TargetLowering.h revision 1fef0c4962cbde6c9ab6a94e3361343f0ed9959b
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineModuleInfo;
50  class DwarfWriter;
51  class SDNode;
52  class SDValue;
53  class SelectionDAG;
54  class TargetData;
55  class TargetMachine;
56  class TargetRegisterClass;
57  class TargetSubtarget;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  enum SchedPreference {
101    SchedulingForLatency,          // Scheduling for shortest total latency.
102    SchedulingForRegPressure       // Scheduling for lowest register pressure.
103  };
104
105  /// NOTE: The constructor takes ownership of TLOF.
106  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
119  /// codegen.
120  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
121
122  /// isSelectExpensive - Return true if the select operation is expensive for
123  /// this target.
124  bool isSelectExpensive() const { return SelectIsExpensive; }
125
126  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
127  /// a sequence of several shifts, adds, and multiplies for this target.
128  bool isIntDivCheap() const { return IntDivIsCheap; }
129
130  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
131  /// srl/add/sra.
132  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
133
134  /// getSetCCResultType - Return the ValueType of the result of SETCC
135  /// operations.  Also used to obtain the target's preferred type for
136  /// the condition operand of SELECT and BRCOND nodes.  In the case of
137  /// BRCOND the argument passed is MVT::Other since there are no other
138  /// operands to get a type hint from.
139  virtual
140  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(EVT VT) const {
157    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(EVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
177    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
178  public:
179    ValueTypeActionImpl() {
180      ValueTypeActions[0] = ValueTypeActions[1] = 0;
181      ValueTypeActions[2] = ValueTypeActions[3] = 0;
182    }
183    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
184      ValueTypeActions[0] = RHS.ValueTypeActions[0];
185      ValueTypeActions[1] = RHS.ValueTypeActions[1];
186      ValueTypeActions[2] = RHS.ValueTypeActions[2];
187      ValueTypeActions[3] = RHS.ValueTypeActions[3];
188    }
189
190    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
191      if (VT.isExtended()) {
192        if (VT.isVector()) {
193          return VT.isPow2VectorType() ? Expand : Promote;
194        }
195        if (VT.isInteger())
196          // First promote to a power-of-two size, then expand if necessary.
197          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
198        assert(0 && "Unsupported extended type!");
199        return Legal;
200      }
201      unsigned I = VT.getSimpleVT().SimpleTy;
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
204    }
205    void setTypeAction(EVT VT, LegalizeAction Action) {
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
221    return ValueTypeActions.getTypeAction(Context, VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT().SimpleTy <
233             array_lengthof(TransformToType));
234      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
235      assert(getTypeAction(Context, NVT) != Promote &&
236             "Promote may not follow Expand or Promote");
237      return NVT;
238    }
239
240    if (VT.isVector()) {
241      EVT NVT = VT.getPow2VectorType(Context);
242      if (NVT == VT) {
243        // Vector length is a power of 2 - split to half the size.
244        unsigned NumElts = VT.getVectorNumElements();
245        EVT EltVT = VT.getVectorElementType();
246        return (NumElts == 1) ?
247          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
248      }
249      // Promote to a power of two size, avoiding multi-step promotion.
250      return getTypeAction(Context, NVT) == Promote ?
251        getTypeToTransformTo(Context, NVT) : NVT;
252    } else if (VT.isInteger()) {
253      EVT NVT = VT.getRoundIntegerType(Context);
254      if (NVT == VT)
255        // Size is a power of two - expand to half the size.
256        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
257      else
258        // Promote to a power of two size, avoiding multi-step promotion.
259        return getTypeAction(Context, NVT) == Promote ?
260          getTypeToTransformTo(Context, NVT) : NVT;
261    }
262    assert(0 && "Unsupported extended type!");
263    return MVT(MVT::Other); // Not reached
264  }
265
266  /// getTypeToExpandTo - For types supported by the target, this is an
267  /// identity function.  For types that must be expanded (i.e. integer types
268  /// that are larger than the largest integer register or illegal floating
269  /// point types), this returns the largest legal type it will be expanded to.
270  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
271    assert(!VT.isVector());
272    while (true) {
273      switch (getTypeAction(Context, VT)) {
274      case Legal:
275        return VT;
276      case Expand:
277        VT = getTypeToTransformTo(Context, VT);
278        break;
279      default:
280        assert(false && "Type is not legal nor is it to be expanded!");
281        return VT;
282      }
283    }
284    return VT;
285  }
286
287  /// getVectorTypeBreakdown - Vector types are broken down into some number of
288  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
289  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
290  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
291  ///
292  /// This method returns the number of registers needed, and the VT for each
293  /// register.  It also returns the VT and quantity of the intermediate values
294  /// before they are promoted/expanded.
295  ///
296  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
297                                  EVT &IntermediateVT,
298                                  unsigned &NumIntermediates,
299                                  EVT &RegisterVT) const;
300
301  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
302  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
303  /// this is the case, it returns true and store the intrinsic
304  /// information into the IntrinsicInfo that was passed to the function.
305  typedef struct IntrinsicInfo {
306    unsigned     opc;         // target opcode
307    EVT          memVT;       // memory VT
308    const Value* ptrVal;      // value representing memory location
309    int          offset;      // offset off of ptrVal
310    unsigned     align;       // alignment
311    bool         vol;         // is volatile?
312    bool         readMem;     // reads memory?
313    bool         writeMem;    // writes memory?
314  } IntrinisicInfo;
315
316  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
317                                  CallInst &I, unsigned Intrinsic) {
318    return false;
319  }
320
321  /// getWidenVectorType: given a vector type, returns the type to widen to
322  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
323  /// If there is no vector type that we want to widen to, returns MVT::Other
324  /// When and were to widen is target dependent based on the cost of
325  /// scalarizing vs using the wider vector type.
326  virtual EVT getWidenVectorType(EVT VT) const;
327
328  /// isFPImmLegal - Returns true if the target can instruction select the
329  /// specified FP immediate natively. If false, the legalizer will materialize
330  /// the FP immediate as a load from a constant pool.
331  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
332    return false;
333  }
334
335  /// isShuffleMaskLegal - Targets can use this to indicate that they only
336  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
337  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
338  /// are assumed to be legal.
339  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
340                                  EVT VT) const {
341    return true;
342  }
343
344  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
345  /// used by Targets can use this to indicate if there is a suitable
346  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
347  /// pool entry.
348  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
349                                      EVT VT) const {
350    return false;
351  }
352
353  /// getOperationAction - Return how this operation should be treated: either
354  /// it is legal, needs to be promoted to a larger size, needs to be
355  /// expanded to some other code sequence, or the target has a custom expander
356  /// for it.
357  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
358    if (VT.isExtended()) return Expand;
359    assert(Op < array_lengthof(OpActions[0]) &&
360           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
361           "Table isn't big enough!");
362    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
363    unsigned J = I & 31;
364    I = I >> 5;
365    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
366  }
367
368  /// isOperationLegalOrCustom - Return true if the specified operation is
369  /// legal on this target or can be made legal with custom lowering. This
370  /// is used to help guide high-level lowering decisions.
371  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
372    return (VT == MVT::Other || isTypeLegal(VT)) &&
373      (getOperationAction(Op, VT) == Legal ||
374       getOperationAction(Op, VT) == Custom);
375  }
376
377  /// isOperationLegal - Return true if the specified operation is legal on this
378  /// target.
379  bool isOperationLegal(unsigned Op, EVT VT) const {
380    return (VT == MVT::Other || isTypeLegal(VT)) &&
381           getOperationAction(Op, VT) == Legal;
382  }
383
384  /// getLoadExtAction - Return how this load with extension should be treated:
385  /// either it is legal, needs to be promoted to a larger size, needs to be
386  /// expanded to some other code sequence, or the target has a custom expander
387  /// for it.
388  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
389    assert(LType < array_lengthof(LoadExtActions) &&
390           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
391           "Table isn't big enough!");
392    return (LegalizeAction)((LoadExtActions[LType] >>
393              (2*VT.getSimpleVT().SimpleTy)) & 3);
394  }
395
396  /// isLoadExtLegal - Return true if the specified load with extension is legal
397  /// on this target.
398  bool isLoadExtLegal(unsigned LType, EVT VT) const {
399    return VT.isSimple() &&
400      (getLoadExtAction(LType, VT) == Legal ||
401       getLoadExtAction(LType, VT) == Custom);
402  }
403
404  /// getTruncStoreAction - Return how this store with truncation should be
405  /// treated: either it is legal, needs to be promoted to a larger size, needs
406  /// to be expanded to some other code sequence, or the target has a custom
407  /// expander for it.
408  LegalizeAction getTruncStoreAction(EVT ValVT,
409                                     EVT MemVT) const {
410    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
411             array_lengthof(TruncStoreActions) &&
412           (unsigned)MemVT.getSimpleVT().SimpleTy <
413             sizeof(TruncStoreActions[0])*4 &&
414           "Table isn't big enough!");
415    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
416                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
417  }
418
419  /// isTruncStoreLegal - Return true if the specified store with truncation is
420  /// legal on this target.
421  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
422    return isTypeLegal(ValVT) && MemVT.isSimple() &&
423      (getTruncStoreAction(ValVT, MemVT) == Legal ||
424       getTruncStoreAction(ValVT, MemVT) == Custom);
425  }
426
427  /// getIndexedLoadAction - Return how the indexed load should be treated:
428  /// either it is legal, needs to be promoted to a larger size, needs to be
429  /// expanded to some other code sequence, or the target has a custom expander
430  /// for it.
431  LegalizeAction
432  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
433    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
434           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
435           "Table isn't big enough!");
436    return (LegalizeAction)((IndexedModeActions[
437                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
438  }
439
440  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
441  /// on this target.
442  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
443    return VT.isSimple() &&
444      (getIndexedLoadAction(IdxMode, VT) == Legal ||
445       getIndexedLoadAction(IdxMode, VT) == Custom);
446  }
447
448  /// getIndexedStoreAction - Return how the indexed store should be treated:
449  /// either it is legal, needs to be promoted to a larger size, needs to be
450  /// expanded to some other code sequence, or the target has a custom expander
451  /// for it.
452  LegalizeAction
453  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
454    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
455           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
456           "Table isn't big enough!");
457    return (LegalizeAction)((IndexedModeActions[
458              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
459  }
460
461  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
462  /// on this target.
463  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
464    return VT.isSimple() &&
465      (getIndexedStoreAction(IdxMode, VT) == Legal ||
466       getIndexedStoreAction(IdxMode, VT) == Custom);
467  }
468
469  /// getConvertAction - Return how the conversion should be treated:
470  /// either it is legal, needs to be promoted to a larger size, needs to be
471  /// expanded to some other code sequence, or the target has a custom expander
472  /// for it.
473  LegalizeAction
474  getConvertAction(EVT FromVT, EVT ToVT) const {
475    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
476              array_lengthof(ConvertActions) &&
477           (unsigned)ToVT.getSimpleVT().SimpleTy <
478              sizeof(ConvertActions[0])*4 &&
479           "Table isn't big enough!");
480    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
481                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
482  }
483
484  /// isConvertLegal - Return true if the specified conversion is legal
485  /// on this target.
486  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
487    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
488      (getConvertAction(FromVT, ToVT) == Legal ||
489       getConvertAction(FromVT, ToVT) == Custom);
490  }
491
492  /// getCondCodeAction - Return how the condition code should be treated:
493  /// either it is legal, needs to be expanded to some other code sequence,
494  /// or the target has a custom expander for it.
495  LegalizeAction
496  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
497    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
498           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
499           "Table isn't big enough!");
500    LegalizeAction Action = (LegalizeAction)
501      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
502    assert(Action != Promote && "Can't promote condition code!");
503    return Action;
504  }
505
506  /// isCondCodeLegal - Return true if the specified condition code is legal
507  /// on this target.
508  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
509    return getCondCodeAction(CC, VT) == Legal ||
510           getCondCodeAction(CC, VT) == Custom;
511  }
512
513
514  /// getTypeToPromoteTo - If the action for this operation is to promote, this
515  /// method returns the ValueType to promote to.
516  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
517    assert(getOperationAction(Op, VT) == Promote &&
518           "This operation isn't promoted!");
519
520    // See if this has an explicit type specified.
521    std::map<std::pair<unsigned, MVT::SimpleValueType>,
522             MVT::SimpleValueType>::const_iterator PTTI =
523      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
524    if (PTTI != PromoteToType.end()) return PTTI->second;
525
526    assert((VT.isInteger() || VT.isFloatingPoint()) &&
527           "Cannot autopromote this type, add it with AddPromotedToType.");
528
529    EVT NVT = VT;
530    do {
531      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
532      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
533             "Didn't find type to promote to!");
534    } while (!isTypeLegal(NVT) ||
535              getOperationAction(Op, NVT) == Promote);
536    return NVT;
537  }
538
539  /// getValueType - Return the EVT corresponding to this LLVM type.
540  /// This is fixed by the LLVM operations except for the pointer size.  If
541  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
542  /// counterpart (e.g. structs), otherwise it will assert.
543  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
544    EVT VT = EVT::getEVT(Ty, AllowUnknown);
545    return VT == MVT:: iPTR ? PointerTy : VT;
546  }
547
548  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
549  /// function arguments in the caller parameter area.  This is the actual
550  /// alignment, not its logarithm.
551  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
552
553  /// getRegisterType - Return the type of registers that this ValueType will
554  /// eventually require.
555  EVT getRegisterType(MVT VT) const {
556    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
557    return RegisterTypeForVT[VT.SimpleTy];
558  }
559
560  /// getRegisterType - Return the type of registers that this ValueType will
561  /// eventually require.
562  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
563    if (VT.isSimple()) {
564      assert((unsigned)VT.getSimpleVT().SimpleTy <
565                array_lengthof(RegisterTypeForVT));
566      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
567    }
568    if (VT.isVector()) {
569      EVT VT1, RegisterVT;
570      unsigned NumIntermediates;
571      (void)getVectorTypeBreakdown(Context, VT, VT1,
572                                   NumIntermediates, RegisterVT);
573      return RegisterVT;
574    }
575    if (VT.isInteger()) {
576      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
577    }
578    assert(0 && "Unsupported extended type!");
579    return EVT(MVT::Other); // Not reached
580  }
581
582  /// getNumRegisters - Return the number of registers that this ValueType will
583  /// eventually require.  This is one for any types promoted to live in larger
584  /// registers, but may be more than one for types (like i64) that are split
585  /// into pieces.  For types like i140, which are first promoted then expanded,
586  /// it is the number of registers needed to hold all the bits of the original
587  /// type.  For an i140 on a 32 bit machine this means 5 registers.
588  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
589    if (VT.isSimple()) {
590      assert((unsigned)VT.getSimpleVT().SimpleTy <
591                array_lengthof(NumRegistersForVT));
592      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
593    }
594    if (VT.isVector()) {
595      EVT VT1, VT2;
596      unsigned NumIntermediates;
597      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
598    }
599    if (VT.isInteger()) {
600      unsigned BitWidth = VT.getSizeInBits();
601      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
602      return (BitWidth + RegWidth - 1) / RegWidth;
603    }
604    assert(0 && "Unsupported extended type!");
605    return 0; // Not reached
606  }
607
608  /// ShouldShrinkFPConstant - If true, then instruction selection should
609  /// seek to shrink the FP constant of the specified type to a smaller type
610  /// in order to save space and / or reduce runtime.
611  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
612
613  /// hasTargetDAGCombine - If true, the target has custom DAG combine
614  /// transformations that it can perform for the specified node.
615  bool hasTargetDAGCombine(ISD::NodeType NT) const {
616    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
617    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
618  }
619
620  /// This function returns the maximum number of store operations permitted
621  /// to replace a call to llvm.memset. The value is set by the target at the
622  /// performance threshold for such a replacement.
623  /// @brief Get maximum # of store operations permitted for llvm.memset
624  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
625
626  /// This function returns the maximum number of store operations permitted
627  /// to replace a call to llvm.memcpy. The value is set by the target at the
628  /// performance threshold for such a replacement.
629  /// @brief Get maximum # of store operations permitted for llvm.memcpy
630  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
631
632  /// This function returns the maximum number of store operations permitted
633  /// to replace a call to llvm.memmove. The value is set by the target at the
634  /// performance threshold for such a replacement.
635  /// @brief Get maximum # of store operations permitted for llvm.memmove
636  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
637
638  /// This function returns true if the target allows unaligned memory accesses.
639  /// of the specified type. This is used, for example, in situations where an
640  /// array copy/move/set is  converted to a sequence of store operations. It's
641  /// use helps to ensure that such replacements don't generate code that causes
642  /// an alignment error  (trap) on the target machine.
643  /// @brief Determine if the target supports unaligned memory accesses.
644  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
645    return false;
646  }
647
648  /// This function returns true if the target would benefit from code placement
649  /// optimization.
650  /// @brief Determine if the target should perform code placement optimization.
651  bool shouldOptimizeCodePlacement() const {
652    return benefitFromCodePlacementOpt;
653  }
654
655  /// getOptimalMemOpType - Returns the target specific optimal type for load
656  /// and store operations as a result of memset, memcpy, and memmove lowering.
657  /// It returns EVT::iAny if SelectionDAG should be responsible for
658  /// determining it.
659  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
660                                  bool isSrcConst, bool isSrcStr,
661                                  SelectionDAG &DAG) const {
662    return MVT::iAny;
663  }
664
665  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
666  /// to implement llvm.setjmp.
667  bool usesUnderscoreSetJmp() const {
668    return UseUnderscoreSetJmp;
669  }
670
671  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
672  /// to implement llvm.longjmp.
673  bool usesUnderscoreLongJmp() const {
674    return UseUnderscoreLongJmp;
675  }
676
677  /// getStackPointerRegisterToSaveRestore - If a physical register, this
678  /// specifies the register that llvm.savestack/llvm.restorestack should save
679  /// and restore.
680  unsigned getStackPointerRegisterToSaveRestore() const {
681    return StackPointerRegisterToSaveRestore;
682  }
683
684  /// getExceptionAddressRegister - If a physical register, this returns
685  /// the register that receives the exception address on entry to a landing
686  /// pad.
687  unsigned getExceptionAddressRegister() const {
688    return ExceptionPointerRegister;
689  }
690
691  /// getExceptionSelectorRegister - If a physical register, this returns
692  /// the register that receives the exception typeid on entry to a landing
693  /// pad.
694  unsigned getExceptionSelectorRegister() const {
695    return ExceptionSelectorRegister;
696  }
697
698  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
699  /// set, the default is 200)
700  unsigned getJumpBufSize() const {
701    return JumpBufSize;
702  }
703
704  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
705  /// (if never set, the default is 0)
706  unsigned getJumpBufAlignment() const {
707    return JumpBufAlignment;
708  }
709
710  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
711  /// limit. Any block whose size is greater should not be predicated.
712  unsigned getIfCvtBlockSizeLimit() const {
713    return IfCvtBlockSizeLimit;
714  }
715
716  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
717  /// block to be considered for duplication. Any block whose size is greater
718  /// should not be duplicated to facilitate its predication.
719  unsigned getIfCvtDupBlockSizeLimit() const {
720    return IfCvtDupBlockSizeLimit;
721  }
722
723  /// getPrefLoopAlignment - return the preferred loop alignment.
724  ///
725  unsigned getPrefLoopAlignment() const {
726    return PrefLoopAlignment;
727  }
728
729  /// getPreIndexedAddressParts - returns true by value, base pointer and
730  /// offset pointer and addressing mode by reference if the node's address
731  /// can be legally represented as pre-indexed load / store address.
732  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
733                                         SDValue &Offset,
734                                         ISD::MemIndexedMode &AM,
735                                         SelectionDAG &DAG) const {
736    return false;
737  }
738
739  /// getPostIndexedAddressParts - returns true by value, base pointer and
740  /// offset pointer and addressing mode by reference if this node can be
741  /// combined with a load / store to form a post-indexed load / store.
742  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
743                                          SDValue &Base, SDValue &Offset,
744                                          ISD::MemIndexedMode &AM,
745                                          SelectionDAG &DAG) const {
746    return false;
747  }
748
749  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
750  /// jumptable.
751  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
752                                             SelectionDAG &DAG) const;
753
754  /// isOffsetFoldingLegal - Return true if folding a constant offset
755  /// with the given GlobalAddress is legal.  It is frequently not legal in
756  /// PIC relocation models.
757  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
758
759  /// getFunctionAlignment - Return the Log2 alignment of this function.
760  virtual unsigned getFunctionAlignment(const Function *) const = 0;
761
762  //===--------------------------------------------------------------------===//
763  // TargetLowering Optimization Methods
764  //
765
766  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
767  /// SDValues for returning information from TargetLowering to its clients
768  /// that want to combine
769  struct TargetLoweringOpt {
770    SelectionDAG &DAG;
771    SDValue Old;
772    SDValue New;
773
774    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
775
776    bool CombineTo(SDValue O, SDValue N) {
777      Old = O;
778      New = N;
779      return true;
780    }
781
782    /// ShrinkDemandedConstant - Check to see if the specified operand of the
783    /// specified instruction is a constant integer.  If so, check to see if
784    /// there are any bits set in the constant that are not demanded.  If so,
785    /// shrink the constant and return true.
786    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
787
788    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
789    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
790    /// cast, but it could be generalized for targets with other types of
791    /// implicit widening casts.
792    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
793                          DebugLoc dl);
794  };
795
796  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
797  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
798  /// use this information to simplify Op, create a new simplified DAG node and
799  /// return true, returning the original and new nodes in Old and New.
800  /// Otherwise, analyze the expression and return a mask of KnownOne and
801  /// KnownZero bits for the expression (used to simplify the caller).
802  /// The KnownZero/One bits may only be accurate for those bits in the
803  /// DemandedMask.
804  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
805                            APInt &KnownZero, APInt &KnownOne,
806                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
807
808  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
809  /// Mask are known to be either zero or one and return them in the
810  /// KnownZero/KnownOne bitsets.
811  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
812                                              const APInt &Mask,
813                                              APInt &KnownZero,
814                                              APInt &KnownOne,
815                                              const SelectionDAG &DAG,
816                                              unsigned Depth = 0) const;
817
818  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
819  /// targets that want to expose additional information about sign bits to the
820  /// DAG Combiner.
821  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
822                                                   unsigned Depth = 0) const;
823
824  struct DAGCombinerInfo {
825    void *DC;  // The DAG Combiner object.
826    bool BeforeLegalize;
827    bool BeforeLegalizeOps;
828    bool CalledByLegalizer;
829  public:
830    SelectionDAG &DAG;
831
832    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
833      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
834        CalledByLegalizer(cl), DAG(dag) {}
835
836    bool isBeforeLegalize() const { return BeforeLegalize; }
837    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
838    bool isCalledByLegalizer() const { return CalledByLegalizer; }
839
840    void AddToWorklist(SDNode *N);
841    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
842                      bool AddTo = true);
843    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
844    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
845
846    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
847  };
848
849  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
850  /// and cc. If it is unable to simplify it, return a null SDValue.
851  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
852                          ISD::CondCode Cond, bool foldBooleans,
853                          DAGCombinerInfo &DCI, DebugLoc dl) const;
854
855  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
856  /// node is a GlobalAddress + offset.
857  virtual bool
858  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
859
860  /// PerformDAGCombine - This method will be invoked for all target nodes and
861  /// for any target-independent nodes that the target has registered with
862  /// invoke it for.
863  ///
864  /// The semantics are as follows:
865  /// Return Value:
866  ///   SDValue.Val == 0   - No change was made
867  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
868  ///   otherwise          - N should be replaced by the returned Operand.
869  ///
870  /// In addition, methods provided by DAGCombinerInfo may be used to perform
871  /// more complex transformations.
872  ///
873  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
874
875  //===--------------------------------------------------------------------===//
876  // TargetLowering Configuration Methods - These methods should be invoked by
877  // the derived class constructor to configure this object for the target.
878  //
879
880protected:
881  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
882  /// GOT for PC-relative code.
883  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
884
885  /// setShiftAmountType - Describe the type that should be used for shift
886  /// amounts.  This type defaults to the pointer type.
887  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
888
889  /// setBooleanContents - Specify how the target extends the result of a
890  /// boolean value from i1 to a wider type.  See getBooleanContents.
891  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
892
893  /// setSchedulingPreference - Specify the target scheduling preference.
894  void setSchedulingPreference(SchedPreference Pref) {
895    SchedPreferenceInfo = Pref;
896  }
897
898  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
899  /// use _setjmp to implement llvm.setjmp or the non _ version.
900  /// Defaults to false.
901  void setUseUnderscoreSetJmp(bool Val) {
902    UseUnderscoreSetJmp = Val;
903  }
904
905  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
906  /// use _longjmp to implement llvm.longjmp or the non _ version.
907  /// Defaults to false.
908  void setUseUnderscoreLongJmp(bool Val) {
909    UseUnderscoreLongJmp = Val;
910  }
911
912  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
913  /// specifies the register that llvm.savestack/llvm.restorestack should save
914  /// and restore.
915  void setStackPointerRegisterToSaveRestore(unsigned R) {
916    StackPointerRegisterToSaveRestore = R;
917  }
918
919  /// setExceptionPointerRegister - If set to a physical register, this sets
920  /// the register that receives the exception address on entry to a landing
921  /// pad.
922  void setExceptionPointerRegister(unsigned R) {
923    ExceptionPointerRegister = R;
924  }
925
926  /// setExceptionSelectorRegister - If set to a physical register, this sets
927  /// the register that receives the exception typeid on entry to a landing
928  /// pad.
929  void setExceptionSelectorRegister(unsigned R) {
930    ExceptionSelectorRegister = R;
931  }
932
933  /// SelectIsExpensive - Tells the code generator not to expand operations
934  /// into sequences that use the select operations if possible.
935  void setSelectIsExpensive() { SelectIsExpensive = true; }
936
937  /// setIntDivIsCheap - Tells the code generator that integer divide is
938  /// expensive, and if possible, should be replaced by an alternate sequence
939  /// of instructions not containing an integer divide.
940  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
941
942  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
943  /// srl/add/sra for a signed divide by power of two, and let the target handle
944  /// it.
945  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
946
947  /// addRegisterClass - Add the specified register class as an available
948  /// regclass for the specified value type.  This indicates the selector can
949  /// handle values of that class natively.
950  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
951    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
952    AvailableRegClasses.push_back(std::make_pair(VT, RC));
953    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
954  }
955
956  /// computeRegisterProperties - Once all of the register classes are added,
957  /// this allows us to compute derived properties we expose.
958  void computeRegisterProperties();
959
960  /// setOperationAction - Indicate that the specified operation does not work
961  /// with the specified type and indicate what to do about it.
962  void setOperationAction(unsigned Op, MVT VT,
963                          LegalizeAction Action) {
964    unsigned I = (unsigned)VT.SimpleTy;
965    unsigned J = I & 31;
966    I = I >> 5;
967    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
968    OpActions[I][Op] |= (uint64_t)Action << (J*2);
969  }
970
971  /// setLoadExtAction - Indicate that the specified load with extension does
972  /// not work with the with specified type and indicate what to do about it.
973  void setLoadExtAction(unsigned ExtType, MVT VT,
974                      LegalizeAction Action) {
975    assert((unsigned)VT.SimpleTy*2 < 63 &&
976           ExtType < array_lengthof(LoadExtActions) &&
977           "Table isn't big enough!");
978    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
979    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
980  }
981
982  /// setTruncStoreAction - Indicate that the specified truncating store does
983  /// not work with the with specified type and indicate what to do about it.
984  void setTruncStoreAction(MVT ValVT, MVT MemVT,
985                           LegalizeAction Action) {
986    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
987           (unsigned)MemVT.SimpleTy*2 < 63 &&
988           "Table isn't big enough!");
989    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
990    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
991  }
992
993  /// setIndexedLoadAction - Indicate that the specified indexed load does or
994  /// does not work with the with specified type and indicate what to do abort
995  /// it. NOTE: All indexed mode loads are initialized to Expand in
996  /// TargetLowering.cpp
997  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
998                            LegalizeAction Action) {
999    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1000           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1001           "Table isn't big enough!");
1002    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1003  }
1004
1005  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1006  /// does not work with the with specified type and indicate what to do about
1007  /// it. NOTE: All indexed mode stores are initialized to Expand in
1008  /// TargetLowering.cpp
1009  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1010                             LegalizeAction Action) {
1011    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1012           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1013           "Table isn't big enough!");
1014    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1015  }
1016
1017  /// setConvertAction - Indicate that the specified conversion does or does
1018  /// not work with the with specified type and indicate what to do about it.
1019  void setConvertAction(MVT FromVT, MVT ToVT,
1020                        LegalizeAction Action) {
1021    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1022           (unsigned)ToVT.SimpleTy < MVT::LAST_VALUETYPE &&
1023           "Table isn't big enough!");
1024    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1025    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1026  }
1027
1028  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1029  /// supported on the target and indicate what to do about it.
1030  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1031                         LegalizeAction Action) {
1032    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1033           (unsigned)CC < array_lengthof(CondCodeActions) &&
1034           "Table isn't big enough!");
1035    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1036    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1037  }
1038
1039  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1040  /// promotion code defaults to trying a larger integer/fp until it can find
1041  /// one that works.  If that default is insufficient, this method can be used
1042  /// by the target to override the default.
1043  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1044    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1045  }
1046
1047  /// setTargetDAGCombine - Targets should invoke this method for each target
1048  /// independent node that they want to provide a custom DAG combiner for by
1049  /// implementing the PerformDAGCombine virtual method.
1050  void setTargetDAGCombine(ISD::NodeType NT) {
1051    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1052    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1053  }
1054
1055  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1056  /// bytes); default is 200
1057  void setJumpBufSize(unsigned Size) {
1058    JumpBufSize = Size;
1059  }
1060
1061  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1062  /// alignment (in bytes); default is 0
1063  void setJumpBufAlignment(unsigned Align) {
1064    JumpBufAlignment = Align;
1065  }
1066
1067  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1068  /// limit (in number of instructions); default is 2.
1069  void setIfCvtBlockSizeLimit(unsigned Limit) {
1070    IfCvtBlockSizeLimit = Limit;
1071  }
1072
1073  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1074  /// of instructions) to be considered for code duplication during
1075  /// if-conversion; default is 2.
1076  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1077    IfCvtDupBlockSizeLimit = Limit;
1078  }
1079
1080  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1081  /// alignment is zero, it means the target does not care about loop alignment.
1082  void setPrefLoopAlignment(unsigned Align) {
1083    PrefLoopAlignment = Align;
1084  }
1085
1086public:
1087
1088  virtual const TargetSubtarget *getSubtarget() {
1089    assert(0 && "Not Implemented");
1090    return NULL;    // this is here to silence compiler errors
1091  }
1092
1093  //===--------------------------------------------------------------------===//
1094  // Lowering methods - These methods must be implemented by targets so that
1095  // the SelectionDAGLowering code knows how to lower these.
1096  //
1097
1098  /// LowerFormalArguments - This hook must be implemented to lower the
1099  /// incoming (formal) arguments, described by the Ins array, into the
1100  /// specified DAG. The implementation should fill in the InVals array
1101  /// with legal-type argument values, and return the resulting token
1102  /// chain value.
1103  ///
1104  virtual SDValue
1105    LowerFormalArguments(SDValue Chain,
1106                         CallingConv::ID CallConv, bool isVarArg,
1107                         const SmallVectorImpl<ISD::InputArg> &Ins,
1108                         DebugLoc dl, SelectionDAG &DAG,
1109                         SmallVectorImpl<SDValue> &InVals) {
1110    assert(0 && "Not Implemented");
1111    return SDValue();    // this is here to silence compiler errors
1112  }
1113
1114  /// LowerCallTo - This function lowers an abstract call to a function into an
1115  /// actual call.  This returns a pair of operands.  The first element is the
1116  /// return value for the function (if RetTy is not VoidTy).  The second
1117  /// element is the outgoing token chain. It calls LowerCall to do the actual
1118  /// lowering.
1119  struct ArgListEntry {
1120    SDValue Node;
1121    const Type* Ty;
1122    bool isSExt  : 1;
1123    bool isZExt  : 1;
1124    bool isInReg : 1;
1125    bool isSRet  : 1;
1126    bool isNest  : 1;
1127    bool isByVal : 1;
1128    uint16_t Alignment;
1129
1130    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1131      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1132  };
1133  typedef std::vector<ArgListEntry> ArgListTy;
1134  std::pair<SDValue, SDValue>
1135  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1136              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1137              CallingConv::ID CallConv, bool isTailCall,
1138              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1139              SelectionDAG &DAG, DebugLoc dl);
1140
1141  /// LowerCall - This hook must be implemented to lower calls into the
1142  /// the specified DAG. The outgoing arguments to the call are described
1143  /// by the Outs array, and the values to be returned by the call are
1144  /// described by the Ins array. The implementation should fill in the
1145  /// InVals array with legal-type return values from the call, and return
1146  /// the resulting token chain value.
1147  ///
1148  /// The isTailCall flag here is normative. If it is true, the
1149  /// implementation must emit a tail call. The
1150  /// IsEligibleForTailCallOptimization hook should be used to catch
1151  /// cases that cannot be handled.
1152  ///
1153  virtual SDValue
1154    LowerCall(SDValue Chain, SDValue Callee,
1155              CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
1156              const SmallVectorImpl<ISD::OutputArg> &Outs,
1157              const SmallVectorImpl<ISD::InputArg> &Ins,
1158              DebugLoc dl, SelectionDAG &DAG,
1159              SmallVectorImpl<SDValue> &InVals) {
1160    assert(0 && "Not Implemented");
1161    return SDValue();    // this is here to silence compiler errors
1162  }
1163
1164  /// CanLowerReturn - This hook should be implemented to check whether the
1165  /// return values described by the Outs array can fit into the return
1166  /// registers.  If false is returned, an sret-demotion is performed.
1167  ///
1168  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1169               const SmallVectorImpl<EVT> &OutTys,
1170               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1171               SelectionDAG &DAG)
1172  {
1173    // Return true by default to get preexisting behavior.
1174    return true;
1175  }
1176  /// LowerReturn - This hook must be implemented to lower outgoing
1177  /// return values, described by the Outs array, into the specified
1178  /// DAG. The implementation should return the resulting token chain
1179  /// value.
1180  ///
1181  virtual SDValue
1182    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1183                const SmallVectorImpl<ISD::OutputArg> &Outs,
1184                DebugLoc dl, SelectionDAG &DAG) {
1185    assert(0 && "Not Implemented");
1186    return SDValue();    // this is here to silence compiler errors
1187  }
1188
1189  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1190  /// memcpy. This can be used by targets to provide code sequences for cases
1191  /// that don't fit the target's parameters for simple loads/stores and can be
1192  /// more efficient than using a library call. This function can return a null
1193  /// SDValue if the target declines to use custom code and a different
1194  /// lowering strategy should be used.
1195  ///
1196  /// If AlwaysInline is true, the size is constant and the target should not
1197  /// emit any calls and is strongly encouraged to attempt to emit inline code
1198  /// even if it is beyond the usual threshold because this intrinsic is being
1199  /// expanded in a place where calls are not feasible (e.g. within the prologue
1200  /// for another call). If the target chooses to decline an AlwaysInline
1201  /// request here, legalize will resort to using simple loads and stores.
1202  virtual SDValue
1203  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1204                          SDValue Chain,
1205                          SDValue Op1, SDValue Op2,
1206                          SDValue Op3, unsigned Align,
1207                          bool AlwaysInline,
1208                          const Value *DstSV, uint64_t DstOff,
1209                          const Value *SrcSV, uint64_t SrcOff) {
1210    return SDValue();
1211  }
1212
1213  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1214  /// memmove. This can be used by targets to provide code sequences for cases
1215  /// that don't fit the target's parameters for simple loads/stores and can be
1216  /// more efficient than using a library call. This function can return a null
1217  /// SDValue if the target declines to use custom code and a different
1218  /// lowering strategy should be used.
1219  virtual SDValue
1220  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1221                           SDValue Chain,
1222                           SDValue Op1, SDValue Op2,
1223                           SDValue Op3, unsigned Align,
1224                           const Value *DstSV, uint64_t DstOff,
1225                           const Value *SrcSV, uint64_t SrcOff) {
1226    return SDValue();
1227  }
1228
1229  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1230  /// memset. This can be used by targets to provide code sequences for cases
1231  /// that don't fit the target's parameters for simple stores and can be more
1232  /// efficient than using a library call. This function can return a null
1233  /// SDValue if the target declines to use custom code and a different
1234  /// lowering strategy should be used.
1235  virtual SDValue
1236  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1237                          SDValue Chain,
1238                          SDValue Op1, SDValue Op2,
1239                          SDValue Op3, unsigned Align,
1240                          const Value *DstSV, uint64_t DstOff) {
1241    return SDValue();
1242  }
1243
1244  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1245  /// to legalize nodes with an illegal operand type but legal result types.
1246  /// It replaces the LowerOperation callback in the type Legalizer.
1247  /// The reason we can not do away with LowerOperation entirely is that
1248  /// LegalizeDAG isn't yet ready to use this callback.
1249  /// TODO: Consider merging with ReplaceNodeResults.
1250
1251  /// The target places new result values for the node in Results (their number
1252  /// and types must exactly match those of the original return values of
1253  /// the node), or leaves Results empty, which indicates that the node is not
1254  /// to be custom lowered after all.
1255  /// The default implementation calls LowerOperation.
1256  virtual void LowerOperationWrapper(SDNode *N,
1257                                     SmallVectorImpl<SDValue> &Results,
1258                                     SelectionDAG &DAG);
1259
1260  /// LowerOperation - This callback is invoked for operations that are
1261  /// unsupported by the target, which are registered to use 'custom' lowering,
1262  /// and whose defined values are all legal.
1263  /// If the target has no operations that require custom lowering, it need not
1264  /// implement this.  The default implementation of this aborts.
1265  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1266
1267  /// ReplaceNodeResults - This callback is invoked when a node result type is
1268  /// illegal for the target, and the operation was registered to use 'custom'
1269  /// lowering for that result type.  The target places new result values for
1270  /// the node in Results (their number and types must exactly match those of
1271  /// the original return values of the node), or leaves Results empty, which
1272  /// indicates that the node is not to be custom lowered after all.
1273  ///
1274  /// If the target has no operations that require custom lowering, it need not
1275  /// implement this.  The default implementation aborts.
1276  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1277                                  SelectionDAG &DAG) {
1278    assert(0 && "ReplaceNodeResults not implemented for this target!");
1279  }
1280
1281  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1282  /// tail call optimization. Targets which want to do tail call optimization
1283  /// should override this function.
1284  virtual bool
1285  IsEligibleForTailCallOptimization(SDValue Callee,
1286                                    CallingConv::ID CalleeCC,
1287                                    bool isVarArg,
1288                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1289                                    SelectionDAG& DAG) const {
1290    // Conservative default: no calls are eligible.
1291    return false;
1292  }
1293
1294  /// getTargetNodeName() - This method returns the name of a target specific
1295  /// DAG node.
1296  virtual const char *getTargetNodeName(unsigned Opcode) const;
1297
1298  /// createFastISel - This method returns a target specific FastISel object,
1299  /// or null if the target does not support "fast" ISel.
1300  virtual FastISel *
1301  createFastISel(MachineFunction &,
1302                 MachineModuleInfo *, DwarfWriter *,
1303                 DenseMap<const Value *, unsigned> &,
1304                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1305                 DenseMap<const AllocaInst *, int> &
1306#ifndef NDEBUG
1307                 , SmallSet<Instruction*, 8> &CatchInfoLost
1308#endif
1309                 ) {
1310    return 0;
1311  }
1312
1313  //===--------------------------------------------------------------------===//
1314  // Inline Asm Support hooks
1315  //
1316
1317  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1318  /// call to be explicit llvm code if it wants to.  This is useful for
1319  /// turning simple inline asms into LLVM intrinsics, which gives the
1320  /// compiler more information about the behavior of the code.
1321  virtual bool ExpandInlineAsm(CallInst *CI) const {
1322    return false;
1323  }
1324
1325  enum ConstraintType {
1326    C_Register,            // Constraint represents specific register(s).
1327    C_RegisterClass,       // Constraint represents any of register(s) in class.
1328    C_Memory,              // Memory constraint.
1329    C_Other,               // Something else.
1330    C_Unknown              // Unsupported constraint.
1331  };
1332
1333  /// AsmOperandInfo - This contains information for each constraint that we are
1334  /// lowering.
1335  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1336    /// ConstraintCode - This contains the actual string for the code, like "m".
1337    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1338    /// most closely matches the operand.
1339    std::string ConstraintCode;
1340
1341    /// ConstraintType - Information about the constraint code, e.g. Register,
1342    /// RegisterClass, Memory, Other, Unknown.
1343    TargetLowering::ConstraintType ConstraintType;
1344
1345    /// CallOperandval - If this is the result output operand or a
1346    /// clobber, this is null, otherwise it is the incoming operand to the
1347    /// CallInst.  This gets modified as the asm is processed.
1348    Value *CallOperandVal;
1349
1350    /// ConstraintVT - The ValueType for the operand value.
1351    EVT ConstraintVT;
1352
1353    /// isMatchingInputConstraint - Return true of this is an input operand that
1354    /// is a matching constraint like "4".
1355    bool isMatchingInputConstraint() const;
1356
1357    /// getMatchedOperand - If this is an input matching constraint, this method
1358    /// returns the output operand it matches.
1359    unsigned getMatchedOperand() const;
1360
1361    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1362      : InlineAsm::ConstraintInfo(info),
1363        ConstraintType(TargetLowering::C_Unknown),
1364        CallOperandVal(0), ConstraintVT(MVT::Other) {
1365    }
1366  };
1367
1368  /// ComputeConstraintToUse - Determines the constraint code and constraint
1369  /// type to use for the specific AsmOperandInfo, setting
1370  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1371  /// being passed in is available, it can be passed in as Op, otherwise an
1372  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1373  /// constraint of the inline asm instruction being processed is 'm'.
1374  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1375                                      SDValue Op,
1376                                      bool hasMemory,
1377                                      SelectionDAG *DAG = 0) const;
1378
1379  /// getConstraintType - Given a constraint, return the type of constraint it
1380  /// is for this target.
1381  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1382
1383  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1384  /// return a list of registers that can be used to satisfy the constraint.
1385  /// This should only be used for C_RegisterClass constraints.
1386  virtual std::vector<unsigned>
1387  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1388                                    EVT VT) const;
1389
1390  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1391  /// {edx}), return the register number and the register class for the
1392  /// register.
1393  ///
1394  /// Given a register class constraint, like 'r', if this corresponds directly
1395  /// to an LLVM register class, return a register of 0 and the register class
1396  /// pointer.
1397  ///
1398  /// This should only be used for C_Register constraints.  On error,
1399  /// this returns a register number of 0 and a null register class pointer..
1400  virtual std::pair<unsigned, const TargetRegisterClass*>
1401    getRegForInlineAsmConstraint(const std::string &Constraint,
1402                                 EVT VT) const;
1403
1404  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1405  /// with another that has more specific requirements based on the type of the
1406  /// corresponding operand.  This returns null if there is no replacement to
1407  /// make.
1408  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1409
1410  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1411  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1412  /// it means one of the asm constraint of the inline asm instruction being
1413  /// processed is 'm'.
1414  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1415                                            bool hasMemory,
1416                                            std::vector<SDValue> &Ops,
1417                                            SelectionDAG &DAG) const;
1418
1419  //===--------------------------------------------------------------------===//
1420  // Instruction Emitting Hooks
1421  //
1422
1423  // EmitInstrWithCustomInserter - This method should be implemented by targets
1424  // that mark instructions with the 'usesCustomInserter' flag.  These
1425  // instructions are special in various ways, which require special support to
1426  // insert.  The specified MachineInstr is created but not inserted into any
1427  // basic blocks, and this method is called to expand it into a sequence of
1428  // instructions, potentially also creating new basic blocks and control flow.
1429  // When new basic blocks are inserted and the edges from MBB to its successors
1430  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1431  // DenseMap.
1432  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1433                                                         MachineBasicBlock *MBB,
1434                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1435
1436  //===--------------------------------------------------------------------===//
1437  // Addressing mode description hooks (used by LSR etc).
1438  //
1439
1440  /// AddrMode - This represents an addressing mode of:
1441  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1442  /// If BaseGV is null,  there is no BaseGV.
1443  /// If BaseOffs is zero, there is no base offset.
1444  /// If HasBaseReg is false, there is no base register.
1445  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1446  /// no scale.
1447  ///
1448  struct AddrMode {
1449    GlobalValue *BaseGV;
1450    int64_t      BaseOffs;
1451    bool         HasBaseReg;
1452    int64_t      Scale;
1453    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1454  };
1455
1456  /// isLegalAddressingMode - Return true if the addressing mode represented by
1457  /// AM is legal for this target, for a load/store of the specified type.
1458  /// The type may be VoidTy, in which case only return true if the addressing
1459  /// mode is legal for a load/store of any legal type.
1460  /// TODO: Handle pre/postinc as well.
1461  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1462
1463  /// isTruncateFree - Return true if it's free to truncate a value of
1464  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1465  /// register EAX to i16 by referencing its sub-register AX.
1466  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1467    return false;
1468  }
1469
1470  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1471    return false;
1472  }
1473
1474  /// isZExtFree - Return true if any actual instruction that defines a
1475  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1476  /// register. This does not necessarily include registers defined in
1477  /// unknown ways, such as incoming arguments, or copies from unknown
1478  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1479  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1480  /// all instructions that define 32-bit values implicit zero-extend the
1481  /// result out to 64 bits.
1482  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1483    return false;
1484  }
1485
1486  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1487    return false;
1488  }
1489
1490  /// isNarrowingProfitable - Return true if it's profitable to narrow
1491  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1492  /// from i32 to i8 but not from i32 to i16.
1493  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1494    return false;
1495  }
1496
1497  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1498  /// icmp immediate, that is the target has icmp instructions which can compare
1499  /// a register against the immediate without having to materialize the
1500  /// immediate into a register.
1501  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1502    return true;
1503  }
1504
1505  //===--------------------------------------------------------------------===//
1506  // Div utility functions
1507  //
1508  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1509                      std::vector<SDNode*>* Created) const;
1510  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1511                      std::vector<SDNode*>* Created) const;
1512
1513
1514  //===--------------------------------------------------------------------===//
1515  // Runtime Library hooks
1516  //
1517
1518  /// setLibcallName - Rename the default libcall routine name for the specified
1519  /// libcall.
1520  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1521    LibcallRoutineNames[Call] = Name;
1522  }
1523
1524  /// getLibcallName - Get the libcall routine name for the specified libcall.
1525  ///
1526  const char *getLibcallName(RTLIB::Libcall Call) const {
1527    return LibcallRoutineNames[Call];
1528  }
1529
1530  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1531  /// result of the comparison libcall against zero.
1532  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1533    CmpLibcallCCs[Call] = CC;
1534  }
1535
1536  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1537  /// the comparison libcall against zero.
1538  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1539    return CmpLibcallCCs[Call];
1540  }
1541
1542  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1543  /// specified libcall.
1544  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1545    LibcallCallingConvs[Call] = CC;
1546  }
1547
1548  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1549  /// specified libcall.
1550  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1551    return LibcallCallingConvs[Call];
1552  }
1553
1554private:
1555  TargetMachine &TM;
1556  const TargetData *TD;
1557  TargetLoweringObjectFile &TLOF;
1558
1559  /// PointerTy - The type to use for pointers, usually i32 or i64.
1560  ///
1561  MVT PointerTy;
1562
1563  /// IsLittleEndian - True if this is a little endian target.
1564  ///
1565  bool IsLittleEndian;
1566
1567  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1568  ///
1569  bool UsesGlobalOffsetTable;
1570
1571  /// SelectIsExpensive - Tells the code generator not to expand operations
1572  /// into sequences that use the select operations if possible.
1573  bool SelectIsExpensive;
1574
1575  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1576  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1577  /// a real cost model is in place.  If we ever optimize for size, this will be
1578  /// set to true unconditionally.
1579  bool IntDivIsCheap;
1580
1581  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1582  /// srl/add/sra for a signed divide by power of two, and let the target handle
1583  /// it.
1584  bool Pow2DivIsCheap;
1585
1586  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1587  /// llvm.setjmp.  Defaults to false.
1588  bool UseUnderscoreSetJmp;
1589
1590  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1591  /// llvm.longjmp.  Defaults to false.
1592  bool UseUnderscoreLongJmp;
1593
1594  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1595  /// PointerTy is.
1596  MVT ShiftAmountTy;
1597
1598  /// BooleanContents - Information about the contents of the high-bits in
1599  /// boolean values held in a type wider than i1.  See getBooleanContents.
1600  BooleanContent BooleanContents;
1601
1602  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1603  /// total cycles or lowest register usage.
1604  SchedPreference SchedPreferenceInfo;
1605
1606  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1607  unsigned JumpBufSize;
1608
1609  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1610  /// buffers
1611  unsigned JumpBufAlignment;
1612
1613  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1614  /// if-converted.
1615  unsigned IfCvtBlockSizeLimit;
1616
1617  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1618  /// duplicated during if-conversion.
1619  unsigned IfCvtDupBlockSizeLimit;
1620
1621  /// PrefLoopAlignment - The perferred loop alignment.
1622  ///
1623  unsigned PrefLoopAlignment;
1624
1625  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1626  /// specifies the register that llvm.savestack/llvm.restorestack should save
1627  /// and restore.
1628  unsigned StackPointerRegisterToSaveRestore;
1629
1630  /// ExceptionPointerRegister - If set to a physical register, this specifies
1631  /// the register that receives the exception address on entry to a landing
1632  /// pad.
1633  unsigned ExceptionPointerRegister;
1634
1635  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1636  /// the register that receives the exception typeid on entry to a landing
1637  /// pad.
1638  unsigned ExceptionSelectorRegister;
1639
1640  /// RegClassForVT - This indicates the default register class to use for
1641  /// each ValueType the target supports natively.
1642  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1643  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1644  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1645
1646  /// TransformToType - For any value types we are promoting or expanding, this
1647  /// contains the value type that we are changing to.  For Expanded types, this
1648  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1649  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1650  /// by the system, this holds the same type (e.g. i32 -> i32).
1651  EVT TransformToType[MVT::LAST_VALUETYPE];
1652
1653  /// OpActions - For each operation and each value type, keep a LegalizeAction
1654  /// that indicates how instruction selection should deal with the operation.
1655  /// Most operations are Legal (aka, supported natively by the target), but
1656  /// operations that are not should be described.  Note that operations on
1657  /// non-legal value types are not described here.
1658  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1659  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1660  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1661
1662  /// LoadExtActions - For each load of load extension type and each value type,
1663  /// keep a LegalizeAction that indicates how instruction selection should deal
1664  /// with the load.
1665  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1666
1667  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1668  /// indicates how instruction selection should deal with the store.
1669  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1670
1671  /// IndexedModeActions - For each indexed mode and each value type,
1672  /// keep a pair of LegalizeAction that indicates how instruction
1673  /// selection should deal with the load / store.  The first
1674  /// dimension is now the value_type for the reference.  The second
1675  /// dimension is the load [0] vs. store[1].  The third dimension
1676  /// represents the various modes for load store.
1677  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1678
1679  /// ConvertActions - For each conversion from source type to destination type,
1680  /// keep a LegalizeAction that indicates how instruction selection should
1681  /// deal with the conversion.
1682  /// Currently, this is used only for floating->floating conversions
1683  /// (FP_EXTEND and FP_ROUND).
1684  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1685
1686  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1687  /// LegalizeAction that indicates how instruction selection should
1688  /// deal with the condition code.
1689  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1690
1691  ValueTypeActionImpl ValueTypeActions;
1692
1693  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1694
1695  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1696  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1697  /// which sets a bit in this array.
1698  unsigned char
1699  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1700
1701  /// PromoteToType - For operations that must be promoted to a specific type,
1702  /// this holds the destination type.  This map should be sparse, so don't hold
1703  /// it as an array.
1704  ///
1705  /// Targets add entries to this map with AddPromotedToType(..), clients access
1706  /// this with getTypeToPromoteTo(..).
1707  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1708    PromoteToType;
1709
1710  /// LibcallRoutineNames - Stores the name each libcall.
1711  ///
1712  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1713
1714  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1715  /// of each of the comparison libcall against zero.
1716  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1717
1718  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1719  /// libcall.
1720  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1721
1722protected:
1723  /// When lowering \@llvm.memset this field specifies the maximum number of
1724  /// store operations that may be substituted for the call to memset. Targets
1725  /// must set this value based on the cost threshold for that target. Targets
1726  /// should assume that the memset will be done using as many of the largest
1727  /// store operations first, followed by smaller ones, if necessary, per
1728  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1729  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1730  /// store.  This only applies to setting a constant array of a constant size.
1731  /// @brief Specify maximum number of store instructions per memset call.
1732  unsigned maxStoresPerMemset;
1733
1734  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1735  /// store operations that may be substituted for a call to memcpy. Targets
1736  /// must set this value based on the cost threshold for that target. Targets
1737  /// should assume that the memcpy will be done using as many of the largest
1738  /// store operations first, followed by smaller ones, if necessary, per
1739  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1740  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1741  /// and one 1-byte store. This only applies to copying a constant array of
1742  /// constant size.
1743  /// @brief Specify maximum bytes of store instructions per memcpy call.
1744  unsigned maxStoresPerMemcpy;
1745
1746  /// When lowering \@llvm.memmove this field specifies the maximum number of
1747  /// store instructions that may be substituted for a call to memmove. Targets
1748  /// must set this value based on the cost threshold for that target. Targets
1749  /// should assume that the memmove will be done using as many of the largest
1750  /// store operations first, followed by smaller ones, if necessary, per
1751  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1752  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1753  /// applies to copying a constant array of constant size.
1754  /// @brief Specify maximum bytes of store instructions per memmove call.
1755  unsigned maxStoresPerMemmove;
1756
1757  /// This field specifies whether the target can benefit from code placement
1758  /// optimization.
1759  bool benefitFromCodePlacementOpt;
1760};
1761} // end llvm namespace
1762
1763#endif
1764