added,
1141  /// this allows us to compute derived properties we expose.
1142  void computeRegisterProperties();
1143
1144  /// setOperationAction - Indicate that the specified operation does not work
1145  /// with the specified type and indicate what to do about it.
1146  void setOperationAction(unsigned Op, MVT VT,
1147                          LegalizeAction Action) {
1148    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1149    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1150  }
1151
1152  /// setLoadExtAction - Indicate that the specified load with extension does
1153  /// not work with the specified type and indicate what to do about it.
1154  void setLoadExtAction(unsigned ExtType, MVT VT,
1155                        LegalizeAction Action) {
1156    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1157           "Table isn't big enough!");
1158    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1159  }
1160
1161  /// setTruncStoreAction - Indicate that the specified truncating store does
1162  /// not work with the specified type and indicate what to do about it.
1163  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1164                           LegalizeAction Action) {
1165    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1166           "Table isn't big enough!");
1167    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1168  }
1169
1170  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1171  /// does not work with the specified type and indicate what to do abort
1172  /// it. NOTE: All indexed mode loads are initialized to Expand in
1173  /// TargetLowering.cpp
1174  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1175                            LegalizeAction Action) {
1176    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1177           (unsigned)Action < 0xf && "Table isn't big enough!");
1178    // Load action are kept in the upper half.
1179    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1180    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1181  }
1182
1183  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1184  /// does not work with the specified type and indicate what to do about
1185  /// it. NOTE: All indexed mode stores are initialized to Expand in
1186  /// TargetLowering.cpp
1187  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1188                             LegalizeAction Action) {
1189    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1190           (unsigned)Action < 0xf && "Table isn't big enough!");
1191    // Store action are kept in the lower half.
1192    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1193    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1194  }
1195
1196  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1197  /// supported on the target and indicate what to do about it.
1198  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1199                         LegalizeAction Action) {
1200    assert(VT < MVT::LAST_VALUETYPE &&
1201           (unsigned)CC < array_lengthof(CondCodeActions) &&
1202           "Table isn't big enough!");
1203    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1204    /// value and the upper 27 bits index into the second dimension of the
1205    /// array to select what 64bit value to use.
1206    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1207      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1208    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1209      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1210  }
1211
1212  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1213  /// promotion code defaults to trying a larger integer/fp until it can find
1214  /// one that works.  If that default is insufficient, this method can be used
1215  /// by the target to override the default.
1216  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1217    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1218  }
1219
1220  /// setTargetDAGCombine - Targets should invoke this method for each target
1221  /// independent node that they want to provide a custom DAG combiner for by
1222  /// implementing the PerformDAGCombine virtual method.
1223  void setTargetDAGCombine(ISD::NodeType NT) {
1224    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1225    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1226  }
1227
1228  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1229  /// bytes); default is 200
1230  void setJumpBufSize(unsigned Size) {
1231    JumpBufSize = Size;
1232  }
1233
1234  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1235  /// alignment (in bytes); default is 0
1236  void setJumpBufAlignment(unsigned Align) {
1237    JumpBufAlignment = Align;
1238  }
1239
1240  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1241  /// log2(bytes))
1242  void setMinFunctionAlignment(unsigned Align) {
1243    MinFunctionAlignment = Align;
1244  }
1245
1246  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1247  /// This should be set if there is a performance benefit to
1248  /// higher-than-minimum alignment (in log2(bytes))
1249  void setPrefFunctionAlignment(unsigned Align) {
1250    PrefFunctionAlignment = Align;
1251  }
1252
1253  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1254  /// alignment is zero, it means the target does not care about loop alignment.
1255  /// The alignment is specified in log2(bytes).
1256  void setPrefLoopAlignment(unsigned Align) {
1257    PrefLoopAlignment = Align;
1258  }
1259
1260  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1261  /// argument (in log2(bytes)).
1262  void setMinStackArgumentAlignment(unsigned Align) {
1263    MinStackArgumentAlignment = Align;
1264  }
1265
1266  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1267  /// atomic operation intrinsics includes locking. Default is false.
1268  void setShouldFoldAtomicFences(bool fold) {
1269    ShouldFoldAtomicFences = fold;
1270  }
1271
1272  /// setInsertFencesForAtomic - Set if the DAG builder should
1273  /// automatically insert fences and reduce the order of atomic memory
1274  /// operations to Monotonic.
1275  void setInsertFencesForAtomic(bool fence) {
1276    InsertFencesForAtomic = fence;
1277  }
1278
1279public:
1280  //===--------------------------------------------------------------------===//
1281  // Lowering methods - These methods must be implemented by targets so that
1282  // the SelectionDAGBuilder code knows how to lower these.
1283  //
1284
1285  /// LowerFormalArguments - This hook must be implemented to lower the
1286  /// incoming (formal) arguments, described by the Ins array, into the
1287  /// specified DAG. The implementation should fill in the InVals array
1288  /// with legal-type argument values, and return the resulting token
1289  /// chain value.
1290  ///
1291  virtual SDValue
1292    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1293                         bool /*isVarArg*/,
1294                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1295                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1296                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1297    llvm_unreachable("Not Implemented");
1298  }
1299
1300  struct ArgListEntry {
1301    SDValue Node;
1302    Type* Ty;
1303    bool isSExt  : 1;
1304    bool isZExt  : 1;
1305    bool isInReg : 1;
1306    bool isSRet  : 1;
1307    bool isNest  : 1;
1308    bool isByVal : 1;
1309    uint16_t Alignment;
1310
1311    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1312      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1313  };
1314  typedef std::vector<ArgListEntry> ArgListTy;
1315
1316  /// CallLoweringInfo - This structure contains all information that is
1317  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1318  /// SelectionDAG builder needs to lower a call, and targets will see this
1319  /// struct in their LowerCall implementation.
1320  struct CallLoweringInfo {
1321    SDValue Chain;
1322    Type *RetTy;
1323    bool RetSExt           : 1;
1324    bool RetZExt           : 1;
1325    bool IsVarArg          : 1;
1326    bool IsInReg           : 1;
1327    bool DoesNotReturn     : 1;
1328    bool IsReturnValueUsed : 1;
1329
1330    // IsTailCall should be modified by implementations of
1331    // TargetLowering::LowerCall that perform tail call conversions.
1332    bool IsTailCall;
1333
1334    unsigned NumFixedArgs;
1335    CallingConv::ID CallConv;
1336    SDValue Callee;
1337    ArgListTy &Args;
1338    SelectionDAG &DAG;
1339    DebugLoc DL;
1340    ImmutableCallSite *CS;
1341    SmallVector<ISD::OutputArg, 32> Outs;
1342    SmallVector<SDValue, 32> OutVals;
1343    SmallVector<ISD::InputArg, 32> Ins;
1344
1345
1346    /// CallLoweringInfo - Constructs a call lowering context based on the
1347    /// ImmutableCallSite \p cs.
1348    CallLoweringInfo(SDValue chain, Type *retTy,
1349                     FunctionType *FTy, bool isTailCall, SDValue callee,
1350                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1351                     ImmutableCallSite &cs)
1352    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1353      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1354      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1355      DoesNotReturn(cs.doesNotReturn()),
1356      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1357      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1358      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1359      DL(dl), CS(&cs) {}
1360
1361    /// CallLoweringInfo - Constructs a call lowering context based on the
1362    /// provided call information.
1363    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1364                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1365                     CallingConv::ID callConv, bool isTailCall,
1366                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1367                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1368    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1369      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1370      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1371      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1372      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1373  };
1374
1375  /// LowerCallTo - This function lowers an abstract call to a function into an
1376  /// actual call.  This returns a pair of operands.  The first element is the
1377  /// return value for the function (if RetTy is not VoidTy).  The second
1378  /// element is the outgoing token chain. It calls LowerCall to do the actual
1379  /// lowering.
1380  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1381
1382  /// LowerCall - This hook must be implemented to lower calls into the
1383  /// the specified DAG. The outgoing arguments to the call are described
1384  /// by the Outs array, and the values to be returned by the call are
1385  /// described by the Ins array. The implementation should fill in the
1386  /// InVals array with legal-type return values from the call, and return
1387  /// the resulting token chain value.
1388  virtual SDValue
1389    LowerCall(CallLoweringInfo &/*CLI*/,
1390              SmallVectorImpl<SDValue> &/*InVals*/) const {
1391    llvm_unreachable("Not Implemented");
1392  }
1393
1394  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1395  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1396
1397  /// CanLowerReturn - This hook should be implemented to check whether the
1398  /// return values described by the Outs array can fit into the return
1399  /// registers.  If false is returned, an sret-demotion is performed.
1400  ///
1401  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1402                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1403               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1404               LLVMContext &/*Context*/) const
1405  {
1406    // Return true by default to get preexisting behavior.
1407    return true;
1408  }
1409
1410  /// LowerReturn - This hook must be implemented to lower outgoing
1411  /// return values, described by the Outs array, into the specified
1412  /// DAG. The implementation should return the resulting token chain
1413  /// value.
1414  ///
1415  virtual SDValue
1416    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1417                bool /*isVarArg*/,
1418                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1419                const SmallVectorImpl<SDValue> &/*OutVals*/,
1420                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1421    llvm_unreachable("Not Implemented");
1422  }
1423
1424  /// isUsedByReturnOnly - Return true if result of the specified node is used
1425  /// by a return node only. It also compute and return the input chain for the
1426  /// tail call.
1427  /// This is used to determine whether it is possible
1428  /// to codegen a libcall as tail call at legalization time.
1429  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1430    return false;
1431  }
1432
1433  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1434  /// call instruction as a tail call. This is used by optimization passes to
1435  /// determine if it's profitable to duplicate return instructions to enable
1436  /// tailcall optimization.
1437  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1438    return false;
1439  }
1440
1441  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1442  /// sign extend a zeroext/signext integer argument or return value.
1443  /// FIXME: Most C calling convention requires the return type to be promoted,
1444  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1445  /// necessary for non-C calling conventions. The frontend should handle this
1446  /// and include all of the necessary information.
1447  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1448                                       ISD::NodeType /*ExtendKind*/) const {
1449    EVT MinVT = getRegisterType(Context, MVT::i32);
1450    return VT.bitsLT(MinVT) ? MinVT : VT;
1451  }
1452
1453  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1454  /// to legalize nodes with an illegal operand type but legal result types.
1455  /// It replaces the LowerOperation callback in the type Legalizer.
1456  /// The reason we can not do away with LowerOperation entirely is that
1457  /// LegalizeDAG isn't yet ready to use this callback.
1458  /// TODO: Consider merging with ReplaceNodeResults.
1459
1460  /// The target places new result values for the node in Results (their number
1461  /// and types must exactly match those of the original return values of
1462  /// the node), or leaves Results empty, which indicates that the node is not
1463  /// to be custom lowered after all.
1464  /// The default implementation calls LowerOperation.
1465  virtual void LowerOperationWrapper(SDNode *N,
1466                                     SmallVectorImpl<SDValue> &Results,
1467                                     SelectionDAG &DAG) const;
1468
1469  /// LowerOperation - This callback is invoked for operations that are
1470  /// unsupported by the target, which are registered to use 'custom' lowering,
1471  /// and whose defined values are all legal.
1472  /// If the target has no operations that require custom lowering, it need not
1473  /// implement this.  The default implementation of this aborts.
1474  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1475
1476  /// ReplaceNodeResults - This callback is invoked when a node result type is
1477  /// illegal for the target, and the operation was registered to use 'custom'
1478  /// lowering for that result type.  The target places new result values for
1479  /// the node in Results (their number and types must exactly match those of
1480  /// the original return values of the node), or leaves Results empty, which
1481  /// indicates that the node is not to be custom lowered after all.
1482  ///
1483  /// If the target has no operations that require custom lowering, it need not
1484  /// implement this.  The default implementation aborts.
1485  virtual void ReplaceNodeResults(SDNode * /*N*/,
1486                                  SmallVectorImpl<SDValue> &/*Results*/,
1487                                  SelectionDAG &/*DAG*/) const {
1488    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1489  }
1490
1491  /// getTargetNodeName() - This method returns the name of a target specific
1492  /// DAG node.
1493  virtual const char *getTargetNodeName(unsigned Opcode) const;
1494
1495  /// createFastISel - This method returns a target specific FastISel object,
1496  /// or null if the target does not support "fast" ISel.
1497  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1498                                   const TargetLibraryInfo *) const {
1499    return 0;
1500  }
1501
1502  //===--------------------------------------------------------------------===//
1503  // Inline Asm Support hooks
1504  //
1505
1506  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1507  /// call to be explicit llvm code if it wants to.  This is useful for
1508  /// turning simple inline asms into LLVM intrinsics, which gives the
1509  /// compiler more information about the behavior of the code.
1510  virtual bool ExpandInlineAsm(CallInst *) const {
1511    return false;
1512  }
1513
1514  enum ConstraintType {
1515    C_Register,            // Constraint represents specific register(s).
1516    C_RegisterClass,       // Constraint represents any of register(s) in class.
1517    C_Memory,              // Memory constraint.
1518    C_Other,               // Something else.
1519    C_Unknown              // Unsupported constraint.
1520  };
1521
1522  enum ConstraintWeight {
1523    // Generic weights.
1524    CW_Invalid  = -1,     // No match.
1525    CW_Okay     = 0,      // Acceptable.
1526    CW_Good     = 1,      // Good weight.
1527    CW_Better   = 2,      // Better weight.
1528    CW_Best     = 3,      // Best weight.
1529
1530    // Well-known weights.
1531    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1532    CW_Register     = CW_Good,    // Register operands.
1533    CW_Memory       = CW_Better,  // Memory operands.
1534    CW_Constant     = CW_Best,    // Constant operand.
1535    CW_Default      = CW_Okay     // Default or don't know type.
1536  };
1537
1538  /// AsmOperandInfo - This contains information for each constraint that we are
1539  /// lowering.
1540  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1541    /// ConstraintCode - This contains the actual string for the code, like "m".
1542    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1543    /// most closely matches the operand.
1544    std::string ConstraintCode;
1545
1546    /// ConstraintType - Information about the constraint code, e.g. Register,
1547    /// RegisterClass, Memory, Other, Unknown.
1548    TargetLowering::ConstraintType ConstraintType;
1549
1550    /// CallOperandval - If this is the result output operand or a
1551    /// clobber, this is null, otherwise it is the incoming operand to the
1552    /// CallInst.  This gets modified as the asm is processed.
1553    Value *CallOperandVal;
1554
1555    /// ConstraintVT - The ValueType for the operand value.
1556    EVT ConstraintVT;
1557
1558    /// isMatchingInputConstraint - Return true of this is an input operand that
1559    /// is a matching constraint like "4".
1560    bool isMatchingInputConstraint() const;
1561
1562    /// getMatchedOperand - If this is an input matching constraint, this method
1563    /// returns the output operand it matches.
1564    unsigned getMatchedOperand() const;
1565
1566    /// Copy constructor for copying from an AsmOperandInfo.
1567    AsmOperandInfo(const AsmOperandInfo &info)
1568      : InlineAsm::ConstraintInfo(info),
1569        ConstraintCode(info.ConstraintCode),
1570        ConstraintType(info.ConstraintType),
1571        CallOperandVal(info.CallOperandVal),
1572        ConstraintVT(info.ConstraintVT) {
1573    }
1574
1575    /// Copy constructor for copying from a ConstraintInfo.
1576    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1577      : InlineAsm::ConstraintInfo(info),
1578        ConstraintType(TargetLowering::C_Unknown),
1579        CallOperandVal(0), ConstraintVT(MVT::Other) {
1580    }
1581  };
1582
1583  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1584
1585  /// ParseConstraints - Split up the constraint string from the inline
1586  /// assembly value into the specific constraints and their prefixes,
1587  /// and also tie in the associated operand values.
1588  /// If this returns an empty vector, and if the constraint string itself
1589  /// isn't empty, there was an error parsing.
1590  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1591
1592  /// Examine constraint type and operand type and determine a weight value.
1593  /// The operand object must already have been set up with the operand type.
1594  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1595      AsmOperandInfo &info, int maIndex) const;
1596
1597  /// Examine constraint string and operand type and determine a weight value.
1598  /// The operand object must already have been set up with the operand type.
1599  virtual ConstraintWeight getSingleConstraintMatchWeight(
1600      AsmOperandInfo &info, const char *constraint) const;
1601
1602  /// ComputeConstraintToUse - Determines the constraint code and constraint
1603  /// type to use for the specific AsmOperandInfo, setting
1604  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1605  /// being passed in is available, it can be passed in as Op, otherwise an
1606  /// empty SDValue can be passed.
1607  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1608                                      SDValue Op,
1609                                      SelectionDAG *DAG = 0) const;
1610
1611  /// getConstraintType - Given a constraint, return the type of constraint it
1612  /// is for this target.
1613  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1614
1615  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1616  /// {edx}), return the register number and the register class for the
1617  /// register.
1618  ///
1619  /// Given a register class constraint, like 'r', if this corresponds directly
1620  /// to an LLVM register class, return a register of 0 and the register class
1621  /// pointer.
1622  ///
1623  /// This should only be used for C_Register constraints.  On error,
1624  /// this returns a register number of 0 and a null register class pointer..
1625  virtual std::pair<unsigned, const TargetRegisterClass*>
1626    getRegForInlineAsmConstraint(const std::string &Constraint,
1627                                 EVT VT) const;
1628
1629  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1630  /// with another that has more specific requirements based on the type of the
1631  /// corresponding operand.  This returns null if there is no replacement to
1632  /// make.
1633  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1634
1635  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1636  /// vector.  If it is invalid, don't add anything to Ops.
1637  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1638                                            std::vector<SDValue> &Ops,
1639                                            SelectionDAG &DAG) const;
1640
1641  //===--------------------------------------------------------------------===//
1642  // Instruction Emitting Hooks
1643  //
1644
1645  // EmitInstrWithCustomInserter - This method should be implemented by targets
1646  // that mark instructions with the 'usesCustomInserter' flag.  These
1647  // instructions are special in various ways, which require special support to
1648  // insert.  The specified MachineInstr is created but not inserted into any
1649  // basic blocks, and this method is called to expand it into a sequence of
1650  // instructions, potentially also creating new basic blocks and control flow.
1651  virtual MachineBasicBlock *
1652    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1653
1654  /// AdjustInstrPostInstrSelection - This method should be implemented by
1655  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1656  /// instructions must be adjusted after instruction selection by target hooks.
1657  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1658  virtual void
1659  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1660
1661  //===--------------------------------------------------------------------===//
1662  // Addressing mode description hooks (used by LSR etc).
1663  //
1664
1665  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1666  /// same BB as Load/Store instructions reading the address.  This allows as
1667  /// much computation as possible to be done in the address mode for that
1668  /// operand.  This hook lets targets also pass back when this should be done
1669  /// on intrinsics which load/store.
1670  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1671                                    SmallVectorImpl<Value*> &Ops,
1672                                    Type *&AccessTy) const {
1673    return false;
1674  }
1675
1676  /// isLegalAddressingMode - Return true if the addressing mode represented by
1677  /// AM is legal for this target, for a load/store of the specified type.
1678  /// The type may be VoidTy, in which case only return true if the addressing
1679  /// mode is legal for a load/store of any legal type.
1680  /// TODO: Handle pre/postinc as well.
1681  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1682
1683  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1684  /// icmp immediate, that is the target has icmp instructions which can compare
1685  /// a register against the immediate without having to materialize the
1686  /// immediate into a register.
1687  virtual bool isLegalICmpImmediate(int64_t) const {
1688    return true;
1689  }
1690
1691  /// isLegalAddImmediate - Return true if the specified immediate is legal
1692  /// add immediate, that is the target has add instructions which can add
1693  /// a register with the immediate without having to materialize the
1694  /// immediate into a register.
1695  virtual bool isLegalAddImmediate(int64_t) const {
1696    return true;
1697  }
1698
1699  /// isTruncateFree - Return true if it's free to truncate a value of
1700  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1701  /// register EAX to i16 by referencing its sub-register AX.
1702  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1703    return false;
1704  }
1705
1706  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1707    return false;
1708  }
1709
1710  /// isZExtFree - Return true if any actual instruction that defines a
1711  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1712  /// register. This does not necessarily include registers defined in
1713  /// unknown ways, such as incoming arguments, or copies from unknown
1714  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1715  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1716  /// all instructions that define 32-bit values implicit zero-extend the
1717  /// result out to 64 bits.
1718  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1719    return false;
1720  }
1721
1722  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1723    return false;
1724  }
1725
1726  /// isZExtFree - Return true if zero-extending the specific node Val to type
1727  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1728  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1729  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1730    return isZExtFree(Val.getValueType(), VT2);
1731  }
1732
1733  /// isFNegFree - Return true if an fneg operation is free to the point where
1734  /// it is never worthwhile to replace it with a bitwise operation.
1735  virtual bool isFNegFree(EVT) const {
1736    return false;
1737  }
1738
1739  /// isFAbsFree - Return true if an fneg operation is free to the point where
1740  /// it is never worthwhile to replace it with a bitwise operation.
1741  virtual bool isFAbsFree(EVT) const {
1742    return false;
1743  }
1744
1745  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1746  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1747  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1748  /// is expanded to mul + add.
1749  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1750    return false;
1751  }
1752
1753  /// isNarrowingProfitable - Return true if it's profitable to narrow
1754  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1755  /// from i32 to i8 but not from i32 to i16.
1756  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1757    return false;
1758  }
1759
1760  //===--------------------------------------------------------------------===//
1761  // Div utility functions
1762  //
1763  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1764                         SelectionDAG &DAG) const;
1765  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1766                      std::vector<SDNode*> *Created) const;
1767  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1768                      std::vector<SDNode*> *Created) const;
1769
1770
1771  //===--------------------------------------------------------------------===//
1772  // Runtime Library hooks
1773  //
1774
1775  /// setLibcallName - Rename the default libcall routine name for the specified
1776  /// libcall.
1777  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1778    LibcallRoutineNames[Call] = Name;
1779  }
1780
1781  /// getLibcallName - Get the libcall routine name for the specified libcall.
1782  ///
1783  const char *getLibcallName(RTLIB::Libcall Call) const {
1784    return LibcallRoutineNames[Call];
1785  }
1786
1787  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1788  /// result of the comparison libcall against zero.
1789  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1790    CmpLibcallCCs[Call] = CC;
1791  }
1792
1793  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1794  /// the comparison libcall against zero.
1795  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1796    return CmpLibcallCCs[Call];
1797  }
1798
1799  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1800  /// specified libcall.
1801  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1802    LibcallCallingConvs[Call] = CC;
1803  }
1804
1805  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1806  /// specified libcall.
1807  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1808    return LibcallCallingConvs[Call];
1809  }
1810
1811private:
1812  const TargetMachine &TM;
1813  const DataLayout *TD;
1814  const TargetLoweringObjectFile &TLOF;
1815
1816  /// PointerTy - The type to use for pointers for the default address space,
1817  /// usually i32 or i64.
1818  ///
1819  MVT PointerTy;
1820
1821  /// IsLittleEndian - True if this is a little endian target.
1822  ///
1823  bool IsLittleEndian;
1824
1825  /// SelectIsExpensive - Tells the code generator not to expand operations
1826  /// into sequences that use the select operations if possible.
1827  bool SelectIsExpensive;
1828
1829  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1830  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1831  /// a real cost model is in place.  If we ever optimize for size, this will be
1832  /// set to true unconditionally.
1833  bool IntDivIsCheap;
1834
1835  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1836  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1837  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1838  /// integer div/rem when the operands are positive and less than 256.
1839  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1840
1841  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1842  /// srl/add/sra for a signed divide by power of two, and let the target handle
1843  /// it.
1844  bool Pow2DivIsCheap;
1845
1846  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1847  /// extra flow control instructions and should attempt to combine flow
1848  /// control instructions via predication.
1849  bool JumpIsExpensive;
1850
1851  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1852  /// llvm.setjmp.  Defaults to false.
1853  bool UseUnderscoreSetJmp;
1854
1855  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1856  /// llvm.longjmp.  Defaults to false.
1857  bool UseUnderscoreLongJmp;
1858
1859  /// SupportJumpTables - Whether the target can generate code for jumptables.
1860  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1861  bool SupportJumpTables;
1862
1863  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1864  int MinimumJumpTableEntries;
1865
1866  /// BooleanContents - Information about the contents of the high-bits in
1867  /// boolean values held in a type wider than i1.  See getBooleanContents.
1868  BooleanContent BooleanContents;
1869  /// BooleanVectorContents - Information about the contents of the high-bits
1870  /// in boolean vector values when the element type is wider than i1.  See
1871  /// getBooleanContents.
1872  BooleanContent BooleanVectorContents;
1873
1874  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1875  /// total cycles or lowest register usage.
1876  Sched::Preference SchedPreferenceInfo;
1877
1878  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1879  unsigned JumpBufSize;
1880
1881  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1882  /// buffers
1883  unsigned JumpBufAlignment;
1884
1885  /// MinStackArgumentAlignment - The minimum alignment that any argument
1886  /// on the stack needs to have.
1887  ///
1888  unsigned MinStackArgumentAlignment;
1889
1890  /// MinFunctionAlignment - The minimum function alignment (used when
1891  /// optimizing for size, and to prevent explicitly provided alignment
1892  /// from leading to incorrect code).
1893  ///
1894  unsigned MinFunctionAlignment;
1895
1896  /// PrefFunctionAlignment - The preferred function alignment (used when
1897  /// alignment unspecified and optimizing for speed).
1898  ///
1899  unsigned PrefFunctionAlignment;
1900
1901  /// PrefLoopAlignment - The preferred loop alignment.
1902  ///
1903  unsigned PrefLoopAlignment;
1904
1905  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1906  /// be folded into the enclosed atomic intrinsic instruction by the
1907  /// combiner.
1908  bool ShouldFoldAtomicFences;
1909
1910  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1911  /// insert fences and reduce ordering for atomics.  (This will be set for
1912  /// for most architectures with weak memory ordering.)
1913  bool InsertFencesForAtomic;
1914
1915  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1916  /// specifies the register that llvm.savestack/llvm.restorestack should save
1917  /// and restore.
1918  unsigned StackPointerRegisterToSaveRestore;
1919
1920  /// ExceptionPointerRegister - If set to a physical register, this specifies
1921  /// the register that receives the exception address on entry to a landing
1922  /// pad.
1923  unsigned ExceptionPointerRegister;
1924
1925  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1926  /// the register that receives the exception typeid on entry to a landing
1927  /// pad.
1928  unsigned ExceptionSelectorRegister;
1929
1930  /// RegClassForVT - This indicates the default register class to use for
1931  /// each ValueType the target supports natively.
1932  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1933  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1934  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1935
1936  /// RepRegClassForVT - This indicates the "representative" register class to
1937  /// use for each ValueType the target supports natively. This information is
1938  /// used by the scheduler to track register pressure. By default, the
1939  /// representative register class is the largest legal super-reg register
1940  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1941  /// and i32's representative class would be GR32.
1942  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1943
1944  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1945  /// register class for each ValueType. The cost is used by the scheduler to
1946  /// approximate register pressure.
1947  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1948
1949  /// TransformToType - For any value types we are promoting or expanding, this
1950  /// contains the value type that we are changing to.  For Expanded types, this
1951  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1952  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1953  /// by the system, this holds the same type (e.g. i32 -> i32).
1954  EVT TransformToType[MVT::LAST_VALUETYPE];
1955
1956  /// OpActions - For each operation and each value type, keep a LegalizeAction
1957  /// that indicates how instruction selection should deal with the operation.
1958  /// Most operations are Legal (aka, supported natively by the target), but
1959  /// operations that are not should be described.  Note that operations on
1960  /// non-legal value types are not described here.
1961  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1962
1963  /// LoadExtActions - For each load extension type and each value type,
1964  /// keep a LegalizeAction that indicates how instruction selection should deal
1965  /// with a load of a specific value type and extension type.
1966  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1967
1968  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1969  /// indicates whether a truncating store of a specific value type and
1970  /// truncating type is legal.
1971  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1972
1973  /// IndexedModeActions - For each indexed mode and each value type,
1974  /// keep a pair of LegalizeAction that indicates how instruction
1975  /// selection should deal with the load / store.  The first dimension is the
1976  /// value_type for the reference. The second dimension represents the various
1977  /// modes for load store.
1978  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1979
1980  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1981  /// LegalizeAction that indicates how instruction selection should
1982  /// deal with the condition code.
1983  /// Because each CC action takes up 2 bits, we need to have the array size
1984  /// be large enough to fit all of the value types. This can be done by
1985  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1986  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1987
1988  ValueTypeActionImpl ValueTypeActions;
1989
1990public:
1991  LegalizeKind
1992  getTypeConversion(LLVMContext &Context, EVT VT) const {
1993    // If this is a simple type, use the ComputeRegisterProp mechanism.
1994    if (VT.isSimple()) {
1995      assert((unsigned)VT.getSimpleVT().SimpleTy <
1996             array_lengthof(TransformToType));
1997      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1998      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1999
2000      assert(
2001        (!(NVT.isSimple() && LA != TypeLegal) ||
2002         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
2003         && "Promote may not follow Expand or Promote");
2004
2005      if (LA == TypeSplitVector)
2006        NVT = EVT::getVectorVT(Context, VT.getVectorElementType(),
2007                               VT.getVectorNumElements() / 2);
2008      return LegalizeKind(LA, NVT);
2009    }
2010
2011    // Handle Extended Scalar Types.
2012    if (!VT.isVector()) {
2013      assert(VT.isInteger() && "Float types must be simple");
2014      unsigned BitSize = VT.getSizeInBits();
2015      // First promote to a power-of-two size, then expand if necessary.
2016      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
2017        EVT NVT = VT.getRoundIntegerType(Context);
2018        assert(NVT != VT && "Unable to round integer VT");
2019        LegalizeKind NextStep = getTypeConversion(Context, NVT);
2020        // Avoid multi-step promotion.
2021        if (NextStep.first == TypePromoteInteger) return NextStep;
2022        // Return rounded integer type.
2023        return LegalizeKind(TypePromoteInteger, NVT);
2024      }
2025
2026      return LegalizeKind(TypeExpandInteger,
2027                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2028    }
2029
2030    // Handle vector types.
2031    unsigned NumElts = VT.getVectorNumElements();
2032    EVT EltVT = VT.getVectorElementType();
2033
2034    // Vectors with only one element are always scalarized.
2035    if (NumElts == 1)
2036      return LegalizeKind(TypeScalarizeVector, EltVT);
2037
2038    // Try to widen vector elements until a legal type is found.
2039    if (EltVT.isInteger()) {
2040      // Vectors with a number of elements that is not a power of two are always
2041      // widened, for example <3 x float> -> <4 x float>.
2042      if (!VT.isPow2VectorType()) {
2043        NumElts = (unsigned)NextPowerOf2(NumElts);
2044        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2045        return LegalizeKind(TypeWidenVector, NVT);
2046      }
2047
2048      // Examine the element type.
2049      LegalizeKind LK = getTypeConversion(Context, EltVT);
2050
2051      // If type is to be expanded, split the vector.
2052      //  <4 x i140> -> <2 x i140>
2053      if (LK.first == TypeExpandInteger)
2054        return LegalizeKind(TypeSplitVector,
2055                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2056
2057      // Promote the integer element types until a legal vector type is found
2058      // or until the element integer type is too big. If a legal type was not
2059      // found, fallback to the usual mechanism of widening/splitting the
2060      // vector.
2061      while (1) {
2062        // Increase the bitwidth of the element to the next pow-of-two
2063        // (which is greater than 8 bits).
2064        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2065                                 ).getRoundIntegerType(Context);
2066
2067        // Stop trying when getting a non-simple element type.
2068        // Note that vector elements may be greater than legal vector element
2069        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2070        if (!EltVT.isSimple()) break;
2071
2072        // Build a new vector type and check if it is legal.
2073        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2074        // Found a legal promoted vector type.
2075        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2076          return LegalizeKind(TypePromoteInteger,
2077                              EVT::getVectorVT(Context, EltVT, NumElts));
2078      }
2079    }
2080
2081    // Try to widen the vector until a legal type is found.
2082    // If there is no wider legal type, split the vector.
2083    while (1) {
2084      // Round up to the next power of 2.
2085      NumElts = (unsigned)NextPowerOf2(NumElts);
2086
2087      // If there is no simple vector type with this many elements then there
2088      // cannot be a larger legal vector type.  Note that this assumes that
2089      // there are no skipped intermediate vector types in the simple types.
2090      if (!EltVT.isSimple()) break;
2091      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2092      if (LargerVector == MVT()) break;
2093
2094      // If this type is legal then widen the vector.
2095      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2096        return LegalizeKind(TypeWidenVector, LargerVector);
2097    }
2098
2099    // Widen odd vectors to next power of two.
2100    if (!VT.isPow2VectorType()) {
2101      EVT NVT = VT.getPow2VectorType(Context);
2102      return LegalizeKind(TypeWidenVector, NVT);
2103    }
2104
2105    // Vectors with illegal element types are expanded.
2106    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2107    return LegalizeKind(TypeSplitVector, NVT);
2108  }
2109
2110private:
2111  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
2112
2113  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2114  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2115  /// which sets a bit in this array.
2116  unsigned char
2117  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2118
2119  /// PromoteToType - For operations that must be promoted to a specific type,
2120  /// this holds the destination type.  This map should be sparse, so don't hold
2121  /// it as an array.
2122  ///
2123  /// Targets add entries to this map with AddPromotedToType(..), clients access
2124  /// this with getTypeToPromoteTo(..).
2125  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2126    PromoteToType;
2127
2128  /// LibcallRoutineNames - Stores the name each libcall.
2129  ///
2130  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2131
2132  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2133  /// of each of the comparison libcall against zero.
2134  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2135
2136  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2137  /// libcall.
2138  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2139
2140protected:
2141  /// When lowering \@llvm.memset this field specifies the maximum number of
2142  /// store operations that may be substituted for the call to memset. Targets
2143  /// must set this value based on the cost threshold for that target. Targets
2144  /// should assume that the memset will be done using as many of the largest
2145  /// store operations first, followed by smaller ones, if necessary, per
2146  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2147  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2148  /// store.  This only applies to setting a constant array of a constant size.
2149  /// @brief Specify maximum number of store instructions per memset call.
2150  unsigned maxStoresPerMemset;
2151
2152  /// Maximum number of stores operations that may be substituted for the call
2153  /// to memset, used for functions with OptSize attribute.
2154  unsigned maxStoresPerMemsetOptSize;
2155
2156  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2157  /// store operations that may be substituted for a call to memcpy. Targets
2158  /// must set this value based on the cost threshold for that target. Targets
2159  /// should assume that the memcpy will be done using as many of the largest
2160  /// store operations first, followed by smaller ones, if necessary, per
2161  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2162  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2163  /// and one 1-byte store. This only applies to copying a constant array of
2164  /// constant size.
2165  /// @brief Specify maximum bytes of store instructions per memcpy call.
2166  unsigned maxStoresPerMemcpy;
2167
2168  /// Maximum number of store operations that may be substituted for a call
2169  /// to memcpy, used for functions with OptSize attribute.
2170  unsigned maxStoresPerMemcpyOptSize;
2171
2172  /// When lowering \@llvm.memmove this field specifies the maximum number of
2173  /// store instructions that may be substituted for a call to memmove. Targets
2174  /// must set this value based on the cost threshold for that target. Targets
2175  /// should assume that the memmove will be done using as many of the largest
2176  /// store operations first, followed by smaller ones, if necessary, per
2177  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2178  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2179  /// applies to copying a constant array of constant size.
2180  /// @brief Specify maximum bytes of store instructions per memmove call.
2181  unsigned maxStoresPerMemmove;
2182
2183  /// Maximum number of store instructions that may be substituted for a call
2184  /// to memmove, used for functions with OpSize attribute.
2185  unsigned maxStoresPerMemmoveOptSize;
2186
2187  /// This field specifies whether the target can benefit from code placement
2188  /// optimization.
2189  bool benefitFromCodePlacementOpt;
2190
2191  /// predictableSelectIsExpensive - Tells the code generator that select is
2192  /// more expensive than a branch if the branch is usually predicted right.
2193  bool predictableSelectIsExpensive;
2194
2195private:
2196  /// isLegalRC - Return true if the value types that can be represented by the
2197  /// specified register class are all legal.
2198  bool isLegalRC(const TargetRegisterClass *RC) const;
2199};
2200
2201/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2202/// compute the return value EVTs and flags, and optionally also
2203/// the offsets, if the return value is being lowered to memory.
2204void GetReturnInfo(Type* ReturnType, Attribute attr,
2205                   SmallVectorImpl<ISD::OutputArg> &Outs,
2206                   const TargetLowering &TLI);
2207
2208} // end llvm namespace
2209
2210#endif
2211