TargetLowering.h revision 1e5a6c46b8f8cca0e4e6d582289bfd13cb462e39
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  enum SchedPreference {
101    SchedulingForLatency,          // Scheduling for shortest total latency.
102    SchedulingForRegPressure       // Scheduling for lowest register pressure.
103  };
104
105  /// NOTE: The constructor takes ownership of TLOF.
106  explicit TargetLowering(const TargetMachine &TM,
107                          const TargetLoweringObjectFile *TLOF);
108  virtual ~TargetLowering();
109
110  const TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
113
114  bool isBigEndian() const { return !IsLittleEndian; }
115  bool isLittleEndian() const { return IsLittleEndian; }
116  MVT getPointerTy() const { return PointerTy; }
117  MVT getShiftAmountTy() const { return ShiftAmountTy; }
118
119  /// isSelectExpensive - Return true if the select operation is expensive for
120  /// this target.
121  bool isSelectExpensive() const { return SelectIsExpensive; }
122
123  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
124  /// a sequence of several shifts, adds, and multiplies for this target.
125  bool isIntDivCheap() const { return IntDivIsCheap; }
126
127  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
128  /// srl/add/sra.
129  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
130
131  /// getSetCCResultType - Return the ValueType of the result of SETCC
132  /// operations.  Also used to obtain the target's preferred type for
133  /// the condition operand of SELECT and BRCOND nodes.  In the case of
134  /// BRCOND the argument passed is MVT::Other since there are no other
135  /// operands to get a type hint from.
136  virtual
137  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
138
139  /// getCmpLibcallReturnType - Return the ValueType for comparison
140  /// libcalls. Comparions libcalls include floating point comparion calls,
141  /// and Ordered/Unordered check calls on floating point numbers.
142  virtual
143  MVT::SimpleValueType getCmpLibcallReturnType() const;
144
145  /// getBooleanContents - For targets without i1 registers, this gives the
146  /// nature of the high-bits of boolean values held in types wider than i1.
147  /// "Boolean values" are special true/false values produced by nodes like
148  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
149  /// Not to be confused with general values promoted from i1.
150  BooleanContent getBooleanContents() const { return BooleanContents;}
151
152  /// getSchedulingPreference - Return target scheduling preference.
153  SchedPreference getSchedulingPreference() const {
154    return SchedPreferenceInfo;
155  }
156
157  /// getRegClassFor - Return the register class that should be used for the
158  /// specified value type.  This may only be called on legal types.
159  TargetRegisterClass *getRegClassFor(EVT VT) const {
160    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
161    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
162    assert(RC && "This value type is not natively supported!");
163    return RC;
164  }
165
166  /// isTypeLegal - Return true if the target has native support for the
167  /// specified value type.  This means that it has a register that directly
168  /// holds it without promotions or expansions.
169  bool isTypeLegal(EVT VT) const {
170    assert(!VT.isSimple() ||
171           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
172    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
173  }
174
175  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
176  /// new operations of this type.  All Legal types are synthesizable except
177  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
178  bool isTypeSynthesizable(EVT VT) const {
179    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
180  }
181
182  class ValueTypeActionImpl {
183    /// ValueTypeActions - This is a bitvector that contains two bits for each
184    /// value type, where the two bits correspond to the LegalizeAction enum.
185    /// This can be queried with "getTypeAction(VT)".
186    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
187    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
188  public:
189    ValueTypeActionImpl() {
190      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
191    }
192    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
193      if (VT.isExtended()) {
194        if (VT.isVector()) {
195          return VT.isPow2VectorType() ? Expand : Promote;
196        }
197        if (VT.isInteger())
198          // First promote to a power-of-two size, then expand if necessary.
199          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
200        assert(0 && "Unsupported extended type!");
201        return Legal;
202      }
203      unsigned I = VT.getSimpleVT().SimpleTy;
204      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
205      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
206    }
207    void setTypeAction(EVT VT, LegalizeAction Action) {
208      unsigned I = VT.getSimpleVT().SimpleTy;
209      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
210      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
211    }
212  };
213
214  const ValueTypeActionImpl &getValueTypeActions() const {
215    return ValueTypeActions;
216  }
217
218  /// getTypeAction - Return how we should legalize values of this type, either
219  /// it is already legal (return 'Legal') or we need to promote it to a larger
220  /// type (return 'Promote'), or we need to expand it into multiple registers
221  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
222  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
223    return ValueTypeActions.getTypeAction(Context, VT);
224  }
225
226  /// getTypeToTransformTo - For types supported by the target, this is an
227  /// identity function.  For types that must be promoted to larger types, this
228  /// returns the larger type to promote to.  For integer types that are larger
229  /// than the largest integer register, this contains one step in the expansion
230  /// to get to the smaller register. For illegal floating point types, this
231  /// returns the integer type to transform to.
232  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
233    if (VT.isSimple()) {
234      assert((unsigned)VT.getSimpleVT().SimpleTy <
235             array_lengthof(TransformToType));
236      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
237      assert(getTypeAction(Context, NVT) != Promote &&
238             "Promote may not follow Expand or Promote");
239      return NVT;
240    }
241
242    if (VT.isVector()) {
243      EVT NVT = VT.getPow2VectorType(Context);
244      if (NVT == VT) {
245        // Vector length is a power of 2 - split to half the size.
246        unsigned NumElts = VT.getVectorNumElements();
247        EVT EltVT = VT.getVectorElementType();
248        return (NumElts == 1) ?
249          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
250      }
251      // Promote to a power of two size, avoiding multi-step promotion.
252      return getTypeAction(Context, NVT) == Promote ?
253        getTypeToTransformTo(Context, NVT) : NVT;
254    } else if (VT.isInteger()) {
255      EVT NVT = VT.getRoundIntegerType(Context);
256      if (NVT == VT)
257        // Size is a power of two - expand to half the size.
258        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
259      else
260        // Promote to a power of two size, avoiding multi-step promotion.
261        return getTypeAction(Context, NVT) == Promote ?
262          getTypeToTransformTo(Context, NVT) : NVT;
263    }
264    assert(0 && "Unsupported extended type!");
265    return MVT(MVT::Other); // Not reached
266  }
267
268  /// getTypeToExpandTo - For types supported by the target, this is an
269  /// identity function.  For types that must be expanded (i.e. integer types
270  /// that are larger than the largest integer register or illegal floating
271  /// point types), this returns the largest legal type it will be expanded to.
272  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
273    assert(!VT.isVector());
274    while (true) {
275      switch (getTypeAction(Context, VT)) {
276      case Legal:
277        return VT;
278      case Expand:
279        VT = getTypeToTransformTo(Context, VT);
280        break;
281      default:
282        assert(false && "Type is not legal nor is it to be expanded!");
283        return VT;
284      }
285    }
286    return VT;
287  }
288
289  /// getVectorTypeBreakdown - Vector types are broken down into some number of
290  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
291  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
292  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
293  ///
294  /// This method returns the number of registers needed, and the VT for each
295  /// register.  It also returns the VT and quantity of the intermediate values
296  /// before they are promoted/expanded.
297  ///
298  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
299                                  EVT &IntermediateVT,
300                                  unsigned &NumIntermediates,
301                                  EVT &RegisterVT) const;
302
303  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
304  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
305  /// this is the case, it returns true and store the intrinsic
306  /// information into the IntrinsicInfo that was passed to the function.
307  struct IntrinsicInfo {
308    unsigned     opc;         // target opcode
309    EVT          memVT;       // memory VT
310    const Value* ptrVal;      // value representing memory location
311    int          offset;      // offset off of ptrVal
312    unsigned     align;       // alignment
313    bool         vol;         // is volatile?
314    bool         readMem;     // reads memory?
315    bool         writeMem;    // writes memory?
316  };
317
318  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
319                                  const CallInst &I, unsigned Intrinsic) const {
320    return false;
321  }
322
323  /// isFPImmLegal - Returns true if the target can instruction select the
324  /// specified FP immediate natively. If false, the legalizer will materialize
325  /// the FP immediate as a load from a constant pool.
326  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
327    return false;
328  }
329
330  /// isShuffleMaskLegal - Targets can use this to indicate that they only
331  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
332  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
333  /// are assumed to be legal.
334  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
335                                  EVT VT) const {
336    return true;
337  }
338
339  /// canOpTrap - Returns true if the operation can trap for the value type.
340  /// VT must be a legal type. By default, we optimistically assume most
341  /// operations don't trap except for divide and remainder.
342  virtual bool canOpTrap(unsigned Op, EVT VT) const;
343
344  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
345  /// used by Targets can use this to indicate if there is a suitable
346  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
347  /// pool entry.
348  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
349                                      EVT VT) const {
350    return false;
351  }
352
353  /// getOperationAction - Return how this operation should be treated: either
354  /// it is legal, needs to be promoted to a larger size, needs to be
355  /// expanded to some other code sequence, or the target has a custom expander
356  /// for it.
357  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
358    if (VT.isExtended()) return Expand;
359    assert(Op < array_lengthof(OpActions[0]) &&
360           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
361           "Table isn't big enough!");
362    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
363    unsigned J = I & 31;
364    I = I >> 5;
365    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
366  }
367
368  /// isOperationLegalOrCustom - Return true if the specified operation is
369  /// legal on this target or can be made legal with custom lowering. This
370  /// is used to help guide high-level lowering decisions.
371  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
372    return (VT == MVT::Other || isTypeLegal(VT)) &&
373      (getOperationAction(Op, VT) == Legal ||
374       getOperationAction(Op, VT) == Custom);
375  }
376
377  /// isOperationLegal - Return true if the specified operation is legal on this
378  /// target.
379  bool isOperationLegal(unsigned Op, EVT VT) const {
380    return (VT == MVT::Other || isTypeLegal(VT)) &&
381           getOperationAction(Op, VT) == Legal;
382  }
383
384  /// getLoadExtAction - Return how this load with extension should be treated:
385  /// either it is legal, needs to be promoted to a larger size, needs to be
386  /// expanded to some other code sequence, or the target has a custom expander
387  /// for it.
388  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
389    assert(LType < array_lengthof(LoadExtActions) &&
390           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
391           "Table isn't big enough!");
392    return (LegalizeAction)((LoadExtActions[LType] >>
393              (2*VT.getSimpleVT().SimpleTy)) & 3);
394  }
395
396  /// isLoadExtLegal - Return true if the specified load with extension is legal
397  /// on this target.
398  bool isLoadExtLegal(unsigned LType, EVT VT) const {
399    return VT.isSimple() &&
400      (getLoadExtAction(LType, VT) == Legal ||
401       getLoadExtAction(LType, VT) == Custom);
402  }
403
404  /// getTruncStoreAction - Return how this store with truncation should be
405  /// treated: either it is legal, needs to be promoted to a larger size, needs
406  /// to be expanded to some other code sequence, or the target has a custom
407  /// expander for it.
408  LegalizeAction getTruncStoreAction(EVT ValVT,
409                                     EVT MemVT) const {
410    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
411             array_lengthof(TruncStoreActions) &&
412           (unsigned)MemVT.getSimpleVT().SimpleTy <
413             sizeof(TruncStoreActions[0])*4 &&
414           "Table isn't big enough!");
415    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
416                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
417  }
418
419  /// isTruncStoreLegal - Return true if the specified store with truncation is
420  /// legal on this target.
421  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
422    return isTypeLegal(ValVT) && MemVT.isSimple() &&
423      (getTruncStoreAction(ValVT, MemVT) == Legal ||
424       getTruncStoreAction(ValVT, MemVT) == Custom);
425  }
426
427  /// getIndexedLoadAction - Return how the indexed load should be treated:
428  /// either it is legal, needs to be promoted to a larger size, needs to be
429  /// expanded to some other code sequence, or the target has a custom expander
430  /// for it.
431  LegalizeAction
432  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
433    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
434           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
435           "Table isn't big enough!");
436    return (LegalizeAction)((IndexedModeActions[
437                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
438  }
439
440  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
441  /// on this target.
442  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
443    return VT.isSimple() &&
444      (getIndexedLoadAction(IdxMode, VT) == Legal ||
445       getIndexedLoadAction(IdxMode, VT) == Custom);
446  }
447
448  /// getIndexedStoreAction - Return how the indexed store should be treated:
449  /// either it is legal, needs to be promoted to a larger size, needs to be
450  /// expanded to some other code sequence, or the target has a custom expander
451  /// for it.
452  LegalizeAction
453  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
454    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
455           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
456           "Table isn't big enough!");
457    return (LegalizeAction)((IndexedModeActions[
458              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
459  }
460
461  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
462  /// on this target.
463  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
464    return VT.isSimple() &&
465      (getIndexedStoreAction(IdxMode, VT) == Legal ||
466       getIndexedStoreAction(IdxMode, VT) == Custom);
467  }
468
469  /// getCondCodeAction - Return how the condition code should be treated:
470  /// either it is legal, needs to be expanded to some other code sequence,
471  /// or the target has a custom expander for it.
472  LegalizeAction
473  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
474    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
475           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
476           "Table isn't big enough!");
477    LegalizeAction Action = (LegalizeAction)
478      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
479    assert(Action != Promote && "Can't promote condition code!");
480    return Action;
481  }
482
483  /// isCondCodeLegal - Return true if the specified condition code is legal
484  /// on this target.
485  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
486    return getCondCodeAction(CC, VT) == Legal ||
487           getCondCodeAction(CC, VT) == Custom;
488  }
489
490
491  /// getTypeToPromoteTo - If the action for this operation is to promote, this
492  /// method returns the ValueType to promote to.
493  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
494    assert(getOperationAction(Op, VT) == Promote &&
495           "This operation isn't promoted!");
496
497    // See if this has an explicit type specified.
498    std::map<std::pair<unsigned, MVT::SimpleValueType>,
499             MVT::SimpleValueType>::const_iterator PTTI =
500      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
501    if (PTTI != PromoteToType.end()) return PTTI->second;
502
503    assert((VT.isInteger() || VT.isFloatingPoint()) &&
504           "Cannot autopromote this type, add it with AddPromotedToType.");
505
506    EVT NVT = VT;
507    do {
508      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
509      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
510             "Didn't find type to promote to!");
511    } while (!isTypeLegal(NVT) ||
512              getOperationAction(Op, NVT) == Promote);
513    return NVT;
514  }
515
516  /// getValueType - Return the EVT corresponding to this LLVM type.
517  /// This is fixed by the LLVM operations except for the pointer size.  If
518  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
519  /// counterpart (e.g. structs), otherwise it will assert.
520  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
521    EVT VT = EVT::getEVT(Ty, AllowUnknown);
522    return VT == MVT::iPTR ? PointerTy : VT;
523  }
524
525  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
526  /// function arguments in the caller parameter area.  This is the actual
527  /// alignment, not its logarithm.
528  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
529
530  /// getRegisterType - Return the type of registers that this ValueType will
531  /// eventually require.
532  EVT getRegisterType(MVT VT) const {
533    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
534    return RegisterTypeForVT[VT.SimpleTy];
535  }
536
537  /// getRegisterType - Return the type of registers that this ValueType will
538  /// eventually require.
539  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
540    if (VT.isSimple()) {
541      assert((unsigned)VT.getSimpleVT().SimpleTy <
542                array_lengthof(RegisterTypeForVT));
543      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
544    }
545    if (VT.isVector()) {
546      EVT VT1, RegisterVT;
547      unsigned NumIntermediates;
548      (void)getVectorTypeBreakdown(Context, VT, VT1,
549                                   NumIntermediates, RegisterVT);
550      return RegisterVT;
551    }
552    if (VT.isInteger()) {
553      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
554    }
555    assert(0 && "Unsupported extended type!");
556    return EVT(MVT::Other); // Not reached
557  }
558
559  /// getNumRegisters - Return the number of registers that this ValueType will
560  /// eventually require.  This is one for any types promoted to live in larger
561  /// registers, but may be more than one for types (like i64) that are split
562  /// into pieces.  For types like i140, which are first promoted then expanded,
563  /// it is the number of registers needed to hold all the bits of the original
564  /// type.  For an i140 on a 32 bit machine this means 5 registers.
565  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
566    if (VT.isSimple()) {
567      assert((unsigned)VT.getSimpleVT().SimpleTy <
568                array_lengthof(NumRegistersForVT));
569      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
570    }
571    if (VT.isVector()) {
572      EVT VT1, VT2;
573      unsigned NumIntermediates;
574      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
575    }
576    if (VT.isInteger()) {
577      unsigned BitWidth = VT.getSizeInBits();
578      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
579      return (BitWidth + RegWidth - 1) / RegWidth;
580    }
581    assert(0 && "Unsupported extended type!");
582    return 0; // Not reached
583  }
584
585  /// ShouldShrinkFPConstant - If true, then instruction selection should
586  /// seek to shrink the FP constant of the specified type to a smaller type
587  /// in order to save space and / or reduce runtime.
588  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
589
590  /// hasTargetDAGCombine - If true, the target has custom DAG combine
591  /// transformations that it can perform for the specified node.
592  bool hasTargetDAGCombine(ISD::NodeType NT) const {
593    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
594    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
595  }
596
597  /// This function returns the maximum number of store operations permitted
598  /// to replace a call to llvm.memset. The value is set by the target at the
599  /// performance threshold for such a replacement.
600  /// @brief Get maximum # of store operations permitted for llvm.memset
601  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
602
603  /// This function returns the maximum number of store operations permitted
604  /// to replace a call to llvm.memcpy. The value is set by the target at the
605  /// performance threshold for such a replacement.
606  /// @brief Get maximum # of store operations permitted for llvm.memcpy
607  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
608
609  /// This function returns the maximum number of store operations permitted
610  /// to replace a call to llvm.memmove. The value is set by the target at the
611  /// performance threshold for such a replacement.
612  /// @brief Get maximum # of store operations permitted for llvm.memmove
613  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
614
615  /// This function returns true if the target allows unaligned memory accesses.
616  /// of the specified type. This is used, for example, in situations where an
617  /// array copy/move/set is  converted to a sequence of store operations. It's
618  /// use helps to ensure that such replacements don't generate code that causes
619  /// an alignment error  (trap) on the target machine.
620  /// @brief Determine if the target supports unaligned memory accesses.
621  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
622    return false;
623  }
624
625  /// This function returns true if the target would benefit from code placement
626  /// optimization.
627  /// @brief Determine if the target should perform code placement optimization.
628  bool shouldOptimizeCodePlacement() const {
629    return benefitFromCodePlacementOpt;
630  }
631
632  /// getOptimalMemOpType - Returns the target specific optimal type for load
633  /// and store operations as a result of memset, memcpy, and memmove
634  /// lowering. If DstAlign is zero that means it's safe to destination
635  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
636  /// means there isn't a need to check it against alignment requirement,
637  /// probably because the source does not need to be loaded. If
638  /// 'NonScalarIntSafe' is true, that means it's safe to return a
639  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
640  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
641  /// constant so it does not need to be loaded.
642  /// It returns EVT::Other if the type should be determined using generic
643  /// target-independent logic.
644  virtual EVT getOptimalMemOpType(uint64_t Size,
645                                  unsigned DstAlign, unsigned SrcAlign,
646                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
647                                  MachineFunction &MF) const {
648    return MVT::Other;
649  }
650
651  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
652  /// to implement llvm.setjmp.
653  bool usesUnderscoreSetJmp() const {
654    return UseUnderscoreSetJmp;
655  }
656
657  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
658  /// to implement llvm.longjmp.
659  bool usesUnderscoreLongJmp() const {
660    return UseUnderscoreLongJmp;
661  }
662
663  /// getStackPointerRegisterToSaveRestore - If a physical register, this
664  /// specifies the register that llvm.savestack/llvm.restorestack should save
665  /// and restore.
666  unsigned getStackPointerRegisterToSaveRestore() const {
667    return StackPointerRegisterToSaveRestore;
668  }
669
670  /// getExceptionAddressRegister - If a physical register, this returns
671  /// the register that receives the exception address on entry to a landing
672  /// pad.
673  unsigned getExceptionAddressRegister() const {
674    return ExceptionPointerRegister;
675  }
676
677  /// getExceptionSelectorRegister - If a physical register, this returns
678  /// the register that receives the exception typeid on entry to a landing
679  /// pad.
680  unsigned getExceptionSelectorRegister() const {
681    return ExceptionSelectorRegister;
682  }
683
684  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
685  /// set, the default is 200)
686  unsigned getJumpBufSize() const {
687    return JumpBufSize;
688  }
689
690  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
691  /// (if never set, the default is 0)
692  unsigned getJumpBufAlignment() const {
693    return JumpBufAlignment;
694  }
695
696  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
697  /// limit. Any block whose size is greater should not be predicated.
698  unsigned getIfCvtBlockSizeLimit() const {
699    return IfCvtBlockSizeLimit;
700  }
701
702  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
703  /// block to be considered for duplication. Any block whose size is greater
704  /// should not be duplicated to facilitate its predication.
705  unsigned getIfCvtDupBlockSizeLimit() const {
706    return IfCvtDupBlockSizeLimit;
707  }
708
709  /// getPrefLoopAlignment - return the preferred loop alignment.
710  ///
711  unsigned getPrefLoopAlignment() const {
712    return PrefLoopAlignment;
713  }
714
715  /// getPreIndexedAddressParts - returns true by value, base pointer and
716  /// offset pointer and addressing mode by reference if the node's address
717  /// can be legally represented as pre-indexed load / store address.
718  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
719                                         SDValue &Offset,
720                                         ISD::MemIndexedMode &AM,
721                                         SelectionDAG &DAG) const {
722    return false;
723  }
724
725  /// getPostIndexedAddressParts - returns true by value, base pointer and
726  /// offset pointer and addressing mode by reference if this node can be
727  /// combined with a load / store to form a post-indexed load / store.
728  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
729                                          SDValue &Base, SDValue &Offset,
730                                          ISD::MemIndexedMode &AM,
731                                          SelectionDAG &DAG) const {
732    return false;
733  }
734
735  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
736  /// current function.  The returned value is a member of the
737  /// MachineJumpTableInfo::JTEntryKind enum.
738  virtual unsigned getJumpTableEncoding() const;
739
740  virtual const MCExpr *
741  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
742                            const MachineBasicBlock *MBB, unsigned uid,
743                            MCContext &Ctx) const {
744    assert(0 && "Need to implement this hook if target has custom JTIs");
745    return 0;
746  }
747
748  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
749  /// jumptable.
750  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
751                                           SelectionDAG &DAG) const;
752
753  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
754  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
755  /// MCExpr.
756  virtual const MCExpr *
757  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
758                               unsigned JTI, MCContext &Ctx) const;
759
760  /// isOffsetFoldingLegal - Return true if folding a constant offset
761  /// with the given GlobalAddress is legal.  It is frequently not legal in
762  /// PIC relocation models.
763  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
764
765  /// getFunctionAlignment - Return the Log2 alignment of this function.
766  virtual unsigned getFunctionAlignment(const Function *) const = 0;
767
768  //===--------------------------------------------------------------------===//
769  // TargetLowering Optimization Methods
770  //
771
772  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
773  /// SDValues for returning information from TargetLowering to its clients
774  /// that want to combine
775  struct TargetLoweringOpt {
776    SelectionDAG &DAG;
777    bool LegalTys;
778    bool LegalOps;
779    bool ShrinkOps;
780    SDValue Old;
781    SDValue New;
782
783    explicit TargetLoweringOpt(SelectionDAG &InDAG,
784                               bool LT, bool LO,
785                               bool Shrink = false) :
786      DAG(InDAG), LegalTys(LT), LegalOps(LO), ShrinkOps(Shrink) {}
787
788    bool LegalTypes() const { return LegalTys; }
789    bool LegalOperations() const { return LegalOps; }
790
791    bool CombineTo(SDValue O, SDValue N) {
792      Old = O;
793      New = N;
794      return true;
795    }
796
797    /// ShrinkDemandedConstant - Check to see if the specified operand of the
798    /// specified instruction is a constant integer.  If so, check to see if
799    /// there are any bits set in the constant that are not demanded.  If so,
800    /// shrink the constant and return true.
801    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
802
803    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
804    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
805    /// cast, but it could be generalized for targets with other types of
806    /// implicit widening casts.
807    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
808                          DebugLoc dl);
809  };
810
811  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
812  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
813  /// use this information to simplify Op, create a new simplified DAG node and
814  /// return true, returning the original and new nodes in Old and New.
815  /// Otherwise, analyze the expression and return a mask of KnownOne and
816  /// KnownZero bits for the expression (used to simplify the caller).
817  /// The KnownZero/One bits may only be accurate for those bits in the
818  /// DemandedMask.
819  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
820                            APInt &KnownZero, APInt &KnownOne,
821                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
822
823  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
824  /// Mask are known to be either zero or one and return them in the
825  /// KnownZero/KnownOne bitsets.
826  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
827                                              const APInt &Mask,
828                                              APInt &KnownZero,
829                                              APInt &KnownOne,
830                                              const SelectionDAG &DAG,
831                                              unsigned Depth = 0) const;
832
833  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
834  /// targets that want to expose additional information about sign bits to the
835  /// DAG Combiner.
836  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
837                                                   unsigned Depth = 0) const;
838
839  struct DAGCombinerInfo {
840    void *DC;  // The DAG Combiner object.
841    bool BeforeLegalize;
842    bool BeforeLegalizeOps;
843    bool CalledByLegalizer;
844  public:
845    SelectionDAG &DAG;
846
847    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
848      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
849        CalledByLegalizer(cl), DAG(dag) {}
850
851    bool isBeforeLegalize() const { return BeforeLegalize; }
852    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
853    bool isCalledByLegalizer() const { return CalledByLegalizer; }
854
855    void AddToWorklist(SDNode *N);
856    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
857                      bool AddTo = true);
858    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
859    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
860
861    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
862  };
863
864  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
865  /// and cc. If it is unable to simplify it, return a null SDValue.
866  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
867                          ISD::CondCode Cond, bool foldBooleans,
868                          DAGCombinerInfo &DCI, DebugLoc dl) const;
869
870  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
871  /// node is a GlobalAddress + offset.
872  virtual bool
873  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
874
875  /// PerformDAGCombine - This method will be invoked for all target nodes and
876  /// for any target-independent nodes that the target has registered with
877  /// invoke it for.
878  ///
879  /// The semantics are as follows:
880  /// Return Value:
881  ///   SDValue.Val == 0   - No change was made
882  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
883  ///   otherwise          - N should be replaced by the returned Operand.
884  ///
885  /// In addition, methods provided by DAGCombinerInfo may be used to perform
886  /// more complex transformations.
887  ///
888  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
889
890  /// isTypeDesirableForOp - Return true if the target has native support for
891  /// the specified value type and it is 'desirable' to use the type for the
892  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
893  /// instruction encodings are longer and some i16 instructions are slow.
894  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
895    // By default, assume all legal types are desirable.
896    return isTypeLegal(VT);
897  }
898
899  /// IsDesirableToPromoteOp - This method query the target whether it is
900  /// beneficial for dag combiner to promote the specified node. If true, it
901  /// should return the desired promotion type by reference.
902  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
903    return false;
904  }
905
906  //===--------------------------------------------------------------------===//
907  // TargetLowering Configuration Methods - These methods should be invoked by
908  // the derived class constructor to configure this object for the target.
909  //
910
911protected:
912  /// setShiftAmountType - Describe the type that should be used for shift
913  /// amounts.  This type defaults to the pointer type.
914  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
915
916  /// setBooleanContents - Specify how the target extends the result of a
917  /// boolean value from i1 to a wider type.  See getBooleanContents.
918  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
919
920  /// setSchedulingPreference - Specify the target scheduling preference.
921  void setSchedulingPreference(SchedPreference Pref) {
922    SchedPreferenceInfo = Pref;
923  }
924
925  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
926  /// use _setjmp to implement llvm.setjmp or the non _ version.
927  /// Defaults to false.
928  void setUseUnderscoreSetJmp(bool Val) {
929    UseUnderscoreSetJmp = Val;
930  }
931
932  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
933  /// use _longjmp to implement llvm.longjmp or the non _ version.
934  /// Defaults to false.
935  void setUseUnderscoreLongJmp(bool Val) {
936    UseUnderscoreLongJmp = Val;
937  }
938
939  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
940  /// specifies the register that llvm.savestack/llvm.restorestack should save
941  /// and restore.
942  void setStackPointerRegisterToSaveRestore(unsigned R) {
943    StackPointerRegisterToSaveRestore = R;
944  }
945
946  /// setExceptionPointerRegister - If set to a physical register, this sets
947  /// the register that receives the exception address on entry to a landing
948  /// pad.
949  void setExceptionPointerRegister(unsigned R) {
950    ExceptionPointerRegister = R;
951  }
952
953  /// setExceptionSelectorRegister - If set to a physical register, this sets
954  /// the register that receives the exception typeid on entry to a landing
955  /// pad.
956  void setExceptionSelectorRegister(unsigned R) {
957    ExceptionSelectorRegister = R;
958  }
959
960  /// SelectIsExpensive - Tells the code generator not to expand operations
961  /// into sequences that use the select operations if possible.
962  void setSelectIsExpensive() { SelectIsExpensive = true; }
963
964  /// setIntDivIsCheap - Tells the code generator that integer divide is
965  /// expensive, and if possible, should be replaced by an alternate sequence
966  /// of instructions not containing an integer divide.
967  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
968
969  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
970  /// srl/add/sra for a signed divide by power of two, and let the target handle
971  /// it.
972  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
973
974  /// addRegisterClass - Add the specified register class as an available
975  /// regclass for the specified value type.  This indicates the selector can
976  /// handle values of that class natively.
977  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
978                        bool isSynthesizable = true) {
979    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
980    AvailableRegClasses.push_back(std::make_pair(VT, RC));
981    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
982    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
983  }
984
985  /// computeRegisterProperties - Once all of the register classes are added,
986  /// this allows us to compute derived properties we expose.
987  void computeRegisterProperties();
988
989  /// setOperationAction - Indicate that the specified operation does not work
990  /// with the specified type and indicate what to do about it.
991  void setOperationAction(unsigned Op, MVT VT,
992                          LegalizeAction Action) {
993    unsigned I = (unsigned)VT.SimpleTy;
994    unsigned J = I & 31;
995    I = I >> 5;
996    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
997    OpActions[I][Op] |= (uint64_t)Action << (J*2);
998  }
999
1000  /// setLoadExtAction - Indicate that the specified load with extension does
1001  /// not work with the specified type and indicate what to do about it.
1002  void setLoadExtAction(unsigned ExtType, MVT VT,
1003                      LegalizeAction Action) {
1004    assert((unsigned)VT.SimpleTy*2 < 63 &&
1005           ExtType < array_lengthof(LoadExtActions) &&
1006           "Table isn't big enough!");
1007    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
1008    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
1009  }
1010
1011  /// setTruncStoreAction - Indicate that the specified truncating store does
1012  /// not work with the specified type and indicate what to do about it.
1013  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1014                           LegalizeAction Action) {
1015    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
1016           (unsigned)MemVT.SimpleTy*2 < 63 &&
1017           "Table isn't big enough!");
1018    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
1019    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
1020  }
1021
1022  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1023  /// does not work with the specified type and indicate what to do abort
1024  /// it. NOTE: All indexed mode loads are initialized to Expand in
1025  /// TargetLowering.cpp
1026  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1027                            LegalizeAction Action) {
1028    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1029           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1030           "Table isn't big enough!");
1031    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1032  }
1033
1034  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1035  /// does not work with the specified type and indicate what to do about
1036  /// it. NOTE: All indexed mode stores are initialized to Expand in
1037  /// TargetLowering.cpp
1038  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1039                             LegalizeAction Action) {
1040    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1041           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1042           "Table isn't big enough!");
1043    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1044  }
1045
1046  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1047  /// supported on the target and indicate what to do about it.
1048  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1049                         LegalizeAction Action) {
1050    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1051           (unsigned)CC < array_lengthof(CondCodeActions) &&
1052           "Table isn't big enough!");
1053    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1054    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1055  }
1056
1057  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1058  /// promotion code defaults to trying a larger integer/fp until it can find
1059  /// one that works.  If that default is insufficient, this method can be used
1060  /// by the target to override the default.
1061  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1062    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1063  }
1064
1065  /// setTargetDAGCombine - Targets should invoke this method for each target
1066  /// independent node that they want to provide a custom DAG combiner for by
1067  /// implementing the PerformDAGCombine virtual method.
1068  void setTargetDAGCombine(ISD::NodeType NT) {
1069    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1070    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1071  }
1072
1073  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1074  /// bytes); default is 200
1075  void setJumpBufSize(unsigned Size) {
1076    JumpBufSize = Size;
1077  }
1078
1079  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1080  /// alignment (in bytes); default is 0
1081  void setJumpBufAlignment(unsigned Align) {
1082    JumpBufAlignment = Align;
1083  }
1084
1085  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1086  /// limit (in number of instructions); default is 2.
1087  void setIfCvtBlockSizeLimit(unsigned Limit) {
1088    IfCvtBlockSizeLimit = Limit;
1089  }
1090
1091  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1092  /// of instructions) to be considered for code duplication during
1093  /// if-conversion; default is 2.
1094  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1095    IfCvtDupBlockSizeLimit = Limit;
1096  }
1097
1098  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1099  /// alignment is zero, it means the target does not care about loop alignment.
1100  void setPrefLoopAlignment(unsigned Align) {
1101    PrefLoopAlignment = Align;
1102  }
1103
1104public:
1105  //===--------------------------------------------------------------------===//
1106  // Lowering methods - These methods must be implemented by targets so that
1107  // the SelectionDAGLowering code knows how to lower these.
1108  //
1109
1110  /// LowerFormalArguments - This hook must be implemented to lower the
1111  /// incoming (formal) arguments, described by the Ins array, into the
1112  /// specified DAG. The implementation should fill in the InVals array
1113  /// with legal-type argument values, and return the resulting token
1114  /// chain value.
1115  ///
1116  virtual SDValue
1117    LowerFormalArguments(SDValue Chain,
1118                         CallingConv::ID CallConv, bool isVarArg,
1119                         const SmallVectorImpl<ISD::InputArg> &Ins,
1120                         DebugLoc dl, SelectionDAG &DAG,
1121                         SmallVectorImpl<SDValue> &InVals) const {
1122    assert(0 && "Not Implemented");
1123    return SDValue();    // this is here to silence compiler errors
1124  }
1125
1126  /// LowerCallTo - This function lowers an abstract call to a function into an
1127  /// actual call.  This returns a pair of operands.  The first element is the
1128  /// return value for the function (if RetTy is not VoidTy).  The second
1129  /// element is the outgoing token chain. It calls LowerCall to do the actual
1130  /// lowering.
1131  struct ArgListEntry {
1132    SDValue Node;
1133    const Type* Ty;
1134    bool isSExt  : 1;
1135    bool isZExt  : 1;
1136    bool isInReg : 1;
1137    bool isSRet  : 1;
1138    bool isNest  : 1;
1139    bool isByVal : 1;
1140    uint16_t Alignment;
1141
1142    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1143      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1144  };
1145  typedef std::vector<ArgListEntry> ArgListTy;
1146  std::pair<SDValue, SDValue>
1147  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1148              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1149              CallingConv::ID CallConv, bool isTailCall,
1150              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1151              SelectionDAG &DAG, DebugLoc dl) const;
1152
1153  /// LowerCall - This hook must be implemented to lower calls into the
1154  /// the specified DAG. The outgoing arguments to the call are described
1155  /// by the Outs array, and the values to be returned by the call are
1156  /// described by the Ins array. The implementation should fill in the
1157  /// InVals array with legal-type return values from the call, and return
1158  /// the resulting token chain value.
1159  virtual SDValue
1160    LowerCall(SDValue Chain, SDValue Callee,
1161              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1162              const SmallVectorImpl<ISD::OutputArg> &Outs,
1163              const SmallVectorImpl<ISD::InputArg> &Ins,
1164              DebugLoc dl, SelectionDAG &DAG,
1165              SmallVectorImpl<SDValue> &InVals) const {
1166    assert(0 && "Not Implemented");
1167    return SDValue();    // this is here to silence compiler errors
1168  }
1169
1170  /// CanLowerReturn - This hook should be implemented to check whether the
1171  /// return values described by the Outs array can fit into the return
1172  /// registers.  If false is returned, an sret-demotion is performed.
1173  ///
1174  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1175               const SmallVectorImpl<EVT> &OutTys,
1176               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1177               SelectionDAG &DAG) const
1178  {
1179    // Return true by default to get preexisting behavior.
1180    return true;
1181  }
1182
1183  /// LowerReturn - This hook must be implemented to lower outgoing
1184  /// return values, described by the Outs array, into the specified
1185  /// DAG. The implementation should return the resulting token chain
1186  /// value.
1187  ///
1188  virtual SDValue
1189    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1190                const SmallVectorImpl<ISD::OutputArg> &Outs,
1191                DebugLoc dl, SelectionDAG &DAG) const {
1192    assert(0 && "Not Implemented");
1193    return SDValue();    // this is here to silence compiler errors
1194  }
1195
1196  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1197  /// to legalize nodes with an illegal operand type but legal result types.
1198  /// It replaces the LowerOperation callback in the type Legalizer.
1199  /// The reason we can not do away with LowerOperation entirely is that
1200  /// LegalizeDAG isn't yet ready to use this callback.
1201  /// TODO: Consider merging with ReplaceNodeResults.
1202
1203  /// The target places new result values for the node in Results (their number
1204  /// and types must exactly match those of the original return values of
1205  /// the node), or leaves Results empty, which indicates that the node is not
1206  /// to be custom lowered after all.
1207  /// The default implementation calls LowerOperation.
1208  virtual void LowerOperationWrapper(SDNode *N,
1209                                     SmallVectorImpl<SDValue> &Results,
1210                                     SelectionDAG &DAG) const;
1211
1212  /// LowerOperation - This callback is invoked for operations that are
1213  /// unsupported by the target, which are registered to use 'custom' lowering,
1214  /// and whose defined values are all legal.
1215  /// If the target has no operations that require custom lowering, it need not
1216  /// implement this.  The default implementation of this aborts.
1217  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1218
1219  /// ReplaceNodeResults - This callback is invoked when a node result type is
1220  /// illegal for the target, and the operation was registered to use 'custom'
1221  /// lowering for that result type.  The target places new result values for
1222  /// the node in Results (their number and types must exactly match those of
1223  /// the original return values of the node), or leaves Results empty, which
1224  /// indicates that the node is not to be custom lowered after all.
1225  ///
1226  /// If the target has no operations that require custom lowering, it need not
1227  /// implement this.  The default implementation aborts.
1228  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1229                                  SelectionDAG &DAG) const {
1230    assert(0 && "ReplaceNodeResults not implemented for this target!");
1231  }
1232
1233  /// getTargetNodeName() - This method returns the name of a target specific
1234  /// DAG node.
1235  virtual const char *getTargetNodeName(unsigned Opcode) const;
1236
1237  /// createFastISel - This method returns a target specific FastISel object,
1238  /// or null if the target does not support "fast" ISel.
1239  virtual FastISel *
1240  createFastISel(MachineFunction &,
1241                 DenseMap<const Value *, unsigned> &,
1242                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1243                 DenseMap<const AllocaInst *, int> &,
1244                 std::vector<std::pair<MachineInstr*, unsigned> > &
1245#ifndef NDEBUG
1246                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1247#endif
1248                 ) const {
1249    return 0;
1250  }
1251
1252  //===--------------------------------------------------------------------===//
1253  // Inline Asm Support hooks
1254  //
1255
1256  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1257  /// call to be explicit llvm code if it wants to.  This is useful for
1258  /// turning simple inline asms into LLVM intrinsics, which gives the
1259  /// compiler more information about the behavior of the code.
1260  virtual bool ExpandInlineAsm(CallInst *CI) const {
1261    return false;
1262  }
1263
1264  enum ConstraintType {
1265    C_Register,            // Constraint represents specific register(s).
1266    C_RegisterClass,       // Constraint represents any of register(s) in class.
1267    C_Memory,              // Memory constraint.
1268    C_Other,               // Something else.
1269    C_Unknown              // Unsupported constraint.
1270  };
1271
1272  /// AsmOperandInfo - This contains information for each constraint that we are
1273  /// lowering.
1274  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1275    /// ConstraintCode - This contains the actual string for the code, like "m".
1276    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1277    /// most closely matches the operand.
1278    std::string ConstraintCode;
1279
1280    /// ConstraintType - Information about the constraint code, e.g. Register,
1281    /// RegisterClass, Memory, Other, Unknown.
1282    TargetLowering::ConstraintType ConstraintType;
1283
1284    /// CallOperandval - If this is the result output operand or a
1285    /// clobber, this is null, otherwise it is the incoming operand to the
1286    /// CallInst.  This gets modified as the asm is processed.
1287    Value *CallOperandVal;
1288
1289    /// ConstraintVT - The ValueType for the operand value.
1290    EVT ConstraintVT;
1291
1292    /// isMatchingInputConstraint - Return true of this is an input operand that
1293    /// is a matching constraint like "4".
1294    bool isMatchingInputConstraint() const;
1295
1296    /// getMatchedOperand - If this is an input matching constraint, this method
1297    /// returns the output operand it matches.
1298    unsigned getMatchedOperand() const;
1299
1300    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1301      : InlineAsm::ConstraintInfo(info),
1302        ConstraintType(TargetLowering::C_Unknown),
1303        CallOperandVal(0), ConstraintVT(MVT::Other) {
1304    }
1305  };
1306
1307  /// ComputeConstraintToUse - Determines the constraint code and constraint
1308  /// type to use for the specific AsmOperandInfo, setting
1309  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1310  /// being passed in is available, it can be passed in as Op, otherwise an
1311  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1312  /// constraint of the inline asm instruction being processed is 'm'.
1313  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1314                                      SDValue Op,
1315                                      bool hasMemory,
1316                                      SelectionDAG *DAG = 0) const;
1317
1318  /// getConstraintType - Given a constraint, return the type of constraint it
1319  /// is for this target.
1320  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1321
1322  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1323  /// return a list of registers that can be used to satisfy the constraint.
1324  /// This should only be used for C_RegisterClass constraints.
1325  virtual std::vector<unsigned>
1326  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1327                                    EVT VT) const;
1328
1329  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1330  /// {edx}), return the register number and the register class for the
1331  /// register.
1332  ///
1333  /// Given a register class constraint, like 'r', if this corresponds directly
1334  /// to an LLVM register class, return a register of 0 and the register class
1335  /// pointer.
1336  ///
1337  /// This should only be used for C_Register constraints.  On error,
1338  /// this returns a register number of 0 and a null register class pointer..
1339  virtual std::pair<unsigned, const TargetRegisterClass*>
1340    getRegForInlineAsmConstraint(const std::string &Constraint,
1341                                 EVT VT) const;
1342
1343  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1344  /// with another that has more specific requirements based on the type of the
1345  /// corresponding operand.  This returns null if there is no replacement to
1346  /// make.
1347  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1348
1349  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1350  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1351  /// it means one of the asm constraint of the inline asm instruction being
1352  /// processed is 'm'.
1353  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1354                                            bool hasMemory,
1355                                            std::vector<SDValue> &Ops,
1356                                            SelectionDAG &DAG) const;
1357
1358  //===--------------------------------------------------------------------===//
1359  // Instruction Emitting Hooks
1360  //
1361
1362  // EmitInstrWithCustomInserter - This method should be implemented by targets
1363  // that mark instructions with the 'usesCustomInserter' flag.  These
1364  // instructions are special in various ways, which require special support to
1365  // insert.  The specified MachineInstr is created but not inserted into any
1366  // basic blocks, and this method is called to expand it into a sequence of
1367  // instructions, potentially also creating new basic blocks and control flow.
1368  virtual MachineBasicBlock *
1369    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1370
1371  //===--------------------------------------------------------------------===//
1372  // Addressing mode description hooks (used by LSR etc).
1373  //
1374
1375  /// AddrMode - This represents an addressing mode of:
1376  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1377  /// If BaseGV is null,  there is no BaseGV.
1378  /// If BaseOffs is zero, there is no base offset.
1379  /// If HasBaseReg is false, there is no base register.
1380  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1381  /// no scale.
1382  ///
1383  struct AddrMode {
1384    GlobalValue *BaseGV;
1385    int64_t      BaseOffs;
1386    bool         HasBaseReg;
1387    int64_t      Scale;
1388    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1389  };
1390
1391  /// isLegalAddressingMode - Return true if the addressing mode represented by
1392  /// AM is legal for this target, for a load/store of the specified type.
1393  /// The type may be VoidTy, in which case only return true if the addressing
1394  /// mode is legal for a load/store of any legal type.
1395  /// TODO: Handle pre/postinc as well.
1396  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1397
1398  /// isTruncateFree - Return true if it's free to truncate a value of
1399  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1400  /// register EAX to i16 by referencing its sub-register AX.
1401  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1402    return false;
1403  }
1404
1405  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1406    return false;
1407  }
1408
1409  /// isZExtFree - Return true if any actual instruction that defines a
1410  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1411  /// register. This does not necessarily include registers defined in
1412  /// unknown ways, such as incoming arguments, or copies from unknown
1413  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1414  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1415  /// all instructions that define 32-bit values implicit zero-extend the
1416  /// result out to 64 bits.
1417  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1418    return false;
1419  }
1420
1421  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1422    return false;
1423  }
1424
1425  /// isNarrowingProfitable - Return true if it's profitable to narrow
1426  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1427  /// from i32 to i8 but not from i32 to i16.
1428  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1429    return false;
1430  }
1431
1432  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1433  /// icmp immediate, that is the target has icmp instructions which can compare
1434  /// a register against the immediate without having to materialize the
1435  /// immediate into a register.
1436  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1437    return true;
1438  }
1439
1440  //===--------------------------------------------------------------------===//
1441  // Div utility functions
1442  //
1443  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1444                      std::vector<SDNode*>* Created) const;
1445  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1446                      std::vector<SDNode*>* Created) const;
1447
1448
1449  //===--------------------------------------------------------------------===//
1450  // Runtime Library hooks
1451  //
1452
1453  /// setLibcallName - Rename the default libcall routine name for the specified
1454  /// libcall.
1455  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1456    LibcallRoutineNames[Call] = Name;
1457  }
1458
1459  /// getLibcallName - Get the libcall routine name for the specified libcall.
1460  ///
1461  const char *getLibcallName(RTLIB::Libcall Call) const {
1462    return LibcallRoutineNames[Call];
1463  }
1464
1465  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1466  /// result of the comparison libcall against zero.
1467  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1468    CmpLibcallCCs[Call] = CC;
1469  }
1470
1471  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1472  /// the comparison libcall against zero.
1473  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1474    return CmpLibcallCCs[Call];
1475  }
1476
1477  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1478  /// specified libcall.
1479  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1480    LibcallCallingConvs[Call] = CC;
1481  }
1482
1483  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1484  /// specified libcall.
1485  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1486    return LibcallCallingConvs[Call];
1487  }
1488
1489private:
1490  const TargetMachine &TM;
1491  const TargetData *TD;
1492  const TargetLoweringObjectFile &TLOF;
1493
1494  /// PointerTy - The type to use for pointers, usually i32 or i64.
1495  ///
1496  MVT PointerTy;
1497
1498  /// IsLittleEndian - True if this is a little endian target.
1499  ///
1500  bool IsLittleEndian;
1501
1502  /// SelectIsExpensive - Tells the code generator not to expand operations
1503  /// into sequences that use the select operations if possible.
1504  bool SelectIsExpensive;
1505
1506  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1507  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1508  /// a real cost model is in place.  If we ever optimize for size, this will be
1509  /// set to true unconditionally.
1510  bool IntDivIsCheap;
1511
1512  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1513  /// srl/add/sra for a signed divide by power of two, and let the target handle
1514  /// it.
1515  bool Pow2DivIsCheap;
1516
1517  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1518  /// llvm.setjmp.  Defaults to false.
1519  bool UseUnderscoreSetJmp;
1520
1521  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1522  /// llvm.longjmp.  Defaults to false.
1523  bool UseUnderscoreLongJmp;
1524
1525  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1526  /// PointerTy is.
1527  MVT ShiftAmountTy;
1528
1529  /// BooleanContents - Information about the contents of the high-bits in
1530  /// boolean values held in a type wider than i1.  See getBooleanContents.
1531  BooleanContent BooleanContents;
1532
1533  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1534  /// total cycles or lowest register usage.
1535  SchedPreference SchedPreferenceInfo;
1536
1537  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1538  unsigned JumpBufSize;
1539
1540  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1541  /// buffers
1542  unsigned JumpBufAlignment;
1543
1544  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1545  /// if-converted.
1546  unsigned IfCvtBlockSizeLimit;
1547
1548  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1549  /// duplicated during if-conversion.
1550  unsigned IfCvtDupBlockSizeLimit;
1551
1552  /// PrefLoopAlignment - The perferred loop alignment.
1553  ///
1554  unsigned PrefLoopAlignment;
1555
1556  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1557  /// specifies the register that llvm.savestack/llvm.restorestack should save
1558  /// and restore.
1559  unsigned StackPointerRegisterToSaveRestore;
1560
1561  /// ExceptionPointerRegister - If set to a physical register, this specifies
1562  /// the register that receives the exception address on entry to a landing
1563  /// pad.
1564  unsigned ExceptionPointerRegister;
1565
1566  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1567  /// the register that receives the exception typeid on entry to a landing
1568  /// pad.
1569  unsigned ExceptionSelectorRegister;
1570
1571  /// RegClassForVT - This indicates the default register class to use for
1572  /// each ValueType the target supports natively.
1573  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1574  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1575  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1576
1577  /// Synthesizable indicates whether it is OK for the compiler to create new
1578  /// operations using this type.  All Legal types are Synthesizable except
1579  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1580  bool Synthesizable[MVT::LAST_VALUETYPE];
1581
1582  /// TransformToType - For any value types we are promoting or expanding, this
1583  /// contains the value type that we are changing to.  For Expanded types, this
1584  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1585  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1586  /// by the system, this holds the same type (e.g. i32 -> i32).
1587  EVT TransformToType[MVT::LAST_VALUETYPE];
1588
1589  /// OpActions - For each operation and each value type, keep a LegalizeAction
1590  /// that indicates how instruction selection should deal with the operation.
1591  /// Most operations are Legal (aka, supported natively by the target), but
1592  /// operations that are not should be described.  Note that operations on
1593  /// non-legal value types are not described here.
1594  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1595  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1596  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)]
1597                    [ISD::BUILTIN_OP_END];
1598
1599  /// LoadExtActions - For each load of load extension type and each value type,
1600  /// keep a LegalizeAction that indicates how instruction selection should deal
1601  /// with the load.
1602  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1603
1604  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1605  /// indicates how instruction selection should deal with the store.
1606  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1607
1608  /// IndexedModeActions - For each indexed mode and each value type,
1609  /// keep a pair of LegalizeAction that indicates how instruction
1610  /// selection should deal with the load / store.  The first
1611  /// dimension is now the value_type for the reference.  The second
1612  /// dimension is the load [0] vs. store[1].  The third dimension
1613  /// represents the various modes for load store.
1614  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1615
1616  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1617  /// LegalizeAction that indicates how instruction selection should
1618  /// deal with the condition code.
1619  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1620
1621  ValueTypeActionImpl ValueTypeActions;
1622
1623  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1624
1625  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1626  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1627  /// which sets a bit in this array.
1628  unsigned char
1629  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1630
1631  /// PromoteToType - For operations that must be promoted to a specific type,
1632  /// this holds the destination type.  This map should be sparse, so don't hold
1633  /// it as an array.
1634  ///
1635  /// Targets add entries to this map with AddPromotedToType(..), clients access
1636  /// this with getTypeToPromoteTo(..).
1637  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1638    PromoteToType;
1639
1640  /// LibcallRoutineNames - Stores the name each libcall.
1641  ///
1642  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1643
1644  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1645  /// of each of the comparison libcall against zero.
1646  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1647
1648  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1649  /// libcall.
1650  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1651
1652protected:
1653  /// When lowering \@llvm.memset this field specifies the maximum number of
1654  /// store operations that may be substituted for the call to memset. Targets
1655  /// must set this value based on the cost threshold for that target. Targets
1656  /// should assume that the memset will be done using as many of the largest
1657  /// store operations first, followed by smaller ones, if necessary, per
1658  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1659  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1660  /// store.  This only applies to setting a constant array of a constant size.
1661  /// @brief Specify maximum number of store instructions per memset call.
1662  unsigned maxStoresPerMemset;
1663
1664  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1665  /// store operations that may be substituted for a call to memcpy. Targets
1666  /// must set this value based on the cost threshold for that target. Targets
1667  /// should assume that the memcpy will be done using as many of the largest
1668  /// store operations first, followed by smaller ones, if necessary, per
1669  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1670  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1671  /// and one 1-byte store. This only applies to copying a constant array of
1672  /// constant size.
1673  /// @brief Specify maximum bytes of store instructions per memcpy call.
1674  unsigned maxStoresPerMemcpy;
1675
1676  /// When lowering \@llvm.memmove this field specifies the maximum number of
1677  /// store instructions that may be substituted for a call to memmove. Targets
1678  /// must set this value based on the cost threshold for that target. Targets
1679  /// should assume that the memmove will be done using as many of the largest
1680  /// store operations first, followed by smaller ones, if necessary, per
1681  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1682  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1683  /// applies to copying a constant array of constant size.
1684  /// @brief Specify maximum bytes of store instructions per memmove call.
1685  unsigned maxStoresPerMemmove;
1686
1687  /// This field specifies whether the target can benefit from code placement
1688  /// optimization.
1689  bool benefitFromCodePlacementOpt;
1690};
1691} // end llvm namespace
1692
1693#endif
1694