TargetLowering.h revision 1c4d492b944768ded5356587779045cc346409d7
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <vector>
31
32namespace llvm {
33  class Value;
34  class Function;
35  class TargetMachine;
36  class TargetData;
37  class TargetRegisterClass;
38  class SDNode;
39  class SDOperand;
40  class SelectionDAG;
41  class MachineBasicBlock;
42  class MachineInstr;
43  class VectorType;
44
45//===----------------------------------------------------------------------===//
46/// TargetLowering - This class defines information used to lower LLVM code to
47/// legal SelectionDAG operators that the target instruction selector can accept
48/// natively.
49///
50/// This class also defines callbacks that targets must implement to lower
51/// target-specific constructs to SelectionDAG operators.
52///
53class TargetLowering {
54public:
55  /// LegalizeAction - This enum indicates whether operations are valid for a
56  /// target, and if not, what action should be used to make them valid.
57  enum LegalizeAction {
58    Legal,      // The target natively supports this operation.
59    Promote,    // This operation should be executed in a larger type.
60    Expand,     // Try to expand this to other ops, otherwise use a libcall.
61    Custom      // Use the LowerOperation hook to implement custom lowering.
62  };
63
64  enum OutOfRangeShiftAmount {
65    Undefined,  // Oversized shift amounts are undefined (default).
66    Mask,       // Shift amounts are auto masked (anded) to value size.
67    Extend      // Oversized shift pulls in zeros or sign bits.
68  };
69
70  enum SetCCResultValue {
71    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
72    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
73    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
74  };
75
76  enum SchedPreference {
77    SchedulingForLatency,          // Scheduling for shortest total latency.
78    SchedulingForRegPressure       // Scheduling for lowest register pressure.
79  };
80
81  explicit TargetLowering(TargetMachine &TM);
82  virtual ~TargetLowering();
83
84  TargetMachine &getTargetMachine() const { return TM; }
85  const TargetData *getTargetData() const { return TD; }
86
87  bool isLittleEndian() const { return IsLittleEndian; }
88  MVT::ValueType getPointerTy() const { return PointerTy; }
89  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
90  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
91
92  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
93  /// codegen.
94  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
95
96  /// isSelectExpensive - Return true if the select operation is expensive for
97  /// this target.
98  bool isSelectExpensive() const { return SelectIsExpensive; }
99
100  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
101  /// a sequence of several shifts, adds, and multiplies for this target.
102  bool isIntDivCheap() const { return IntDivIsCheap; }
103
104  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
105  /// srl/add/sra.
106  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
107
108  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
109  ///
110  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
111
112  /// getSetCCResultContents - For targets without boolean registers, this flag
113  /// returns information about the contents of the high-bits in the setcc
114  /// result register.
115  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
116
117  /// getSchedulingPreference - Return target scheduling preference.
118  SchedPreference getSchedulingPreference() const {
119    return SchedPreferenceInfo;
120  }
121
122  /// getRegClassFor - Return the register class that should be used for the
123  /// specified value type.  This may only be called on legal types.
124  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
125    assert(!MVT::isExtendedVT(VT));
126    TargetRegisterClass *RC = RegClassForVT[VT];
127    assert(RC && "This value type is not natively supported!");
128    return RC;
129  }
130
131  /// isTypeLegal - Return true if the target has native support for the
132  /// specified value type.  This means that it has a register that directly
133  /// holds it without promotions or expansions.
134  bool isTypeLegal(MVT::ValueType VT) const {
135    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
136  }
137
138  class ValueTypeActionImpl {
139    /// ValueTypeActions - This is a bitvector that contains two bits for each
140    /// value type, where the two bits correspond to the LegalizeAction enum.
141    /// This can be queried with "getTypeAction(VT)".
142    uint32_t ValueTypeActions[2];
143  public:
144    ValueTypeActionImpl() {
145      ValueTypeActions[0] = ValueTypeActions[1] = 0;
146    }
147    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
148      ValueTypeActions[0] = RHS.ValueTypeActions[0];
149      ValueTypeActions[1] = RHS.ValueTypeActions[1];
150    }
151
152    LegalizeAction getTypeAction(MVT::ValueType VT) const {
153      if (MVT::isExtendedVT(VT)) {
154        if (MVT::isVector(VT)) return Expand;
155        if (MVT::isInteger(VT))
156          // First promote to a power-of-two size, then expand if necessary.
157          return VT == MVT::RoundIntegerType(VT) ? Expand : Promote;
158        assert(0 && "Unsupported extended type!");
159      }
160      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
161    }
162    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
163      assert(!MVT::isExtendedVT(VT));
164      assert(unsigned(VT >> 4) < array_lengthof(ValueTypeActions));
165      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
166    }
167  };
168
169  const ValueTypeActionImpl &getValueTypeActions() const {
170    return ValueTypeActions;
171  }
172
173  /// getTypeAction - Return how we should legalize values of this type, either
174  /// it is already legal (return 'Legal') or we need to promote it to a larger
175  /// type (return 'Promote'), or we need to expand it into multiple registers
176  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
177  LegalizeAction getTypeAction(MVT::ValueType VT) const {
178    return ValueTypeActions.getTypeAction(VT);
179  }
180
181  /// getTypeToTransformTo - For types supported by the target, this is an
182  /// identity function.  For types that must be promoted to larger types, this
183  /// returns the larger type to promote to.  For integer types that are larger
184  /// than the largest integer register, this contains one step in the expansion
185  /// to get to the smaller register. For illegal floating point types, this
186  /// returns the integer type to transform to.
187  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
188    if (!MVT::isExtendedVT(VT)) {
189      MVT::ValueType NVT = TransformToType[VT];
190      assert(getTypeAction(NVT) != Promote &&
191             "Promote may not follow Expand or Promote");
192      return NVT;
193    }
194
195    if (MVT::isVector(VT))
196      return MVT::getVectorType(MVT::getVectorElementType(VT),
197                                MVT::getVectorNumElements(VT) / 2);
198    if (MVT::isInteger(VT)) {
199      MVT::ValueType NVT = MVT::RoundIntegerType(VT);
200      if (NVT == VT)
201        // Size is a power of two - expand to half the size.
202        return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2);
203      else
204        // Promote to a power of two size, avoiding multi-step promotion.
205        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
206    }
207    assert(0 && "Unsupported extended type!");
208  }
209
210  /// getTypeToExpandTo - For types supported by the target, this is an
211  /// identity function.  For types that must be expanded (i.e. integer types
212  /// that are larger than the largest integer register or illegal floating
213  /// point types), this returns the largest legal type it will be expanded to.
214  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
215    assert(!MVT::isVector(VT));
216    while (true) {
217      switch (getTypeAction(VT)) {
218      case Legal:
219        return VT;
220      case Expand:
221        VT = getTypeToTransformTo(VT);
222        break;
223      default:
224        assert(false && "Type is not legal nor is it to be expanded!");
225        return VT;
226      }
227    }
228    return VT;
229  }
230
231  /// getVectorTypeBreakdown - Vector types are broken down into some number of
232  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
233  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
234  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
235  ///
236  /// This method returns the number of registers needed, and the VT for each
237  /// register.  It also returns the VT and quantity of the intermediate values
238  /// before they are promoted/expanded.
239  ///
240  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
241                                  MVT::ValueType &IntermediateVT,
242                                  unsigned &NumIntermediates,
243                                  MVT::ValueType &RegisterVT) const;
244
245  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
246  legal_fpimm_iterator legal_fpimm_begin() const {
247    return LegalFPImmediates.begin();
248  }
249  legal_fpimm_iterator legal_fpimm_end() const {
250    return LegalFPImmediates.end();
251  }
252
253  /// isShuffleMaskLegal - Targets can use this to indicate that they only
254  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
255  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
256  /// are assumed to be legal.
257  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
258    return true;
259  }
260
261  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
262  /// used by Targets can use this to indicate if there is a suitable
263  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
264  /// pool entry.
265  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
266                                      MVT::ValueType EVT,
267                                      SelectionDAG &DAG) const {
268    return false;
269  }
270
271  /// getOperationAction - Return how this operation should be treated: either
272  /// it is legal, needs to be promoted to a larger size, needs to be
273  /// expanded to some other code sequence, or the target has a custom expander
274  /// for it.
275  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
276    if (MVT::isExtendedVT(VT)) return Expand;
277    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
278  }
279
280  /// isOperationLegal - Return true if the specified operation is legal on this
281  /// target.
282  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
283    return getOperationAction(Op, VT) == Legal ||
284           getOperationAction(Op, VT) == Custom;
285  }
286
287  /// getLoadXAction - Return how this load with extension should be treated:
288  /// either it is legal, needs to be promoted to a larger size, needs to be
289  /// expanded to some other code sequence, or the target has a custom expander
290  /// for it.
291  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
292    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
293    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
294  }
295
296  /// isLoadXLegal - Return true if the specified load with extension is legal
297  /// on this target.
298  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
299    return getLoadXAction(LType, VT) == Legal ||
300           getLoadXAction(LType, VT) == Custom;
301  }
302
303  /// getStoreXAction - Return how this store with truncation should be treated:
304  /// either it is legal, needs to be promoted to a larger size, needs to be
305  /// expanded to some other code sequence, or the target has a custom expander
306  /// for it.
307  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
308    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
309    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
310  }
311
312  /// isStoreXLegal - Return true if the specified store with truncation is
313  /// legal on this target.
314  bool isStoreXLegal(MVT::ValueType VT) const {
315    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
316  }
317
318  /// getIndexedLoadAction - Return how the indexed load should be treated:
319  /// either it is legal, needs to be promoted to a larger size, needs to be
320  /// expanded to some other code sequence, or the target has a custom expander
321  /// for it.
322  LegalizeAction
323  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
324    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
325    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
326  }
327
328  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
329  /// on this target.
330  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
331    return getIndexedLoadAction(IdxMode, VT) == Legal ||
332           getIndexedLoadAction(IdxMode, VT) == Custom;
333  }
334
335  /// getIndexedStoreAction - Return how the indexed store should be treated:
336  /// either it is legal, needs to be promoted to a larger size, needs to be
337  /// expanded to some other code sequence, or the target has a custom expander
338  /// for it.
339  LegalizeAction
340  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
341    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
342    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
343  }
344
345  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
346  /// on this target.
347  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
348    return getIndexedStoreAction(IdxMode, VT) == Legal ||
349           getIndexedStoreAction(IdxMode, VT) == Custom;
350  }
351
352  /// getConvertAction - Return how the conversion should be treated:
353  /// either it is legal, needs to be promoted to a larger size, needs to be
354  /// expanded to some other code sequence, or the target has a custom expander
355  /// for it.
356  LegalizeAction
357  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
358    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
359           "Table isn't big enough!");
360    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
361  }
362
363  /// isConvertLegal - Return true if the specified conversion is legal
364  /// on this target.
365  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
366    return getConvertAction(FromVT, ToVT) == Legal ||
367           getConvertAction(FromVT, ToVT) == Custom;
368  }
369
370  /// getTypeToPromoteTo - If the action for this operation is to promote, this
371  /// method returns the ValueType to promote to.
372  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
373    assert(getOperationAction(Op, VT) == Promote &&
374           "This operation isn't promoted!");
375
376    // See if this has an explicit type specified.
377    std::map<std::pair<unsigned, MVT::ValueType>,
378             MVT::ValueType>::const_iterator PTTI =
379      PromoteToType.find(std::make_pair(Op, VT));
380    if (PTTI != PromoteToType.end()) return PTTI->second;
381
382    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
383           "Cannot autopromote this type, add it with AddPromotedToType.");
384
385    MVT::ValueType NVT = VT;
386    do {
387      NVT = (MVT::ValueType)(NVT+1);
388      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
389             "Didn't find type to promote to!");
390    } while (!isTypeLegal(NVT) ||
391              getOperationAction(Op, NVT) == Promote);
392    return NVT;
393  }
394
395  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
396  /// This is fixed by the LLVM operations except for the pointer size.  If
397  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
398  /// counterpart (e.g. structs), otherwise it will assert.
399  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
400    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
401    return VT == MVT::iPTR ? PointerTy : VT;
402  }
403
404  /// getRegisterType - Return the type of registers that this ValueType will
405  /// eventually require.
406  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
407    if (!MVT::isExtendedVT(VT))
408      return RegisterTypeForVT[VT];
409    if (MVT::isVector(VT)) {
410      MVT::ValueType VT1, RegisterVT;
411      unsigned NumIntermediates;
412      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
413      return RegisterVT;
414    }
415    assert(0 && "Unsupported extended type!");
416  }
417
418  /// getNumRegisters - Return the number of registers that this ValueType will
419  /// eventually require.  This is one for any types promoted to live in larger
420  /// registers, but may be more than one for types (like i64) that are split
421  /// into pieces.
422  unsigned getNumRegisters(MVT::ValueType VT) const {
423    if (!MVT::isExtendedVT(VT))
424      return NumRegistersForVT[VT];
425    if (MVT::isVector(VT)) {
426      MVT::ValueType VT1, VT2;
427      unsigned NumIntermediates;
428      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
429    }
430    assert(0 && "Unsupported extended type!");
431  }
432
433  /// hasTargetDAGCombine - If true, the target has custom DAG combine
434  /// transformations that it can perform for the specified node.
435  bool hasTargetDAGCombine(ISD::NodeType NT) const {
436    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
437  }
438
439  /// This function returns the maximum number of store operations permitted
440  /// to replace a call to llvm.memset. The value is set by the target at the
441  /// performance threshold for such a replacement.
442  /// @brief Get maximum # of store operations permitted for llvm.memset
443  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
444
445  /// This function returns the maximum number of store operations permitted
446  /// to replace a call to llvm.memcpy. The value is set by the target at the
447  /// performance threshold for such a replacement.
448  /// @brief Get maximum # of store operations permitted for llvm.memcpy
449  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
450
451  /// This function returns the maximum number of store operations permitted
452  /// to replace a call to llvm.memmove. The value is set by the target at the
453  /// performance threshold for such a replacement.
454  /// @brief Get maximum # of store operations permitted for llvm.memmove
455  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
456
457  /// This function returns true if the target allows unaligned memory accesses.
458  /// This is used, for example, in situations where an array copy/move/set is
459  /// converted to a sequence of store operations. It's use helps to ensure that
460  /// such replacements don't generate code that causes an alignment error
461  /// (trap) on the target machine.
462  /// @brief Determine if the target supports unaligned memory accesses.
463  bool allowsUnalignedMemoryAccesses() const {
464    return allowUnalignedMemoryAccesses;
465  }
466
467  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
468  /// to implement llvm.setjmp.
469  bool usesUnderscoreSetJmp() const {
470    return UseUnderscoreSetJmp;
471  }
472
473  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
474  /// to implement llvm.longjmp.
475  bool usesUnderscoreLongJmp() const {
476    return UseUnderscoreLongJmp;
477  }
478
479  /// getStackPointerRegisterToSaveRestore - If a physical register, this
480  /// specifies the register that llvm.savestack/llvm.restorestack should save
481  /// and restore.
482  unsigned getStackPointerRegisterToSaveRestore() const {
483    return StackPointerRegisterToSaveRestore;
484  }
485
486  /// getExceptionAddressRegister - If a physical register, this returns
487  /// the register that receives the exception address on entry to a landing
488  /// pad.
489  unsigned getExceptionAddressRegister() const {
490    return ExceptionPointerRegister;
491  }
492
493  /// getExceptionSelectorRegister - If a physical register, this returns
494  /// the register that receives the exception typeid on entry to a landing
495  /// pad.
496  unsigned getExceptionSelectorRegister() const {
497    return ExceptionSelectorRegister;
498  }
499
500  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
501  /// set, the default is 200)
502  unsigned getJumpBufSize() const {
503    return JumpBufSize;
504  }
505
506  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
507  /// (if never set, the default is 0)
508  unsigned getJumpBufAlignment() const {
509    return JumpBufAlignment;
510  }
511
512  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
513  /// limit. Any block whose size is greater should not be predicated.
514  virtual unsigned getIfCvtBlockSizeLimit() const {
515    return IfCvtBlockSizeLimit;
516  }
517
518  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
519  /// block to be considered for duplication. Any block whose size is greater
520  /// should not be duplicated to facilitate its predication.
521  virtual unsigned getIfCvtDupBlockSizeLimit() const {
522    return IfCvtDupBlockSizeLimit;
523  }
524
525  /// getPreIndexedAddressParts - returns true by value, base pointer and
526  /// offset pointer and addressing mode by reference if the node's address
527  /// can be legally represented as pre-indexed load / store address.
528  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
529                                         SDOperand &Offset,
530                                         ISD::MemIndexedMode &AM,
531                                         SelectionDAG &DAG) {
532    return false;
533  }
534
535  /// getPostIndexedAddressParts - returns true by value, base pointer and
536  /// offset pointer and addressing mode by reference if this node can be
537  /// combined with a load / store to form a post-indexed load / store.
538  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
539                                          SDOperand &Base, SDOperand &Offset,
540                                          ISD::MemIndexedMode &AM,
541                                          SelectionDAG &DAG) {
542    return false;
543  }
544
545  //===--------------------------------------------------------------------===//
546  // TargetLowering Optimization Methods
547  //
548
549  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
550  /// SDOperands for returning information from TargetLowering to its clients
551  /// that want to combine
552  struct TargetLoweringOpt {
553    SelectionDAG &DAG;
554    SDOperand Old;
555    SDOperand New;
556
557    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
558
559    bool CombineTo(SDOperand O, SDOperand N) {
560      Old = O;
561      New = N;
562      return true;
563    }
564
565    /// ShrinkDemandedConstant - Check to see if the specified operand of the
566    /// specified instruction is a constant integer.  If so, check to see if
567    /// there are any bits set in the constant that are not demanded.  If so,
568    /// shrink the constant and return true.
569    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
570  };
571
572  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
573  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
574  /// use this information to simplify Op, create a new simplified DAG node and
575  /// return true, returning the original and new nodes in Old and New.
576  /// Otherwise, analyze the expression and return a mask of KnownOne and
577  /// KnownZero bits for the expression (used to simplify the caller).
578  /// The KnownZero/One bits may only be accurate for those bits in the
579  /// DemandedMask.
580  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
581                            uint64_t &KnownZero, uint64_t &KnownOne,
582                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
583
584  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
585  /// Mask are known to be either zero or one and return them in the
586  /// KnownZero/KnownOne bitsets.
587  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
588                                              uint64_t Mask,
589                                              uint64_t &KnownZero,
590                                              uint64_t &KnownOne,
591                                              const SelectionDAG &DAG,
592                                              unsigned Depth = 0) const;
593
594  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
595  /// targets that want to expose additional information about sign bits to the
596  /// DAG Combiner.
597  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
598                                                   unsigned Depth = 0) const;
599
600  struct DAGCombinerInfo {
601    void *DC;  // The DAG Combiner object.
602    bool BeforeLegalize;
603    bool CalledByLegalizer;
604  public:
605    SelectionDAG &DAG;
606
607    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
608      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
609
610    bool isBeforeLegalize() const { return BeforeLegalize; }
611    bool isCalledByLegalizer() const { return CalledByLegalizer; }
612
613    void AddToWorklist(SDNode *N);
614    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
615    SDOperand CombineTo(SDNode *N, SDOperand Res);
616    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
617  };
618
619  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
620  /// and cc. If it is unable to simplify it, return a null SDOperand.
621  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
622                          ISD::CondCode Cond, bool foldBooleans,
623                          DAGCombinerInfo &DCI) const;
624
625  /// PerformDAGCombine - This method will be invoked for all target nodes and
626  /// for any target-independent nodes that the target has registered with
627  /// invoke it for.
628  ///
629  /// The semantics are as follows:
630  /// Return Value:
631  ///   SDOperand.Val == 0   - No change was made
632  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
633  ///   otherwise            - N should be replaced by the returned Operand.
634  ///
635  /// In addition, methods provided by DAGCombinerInfo may be used to perform
636  /// more complex transformations.
637  ///
638  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
639
640  //===--------------------------------------------------------------------===//
641  // TargetLowering Configuration Methods - These methods should be invoked by
642  // the derived class constructor to configure this object for the target.
643  //
644
645protected:
646  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
647  /// GOT for PC-relative code.
648  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
649
650  /// setShiftAmountType - Describe the type that should be used for shift
651  /// amounts.  This type defaults to the pointer type.
652  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
653
654  /// setSetCCResultType - Describe the type that shoudl be used as the result
655  /// of a setcc operation.  This defaults to the pointer type.
656  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
657
658  /// setSetCCResultContents - Specify how the target extends the result of a
659  /// setcc operation in a register.
660  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
661
662  /// setSchedulingPreference - Specify the target scheduling preference.
663  void setSchedulingPreference(SchedPreference Pref) {
664    SchedPreferenceInfo = Pref;
665  }
666
667  /// setShiftAmountFlavor - Describe how the target handles out of range shift
668  /// amounts.
669  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
670    ShiftAmtHandling = OORSA;
671  }
672
673  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
674  /// use _setjmp to implement llvm.setjmp or the non _ version.
675  /// Defaults to false.
676  void setUseUnderscoreSetJmp(bool Val) {
677    UseUnderscoreSetJmp = Val;
678  }
679
680  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
681  /// use _longjmp to implement llvm.longjmp or the non _ version.
682  /// Defaults to false.
683  void setUseUnderscoreLongJmp(bool Val) {
684    UseUnderscoreLongJmp = Val;
685  }
686
687  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
688  /// specifies the register that llvm.savestack/llvm.restorestack should save
689  /// and restore.
690  void setStackPointerRegisterToSaveRestore(unsigned R) {
691    StackPointerRegisterToSaveRestore = R;
692  }
693
694  /// setExceptionPointerRegister - If set to a physical register, this sets
695  /// the register that receives the exception address on entry to a landing
696  /// pad.
697  void setExceptionPointerRegister(unsigned R) {
698    ExceptionPointerRegister = R;
699  }
700
701  /// setExceptionSelectorRegister - If set to a physical register, this sets
702  /// the register that receives the exception typeid on entry to a landing
703  /// pad.
704  void setExceptionSelectorRegister(unsigned R) {
705    ExceptionSelectorRegister = R;
706  }
707
708  /// SelectIsExpensive - Tells the code generator not to expand operations
709  /// into sequences that use the select operations if possible.
710  void setSelectIsExpensive() { SelectIsExpensive = true; }
711
712  /// setIntDivIsCheap - Tells the code generator that integer divide is
713  /// expensive, and if possible, should be replaced by an alternate sequence
714  /// of instructions not containing an integer divide.
715  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
716
717  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
718  /// srl/add/sra for a signed divide by power of two, and let the target handle
719  /// it.
720  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
721
722  /// addRegisterClass - Add the specified register class as an available
723  /// regclass for the specified value type.  This indicates the selector can
724  /// handle values of that class natively.
725  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
726    assert(!MVT::isExtendedVT(VT));
727    AvailableRegClasses.push_back(std::make_pair(VT, RC));
728    RegClassForVT[VT] = RC;
729  }
730
731  /// computeRegisterProperties - Once all of the register classes are added,
732  /// this allows us to compute derived properties we expose.
733  void computeRegisterProperties();
734
735  /// setOperationAction - Indicate that the specified operation does not work
736  /// with the specified type and indicate what to do about it.
737  void setOperationAction(unsigned Op, MVT::ValueType VT,
738                          LegalizeAction Action) {
739    assert(VT < 32 && Op < array_lengthof(OpActions) &&
740           "Table isn't big enough!");
741    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
742    OpActions[Op] |= (uint64_t)Action << VT*2;
743  }
744
745  /// setLoadXAction - Indicate that the specified load with extension does not
746  /// work with the with specified type and indicate what to do about it.
747  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
748                      LegalizeAction Action) {
749    assert(VT < 32 && ExtType < array_lengthof(LoadXActions) &&
750           "Table isn't big enough!");
751    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
752    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
753  }
754
755  /// setStoreXAction - Indicate that the specified store with truncation does
756  /// not work with the with specified type and indicate what to do about it.
757  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
758    assert(VT < 32 && "Table isn't big enough!");
759    StoreXActions &= ~(uint64_t(3UL) << VT*2);
760    StoreXActions |= (uint64_t)Action << VT*2;
761  }
762
763  /// setIndexedLoadAction - Indicate that the specified indexed load does or
764  /// does not work with the with specified type and indicate what to do abort
765  /// it. NOTE: All indexed mode loads are initialized to Expand in
766  /// TargetLowering.cpp
767  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
768                            LegalizeAction Action) {
769    assert(VT < 32 && IdxMode <
770           array_lengthof(IndexedModeActions[0]) &&
771           "Table isn't big enough!");
772    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
773    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
774  }
775
776  /// setIndexedStoreAction - Indicate that the specified indexed store does or
777  /// does not work with the with specified type and indicate what to do about
778  /// it. NOTE: All indexed mode stores are initialized to Expand in
779  /// TargetLowering.cpp
780  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
781                             LegalizeAction Action) {
782    assert(VT < 32 && IdxMode <
783           array_lengthof(IndexedModeActions[1]) &&
784           "Table isn't big enough!");
785    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
786    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
787  }
788
789  /// setConvertAction - Indicate that the specified conversion does or does
790  /// not work with the with specified type and indicate what to do about it.
791  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
792                        LegalizeAction Action) {
793    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
794           "Table isn't big enough!");
795    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
796    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
797  }
798
799  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
800  /// promotion code defaults to trying a larger integer/fp until it can find
801  /// one that works.  If that default is insufficient, this method can be used
802  /// by the target to override the default.
803  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
804                         MVT::ValueType DestVT) {
805    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
806  }
807
808  /// addLegalFPImmediate - Indicate that this target can instruction select
809  /// the specified FP immediate natively.
810  void addLegalFPImmediate(const APFloat& Imm) {
811    LegalFPImmediates.push_back(Imm);
812  }
813
814  /// setTargetDAGCombine - Targets should invoke this method for each target
815  /// independent node that they want to provide a custom DAG combiner for by
816  /// implementing the PerformDAGCombine virtual method.
817  void setTargetDAGCombine(ISD::NodeType NT) {
818    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
819  }
820
821  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
822  /// bytes); default is 200
823  void setJumpBufSize(unsigned Size) {
824    JumpBufSize = Size;
825  }
826
827  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
828  /// alignment (in bytes); default is 0
829  void setJumpBufAlignment(unsigned Align) {
830    JumpBufAlignment = Align;
831  }
832
833  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
834  /// limit (in number of instructions); default is 2.
835  void setIfCvtBlockSizeLimit(unsigned Limit) {
836    IfCvtBlockSizeLimit = Limit;
837  }
838
839  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
840  /// of instructions) to be considered for code duplication during
841  /// if-conversion; default is 2.
842  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
843    IfCvtDupBlockSizeLimit = Limit;
844  }
845
846public:
847
848  //===--------------------------------------------------------------------===//
849  // Lowering methods - These methods must be implemented by targets so that
850  // the SelectionDAGLowering code knows how to lower these.
851  //
852
853  /// LowerArguments - This hook must be implemented to indicate how we should
854  /// lower the arguments for the specified function, into the specified DAG.
855  virtual std::vector<SDOperand>
856  LowerArguments(Function &F, SelectionDAG &DAG);
857
858  /// LowerCallTo - This hook lowers an abstract call to a function into an
859  /// actual call.  This returns a pair of operands.  The first element is the
860  /// return value for the function (if RetTy is not VoidTy).  The second
861  /// element is the outgoing token chain.
862  struct ArgListEntry {
863    SDOperand Node;
864    const Type* Ty;
865    bool isSExt;
866    bool isZExt;
867    bool isInReg;
868    bool isSRet;
869    bool isNest;
870    bool isByVal;
871
872    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
873      isSRet(false), isNest(false), isByVal(false) { }
874  };
875  typedef std::vector<ArgListEntry> ArgListTy;
876  virtual std::pair<SDOperand, SDOperand>
877  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
878              bool isVarArg, unsigned CallingConv, bool isTailCall,
879              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
880
881  /// LowerOperation - This callback is invoked for operations that are
882  /// unsupported by the target, which are registered to use 'custom' lowering,
883  /// and whose defined values are all legal.
884  /// If the target has no operations that require custom lowering, it need not
885  /// implement this.  The default implementation of this aborts.
886  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
887
888  /// ExpandOperationResult - This callback is invoked for operations that are
889  /// unsupported by the target, which are registered to use 'custom' lowering,
890  /// and whose result type needs to be expanded.
891  ///
892  /// If the target has no operations that require custom lowering, it need not
893  /// implement this.  The default implementation of this aborts.
894  virtual std::pair<SDOperand,SDOperand>
895    ExpandOperationResult(SDNode *N, SelectionDAG &DAG);
896
897  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
898  /// tail call optimization. Targets which want to do tail call optimization
899  /// should override this function.
900  virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
901                                                 SDOperand Ret,
902                                                 SelectionDAG &DAG) const {
903    return false;
904  }
905
906  /// CustomPromoteOperation - This callback is invoked for operations that are
907  /// unsupported by the target, are registered to use 'custom' lowering, and
908  /// whose type needs to be promoted.
909  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
910
911  /// getTargetNodeName() - This method returns the name of a target specific
912  /// DAG node.
913  virtual const char *getTargetNodeName(unsigned Opcode) const;
914
915  //===--------------------------------------------------------------------===//
916  // Inline Asm Support hooks
917  //
918
919  enum ConstraintType {
920    C_Register,            // Constraint represents a single register.
921    C_RegisterClass,       // Constraint represents one or more registers.
922    C_Memory,              // Memory constraint.
923    C_Other,               // Something else.
924    C_Unknown              // Unsupported constraint.
925  };
926
927  /// getConstraintType - Given a constraint, return the type of constraint it
928  /// is for this target.
929  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
930
931
932  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
933  /// return a list of registers that can be used to satisfy the constraint.
934  /// This should only be used for C_RegisterClass constraints.
935  virtual std::vector<unsigned>
936  getRegClassForInlineAsmConstraint(const std::string &Constraint,
937                                    MVT::ValueType VT) const;
938
939  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
940  /// {edx}), return the register number and the register class for the
941  /// register.
942  ///
943  /// Given a register class constraint, like 'r', if this corresponds directly
944  /// to an LLVM register class, return a register of 0 and the register class
945  /// pointer.
946  ///
947  /// This should only be used for C_Register constraints.  On error,
948  /// this returns a register number of 0 and a null register class pointer..
949  virtual std::pair<unsigned, const TargetRegisterClass*>
950    getRegForInlineAsmConstraint(const std::string &Constraint,
951                                 MVT::ValueType VT) const;
952
953
954  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
955  /// vector.  If it is invalid, don't add anything to Ops.
956  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
957                                            std::vector<SDOperand> &Ops,
958                                            SelectionDAG &DAG);
959
960  //===--------------------------------------------------------------------===//
961  // Scheduler hooks
962  //
963
964  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
965  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
966  // instructions are special in various ways, which require special support to
967  // insert.  The specified MachineInstr is created but not inserted into any
968  // basic blocks, and the scheduler passes ownership of it to this method.
969  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
970                                                     MachineBasicBlock *MBB);
971
972  //===--------------------------------------------------------------------===//
973  // Addressing mode description hooks (used by LSR etc).
974  //
975
976  /// AddrMode - This represents an addressing mode of:
977  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
978  /// If BaseGV is null,  there is no BaseGV.
979  /// If BaseOffs is zero, there is no base offset.
980  /// If HasBaseReg is false, there is no base register.
981  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
982  /// no scale.
983  ///
984  struct AddrMode {
985    GlobalValue *BaseGV;
986    int64_t      BaseOffs;
987    bool         HasBaseReg;
988    int64_t      Scale;
989    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
990  };
991
992  /// isLegalAddressingMode - Return true if the addressing mode represented by
993  /// AM is legal for this target, for a load/store of the specified type.
994  /// TODO: Handle pre/postinc as well.
995  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
996
997  //===--------------------------------------------------------------------===//
998  // Div utility functions
999  //
1000  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
1001                      std::vector<SDNode*>* Created) const;
1002  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
1003                      std::vector<SDNode*>* Created) const;
1004
1005
1006  //===--------------------------------------------------------------------===//
1007  // Runtime Library hooks
1008  //
1009
1010  /// setLibcallName - Rename the default libcall routine name for the specified
1011  /// libcall.
1012  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1013    LibcallRoutineNames[Call] = Name;
1014  }
1015
1016  /// getLibcallName - Get the libcall routine name for the specified libcall.
1017  ///
1018  const char *getLibcallName(RTLIB::Libcall Call) const {
1019    return LibcallRoutineNames[Call];
1020  }
1021
1022  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1023  /// result of the comparison libcall against zero.
1024  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1025    CmpLibcallCCs[Call] = CC;
1026  }
1027
1028  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1029  /// the comparison libcall against zero.
1030  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1031    return CmpLibcallCCs[Call];
1032  }
1033
1034private:
1035  TargetMachine &TM;
1036  const TargetData *TD;
1037
1038  /// IsLittleEndian - True if this is a little endian target.
1039  ///
1040  bool IsLittleEndian;
1041
1042  /// PointerTy - The type to use for pointers, usually i32 or i64.
1043  ///
1044  MVT::ValueType PointerTy;
1045
1046  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1047  ///
1048  bool UsesGlobalOffsetTable;
1049
1050  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1051  /// PointerTy is.
1052  MVT::ValueType ShiftAmountTy;
1053
1054  OutOfRangeShiftAmount ShiftAmtHandling;
1055
1056  /// SelectIsExpensive - Tells the code generator not to expand operations
1057  /// into sequences that use the select operations if possible.
1058  bool SelectIsExpensive;
1059
1060  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1061  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1062  /// a real cost model is in place.  If we ever optimize for size, this will be
1063  /// set to true unconditionally.
1064  bool IntDivIsCheap;
1065
1066  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1067  /// srl/add/sra for a signed divide by power of two, and let the target handle
1068  /// it.
1069  bool Pow2DivIsCheap;
1070
1071  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1072  /// PointerTy.
1073  MVT::ValueType SetCCResultTy;
1074
1075  /// SetCCResultContents - Information about the contents of the high-bits in
1076  /// the result of a setcc comparison operation.
1077  SetCCResultValue SetCCResultContents;
1078
1079  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1080  /// total cycles or lowest register usage.
1081  SchedPreference SchedPreferenceInfo;
1082
1083  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1084  /// llvm.setjmp.  Defaults to false.
1085  bool UseUnderscoreSetJmp;
1086
1087  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1088  /// llvm.longjmp.  Defaults to false.
1089  bool UseUnderscoreLongJmp;
1090
1091  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1092  unsigned JumpBufSize;
1093
1094  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1095  /// buffers
1096  unsigned JumpBufAlignment;
1097
1098  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1099  /// if-converted.
1100  unsigned IfCvtBlockSizeLimit;
1101
1102  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1103  /// duplicated during if-conversion.
1104  unsigned IfCvtDupBlockSizeLimit;
1105
1106  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1107  /// specifies the register that llvm.savestack/llvm.restorestack should save
1108  /// and restore.
1109  unsigned StackPointerRegisterToSaveRestore;
1110
1111  /// ExceptionPointerRegister - If set to a physical register, this specifies
1112  /// the register that receives the exception address on entry to a landing
1113  /// pad.
1114  unsigned ExceptionPointerRegister;
1115
1116  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1117  /// the register that receives the exception typeid on entry to a landing
1118  /// pad.
1119  unsigned ExceptionSelectorRegister;
1120
1121  /// RegClassForVT - This indicates the default register class to use for
1122  /// each ValueType the target supports natively.
1123  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1124  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1125  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1126
1127  /// TransformToType - For any value types we are promoting or expanding, this
1128  /// contains the value type that we are changing to.  For Expanded types, this
1129  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1130  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1131  /// by the system, this holds the same type (e.g. i32 -> i32).
1132  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1133
1134  /// OpActions - For each operation and each value type, keep a LegalizeAction
1135  /// that indicates how instruction selection should deal with the operation.
1136  /// Most operations are Legal (aka, supported natively by the target), but
1137  /// operations that are not should be described.  Note that operations on
1138  /// non-legal value types are not described here.
1139  uint64_t OpActions[156];
1140
1141  /// LoadXActions - For each load of load extension type and each value type,
1142  /// keep a LegalizeAction that indicates how instruction selection should deal
1143  /// with the load.
1144  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1145
1146  /// StoreXActions - For each store with truncation of each value type, keep a
1147  /// LegalizeAction that indicates how instruction selection should deal with
1148  /// the store.
1149  uint64_t StoreXActions;
1150
1151  /// IndexedModeActions - For each indexed mode and each value type, keep a
1152  /// pair of LegalizeAction that indicates how instruction selection should
1153  /// deal with the load / store.
1154  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1155
1156  /// ConvertActions - For each conversion from source type to destination type,
1157  /// keep a LegalizeAction that indicates how instruction selection should
1158  /// deal with the conversion.
1159  /// Currently, this is used only for floating->floating conversions
1160  /// (FP_EXTEND and FP_ROUND).
1161  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1162
1163  ValueTypeActionImpl ValueTypeActions;
1164
1165  std::vector<APFloat> LegalFPImmediates;
1166
1167  std::vector<std::pair<MVT::ValueType,
1168                        TargetRegisterClass*> > AvailableRegClasses;
1169
1170  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1171  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1172  /// which sets a bit in this array.
1173  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1174
1175  /// PromoteToType - For operations that must be promoted to a specific type,
1176  /// this holds the destination type.  This map should be sparse, so don't hold
1177  /// it as an array.
1178  ///
1179  /// Targets add entries to this map with AddPromotedToType(..), clients access
1180  /// this with getTypeToPromoteTo(..).
1181  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1182
1183  /// LibcallRoutineNames - Stores the name each libcall.
1184  ///
1185  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1186
1187  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1188  /// of each of the comparison libcall against zero.
1189  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1190
1191protected:
1192  /// When lowering %llvm.memset this field specifies the maximum number of
1193  /// store operations that may be substituted for the call to memset. Targets
1194  /// must set this value based on the cost threshold for that target. Targets
1195  /// should assume that the memset will be done using as many of the largest
1196  /// store operations first, followed by smaller ones, if necessary, per
1197  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1198  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1199  /// store.  This only applies to setting a constant array of a constant size.
1200  /// @brief Specify maximum number of store instructions per memset call.
1201  unsigned maxStoresPerMemset;
1202
1203  /// When lowering %llvm.memcpy this field specifies the maximum number of
1204  /// store operations that may be substituted for a call to memcpy. Targets
1205  /// must set this value based on the cost threshold for that target. Targets
1206  /// should assume that the memcpy will be done using as many of the largest
1207  /// store operations first, followed by smaller ones, if necessary, per
1208  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1209  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1210  /// and one 1-byte store. This only applies to copying a constant array of
1211  /// constant size.
1212  /// @brief Specify maximum bytes of store instructions per memcpy call.
1213  unsigned maxStoresPerMemcpy;
1214
1215  /// When lowering %llvm.memmove this field specifies the maximum number of
1216  /// store instructions that may be substituted for a call to memmove. Targets
1217  /// must set this value based on the cost threshold for that target. Targets
1218  /// should assume that the memmove will be done using as many of the largest
1219  /// store operations first, followed by smaller ones, if necessary, per
1220  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1221  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1222  /// applies to copying a constant array of constant size.
1223  /// @brief Specify maximum bytes of store instructions per memmove call.
1224  unsigned maxStoresPerMemmove;
1225
1226  /// This field specifies whether the target machine permits unaligned memory
1227  /// accesses.  This is used, for example, to determine the size of store
1228  /// operations when copying small arrays and other similar tasks.
1229  /// @brief Indicate whether the target permits unaligned memory accesses.
1230  bool allowUnalignedMemoryAccesses;
1231};
1232} // end llvm namespace
1233
1234#endif
1235