TargetLowering.h revision 204301f0459c1deb6c535723760c848ba2fcd42b
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/AddressingMode.h"
27#include "llvm/Attributes.h"
28#include "llvm/CallingConv.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
82  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
94  /// target, and if not, what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector      // This vector should be widened into a larger vector.
104  };
105
106  /// LegalizeKind holds the legalization kind that needs to happen to EVT
107  /// in order to type-legalize it.
108  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  enum SelectSupportKind {
117    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
118    ScalarCondVectorVal,  // The target supports selects with a scalar condition
119                          // and vector values (ex: cmov).
120    VectorMaskSelect      // The target supports vector selects with a vector
121                          // mask (ex: x86 blends).
122  };
123
124  static ISD::NodeType getExtendForContent(BooleanContent Content) {
125    switch (Content) {
126    case UndefinedBooleanContent:
127      // Extend by adding rubbish bits.
128      return ISD::ANY_EXTEND;
129    case ZeroOrOneBooleanContent:
130      // Extend by adding zero bits.
131      return ISD::ZERO_EXTEND;
132    case ZeroOrNegativeOneBooleanContent:
133      // Extend by copying the sign bit.
134      return ISD::SIGN_EXTEND;
135    }
136    llvm_unreachable("Invalid content kind");
137  }
138
139  /// NOTE: The constructor takes ownership of TLOF.
140  explicit TargetLowering(const TargetMachine &TM,
141                          const TargetLoweringObjectFile *TLOF);
142  virtual ~TargetLowering();
143
144  const TargetMachine &getTargetMachine() const { return TM; }
145  const DataLayout *getDataLayout() const { return TD; }
146  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
147
148  bool isBigEndian() const { return !IsLittleEndian; }
149  bool isLittleEndian() const { return IsLittleEndian; }
150  // Return the pointer type for the given address space, defaults to
151  // the pointer type from the data layout.
152  // FIXME: The default needs to be removed once all the code is updated.
153  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
154  virtual MVT getShiftAmountTy(EVT LHSTy) const;
155
156  /// isSelectExpensive - Return true if the select operation is expensive for
157  /// this target.
158  bool isSelectExpensive() const { return SelectIsExpensive; }
159
160  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
161
162  /// shouldSplitVectorElementType - Return true if a vector of the given type
163  /// should be split (TypeSplitVector) instead of promoted
164  /// (TypePromoteInteger) during type legalization.
165  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
166
167  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
168  /// a sequence of several shifts, adds, and multiplies for this target.
169  bool isIntDivCheap() const { return IntDivIsCheap; }
170
171  /// isSlowDivBypassed - Returns true if target has indicated at least one
172  /// type should be bypassed.
173  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
174
175  /// getBypassSlowDivTypes - Returns map of slow types for division or
176  /// remainder with corresponding fast types
177  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
178    return BypassSlowDivWidths;
179  }
180
181  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
182  /// srl/add/sra.
183  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
184
185  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
186  /// that should be avoided.
187  bool isJumpExpensive() const { return JumpIsExpensive; }
188
189  /// isPredictableSelectExpensive - Return true if selects are only cheaper
190  /// than branches if the branch is unlikely to be predicted right.
191  bool isPredictableSelectExpensive() const {
192    return predictableSelectIsExpensive;
193  }
194
195  /// getSetCCResultType - Return the ValueType of the result of SETCC
196  /// operations.  Also used to obtain the target's preferred type for
197  /// the condition operand of SELECT and BRCOND nodes.  In the case of
198  /// BRCOND the argument passed is MVT::Other since there are no other
199  /// operands to get a type hint from.
200  virtual EVT getSetCCResultType(EVT VT) const;
201
202  /// getCmpLibcallReturnType - Return the ValueType for comparison
203  /// libcalls. Comparions libcalls include floating point comparion calls,
204  /// and Ordered/Unordered check calls on floating point numbers.
205  virtual
206  MVT::SimpleValueType getCmpLibcallReturnType() const;
207
208  /// getBooleanContents - For targets without i1 registers, this gives the
209  /// nature of the high-bits of boolean values held in types wider than i1.
210  /// "Boolean values" are special true/false values produced by nodes like
211  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
212  /// Not to be confused with general values promoted from i1.
213  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
214  /// parameter selects between the two kinds.  For example on X86 a scalar
215  /// boolean should be zero extended from i1, while the elements of a vector
216  /// of booleans should be sign extended from i1.
217  BooleanContent getBooleanContents(bool isVec) const {
218    return isVec ? BooleanVectorContents : BooleanContents;
219  }
220
221  /// getSchedulingPreference - Return target scheduling preference.
222  Sched::Preference getSchedulingPreference() const {
223    return SchedPreferenceInfo;
224  }
225
226  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
227  /// different scheduling heuristics for different nodes. This function returns
228  /// the preference (or none) for the given node.
229  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
230    return Sched::None;
231  }
232
233  /// getRegClassFor - Return the register class that should be used for the
234  /// specified value type.
235  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
236    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
237    assert(RC && "This value type is not natively supported!");
238    return RC;
239  }
240
241  /// getRepRegClassFor - Return the 'representative' register class for the
242  /// specified value type. The 'representative' register class is the largest
243  /// legal super-reg register class for the register class of the value type.
244  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
245  /// while the rep register class is GR64 on x86_64.
246  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
247    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
248    return RC;
249  }
250
251  /// getRepRegClassCostFor - Return the cost of the 'representative' register
252  /// class for the specified value type.
253  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
254    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
255    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
256  }
257
258  /// isTypeLegal - Return true if the target has native support for the
259  /// specified value type.  This means that it has a register that directly
260  /// holds it without promotions or expansions.
261  bool isTypeLegal(EVT VT) const {
262    assert(!VT.isSimple() ||
263           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
264    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
265  }
266
267  class ValueTypeActionImpl {
268    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
269    /// that indicates how instruction selection should deal with the type.
270    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
271
272  public:
273    ValueTypeActionImpl() {
274      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
275    }
276
277    LegalizeTypeAction getTypeAction(MVT VT) const {
278      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
279    }
280
281    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
282      unsigned I = VT.SimpleTy;
283      ValueTypeActions[I] = Action;
284    }
285  };
286
287  const ValueTypeActionImpl &getValueTypeActions() const {
288    return ValueTypeActions;
289  }
290
291  /// getTypeAction - Return how we should legalize values of this type, either
292  /// it is already legal (return 'Legal') or we need to promote it to a larger
293  /// type (return 'Promote'), or we need to expand it into multiple registers
294  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
295  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
296    return getTypeConversion(Context, VT).first;
297  }
298  LegalizeTypeAction getTypeAction(MVT VT) const {
299    return ValueTypeActions.getTypeAction(VT);
300  }
301
302  /// getTypeToTransformTo - For types supported by the target, this is an
303  /// identity function.  For types that must be promoted to larger types, this
304  /// returns the larger type to promote to.  For integer types that are larger
305  /// than the largest integer register, this contains one step in the expansion
306  /// to get to the smaller register. For illegal floating point types, this
307  /// returns the integer type to transform to.
308  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
309    return getTypeConversion(Context, VT).second;
310  }
311
312  /// getTypeToExpandTo - For types supported by the target, this is an
313  /// identity function.  For types that must be expanded (i.e. integer types
314  /// that are larger than the largest integer register or illegal floating
315  /// point types), this returns the largest legal type it will be expanded to.
316  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
317    assert(!VT.isVector());
318    while (true) {
319      switch (getTypeAction(Context, VT)) {
320      case TypeLegal:
321        return VT;
322      case TypeExpandInteger:
323        VT = getTypeToTransformTo(Context, VT);
324        break;
325      default:
326        llvm_unreachable("Type is not legal nor is it to be expanded!");
327      }
328    }
329  }
330
331  /// getVectorTypeBreakdown - Vector types are broken down into some number of
332  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
333  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
334  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
335  ///
336  /// This method returns the number of registers needed, and the VT for each
337  /// register.  It also returns the VT and quantity of the intermediate values
338  /// before they are promoted/expanded.
339  ///
340  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
341                                  EVT &IntermediateVT,
342                                  unsigned &NumIntermediates,
343                                  EVT &RegisterVT) const;
344
345  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
346  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
347  /// this is the case, it returns true and store the intrinsic
348  /// information into the IntrinsicInfo that was passed to the function.
349  struct IntrinsicInfo {
350    unsigned     opc;         // target opcode
351    EVT          memVT;       // memory VT
352    const Value* ptrVal;      // value representing memory location
353    int          offset;      // offset off of ptrVal
354    unsigned     align;       // alignment
355    bool         vol;         // is volatile?
356    bool         readMem;     // reads memory?
357    bool         writeMem;    // writes memory?
358  };
359
360  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
361                                  unsigned /*Intrinsic*/) const {
362    return false;
363  }
364
365  /// isFPImmLegal - Returns true if the target can instruction select the
366  /// specified FP immediate natively. If false, the legalizer will materialize
367  /// the FP immediate as a load from a constant pool.
368  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
369    return false;
370  }
371
372  /// isIntImmLegal - Returns true if the target can instruction select the
373  /// specified integer immediate natively (that is, it's materialized with one
374  /// instruction). The current *assumption* in isel is all of integer
375  /// immediates are "legal" and only the memcpy / memset expansion code is
376  /// making use of this. The rest of isel doesn't have proper cost model for
377  /// immediate materialization.
378  virtual bool isIntImmLegal(const APInt &/*Imm*/, EVT /*VT*/) const {
379    return true;
380  }
381
382  /// isShuffleMaskLegal - Targets can use this to indicate that they only
383  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
384  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
385  /// are assumed to be legal.
386  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
387                                  EVT /*VT*/) const {
388    return true;
389  }
390
391  /// canOpTrap - Returns true if the operation can trap for the value type.
392  /// VT must be a legal type. By default, we optimistically assume most
393  /// operations don't trap except for divide and remainder.
394  virtual bool canOpTrap(unsigned Op, EVT VT) const;
395
396  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
397  /// used by Targets can use this to indicate if there is a suitable
398  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
399  /// pool entry.
400  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
401                                      EVT /*VT*/) const {
402    return false;
403  }
404
405  /// getOperationAction - Return how this operation should be treated: either
406  /// it is legal, needs to be promoted to a larger size, needs to be
407  /// expanded to some other code sequence, or the target has a custom expander
408  /// for it.
409  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
410    if (VT.isExtended()) return Expand;
411    // If a target-specific SDNode requires legalization, require the target
412    // to provide custom legalization for it.
413    if (Op > array_lengthof(OpActions[0])) return Custom;
414    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
415    return (LegalizeAction)OpActions[I][Op];
416  }
417
418  /// isOperationLegalOrCustom - Return true if the specified operation is
419  /// legal on this target or can be made legal with custom lowering. This
420  /// is used to help guide high-level lowering decisions.
421  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
422    return (VT == MVT::Other || isTypeLegal(VT)) &&
423      (getOperationAction(Op, VT) == Legal ||
424       getOperationAction(Op, VT) == Custom);
425  }
426
427  /// isOperationExpand - Return true if the specified operation is illegal on
428  /// this target or unlikely to be made legal with custom lowering. This is
429  /// used to help guide high-level lowering decisions.
430  bool isOperationExpand(unsigned Op, EVT VT) const {
431    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
432  }
433
434  /// isOperationLegal - Return true if the specified operation is legal on this
435  /// target.
436  bool isOperationLegal(unsigned Op, EVT VT) const {
437    return (VT == MVT::Other || isTypeLegal(VT)) &&
438           getOperationAction(Op, VT) == Legal;
439  }
440
441  /// getLoadExtAction - Return how this load with extension should be treated:
442  /// either it is legal, needs to be promoted to a larger size, needs to be
443  /// expanded to some other code sequence, or the target has a custom expander
444  /// for it.
445  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
446    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
447           "Table isn't big enough!");
448    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
449  }
450
451  /// isLoadExtLegal - Return true if the specified load with extension is legal
452  /// on this target.
453  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
454    return VT.isSimple() &&
455      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
456  }
457
458  /// getTruncStoreAction - Return how this store with truncation should be
459  /// treated: either it is legal, needs to be promoted to a larger size, needs
460  /// to be expanded to some other code sequence, or the target has a custom
461  /// expander for it.
462  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
463    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
464           "Table isn't big enough!");
465    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
466                                            [MemVT.SimpleTy];
467  }
468
469  /// isTruncStoreLegal - Return true if the specified store with truncation is
470  /// legal on this target.
471  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
472    return isTypeLegal(ValVT) && MemVT.isSimple() &&
473      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
474  }
475
476  /// getIndexedLoadAction - Return how the indexed load should be treated:
477  /// either it is legal, needs to be promoted to a larger size, needs to be
478  /// expanded to some other code sequence, or the target has a custom expander
479  /// for it.
480  LegalizeAction
481  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
482    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
483           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
484           "Table isn't big enough!");
485    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
486    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
487  }
488
489  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
490  /// on this target.
491  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
492    return VT.isSimple() &&
493      (getIndexedLoadAction(IdxMode, VT) == Legal ||
494       getIndexedLoadAction(IdxMode, VT) == Custom);
495  }
496
497  /// getIndexedStoreAction - Return how the indexed store should be treated:
498  /// either it is legal, needs to be promoted to a larger size, needs to be
499  /// expanded to some other code sequence, or the target has a custom expander
500  /// for it.
501  LegalizeAction
502  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
503    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
504           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
505           "Table isn't big enough!");
506    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
507    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
508  }
509
510  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
511  /// on this target.
512  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
513    return VT.isSimple() &&
514      (getIndexedStoreAction(IdxMode, VT) == Legal ||
515       getIndexedStoreAction(IdxMode, VT) == Custom);
516  }
517
518  /// getCondCodeAction - Return how the condition code should be treated:
519  /// either it is legal, needs to be expanded to some other code sequence,
520  /// or the target has a custom expander for it.
521  LegalizeAction
522  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
523    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
524           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
525           "Table isn't big enough!");
526    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
527    /// value and the upper 27 bits index into the second dimension of the
528    /// array to select what 64bit value to use.
529    LegalizeAction Action = (LegalizeAction)
530      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
531    assert(Action != Promote && "Can't promote condition code!");
532    return Action;
533  }
534
535  /// isCondCodeLegal - Return true if the specified condition code is legal
536  /// on this target.
537  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
538    return
539      getCondCodeAction(CC, VT) == Legal ||
540      getCondCodeAction(CC, VT) == Custom;
541  }
542
543
544  /// getTypeToPromoteTo - If the action for this operation is to promote, this
545  /// method returns the ValueType to promote to.
546  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
547    assert(getOperationAction(Op, VT) == Promote &&
548           "This operation isn't promoted!");
549
550    // See if this has an explicit type specified.
551    std::map<std::pair<unsigned, MVT::SimpleValueType>,
552             MVT::SimpleValueType>::const_iterator PTTI =
553      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
554    if (PTTI != PromoteToType.end()) return PTTI->second;
555
556    assert((VT.isInteger() || VT.isFloatingPoint()) &&
557           "Cannot autopromote this type, add it with AddPromotedToType.");
558
559    EVT NVT = VT;
560    do {
561      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
562      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
563             "Didn't find type to promote to!");
564    } while (!isTypeLegal(NVT) ||
565              getOperationAction(Op, NVT) == Promote);
566    return NVT;
567  }
568
569  /// getValueType - Return the EVT corresponding to this LLVM type.
570  /// This is fixed by the LLVM operations except for the pointer size.  If
571  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
572  /// counterpart (e.g. structs), otherwise it will assert.
573  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
574    // Lower scalar pointers to native pointer types.
575    if (Ty->isPointerTy()) return PointerTy;
576
577    if (Ty->isVectorTy()) {
578      VectorType *VTy = cast<VectorType>(Ty);
579      Type *Elm = VTy->getElementType();
580      // Lower vectors of pointers to native pointer types.
581      if (Elm->isPointerTy())
582        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
583      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
584                       VTy->getNumElements());
585    }
586    return EVT::getEVT(Ty, AllowUnknown);
587  }
588
589  /// Return the MVT corresponding to this LLVM type. See getValueType.
590  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
591    return getValueType(Ty, AllowUnknown).getSimpleVT();
592  }
593
594  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
595  /// function arguments in the caller parameter area.  This is the actual
596  /// alignment, not its logarithm.
597  virtual unsigned getByValTypeAlignment(Type *Ty) const;
598
599  /// getRegisterType - Return the type of registers that this ValueType will
600  /// eventually require.
601  EVT getRegisterType(MVT VT) const {
602    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
603    return RegisterTypeForVT[VT.SimpleTy];
604  }
605
606  /// getRegisterType - Return the type of registers that this ValueType will
607  /// eventually require.
608  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
609    if (VT.isSimple()) {
610      assert((unsigned)VT.getSimpleVT().SimpleTy <
611                array_lengthof(RegisterTypeForVT));
612      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
613    }
614    if (VT.isVector()) {
615      EVT VT1, RegisterVT;
616      unsigned NumIntermediates;
617      (void)getVectorTypeBreakdown(Context, VT, VT1,
618                                   NumIntermediates, RegisterVT);
619      return RegisterVT;
620    }
621    if (VT.isInteger()) {
622      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
623    }
624    llvm_unreachable("Unsupported extended type!");
625  }
626
627  /// getNumRegisters - Return the number of registers that this ValueType will
628  /// eventually require.  This is one for any types promoted to live in larger
629  /// registers, but may be more than one for types (like i64) that are split
630  /// into pieces.  For types like i140, which are first promoted then expanded,
631  /// it is the number of registers needed to hold all the bits of the original
632  /// type.  For an i140 on a 32 bit machine this means 5 registers.
633  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
634    if (VT.isSimple()) {
635      assert((unsigned)VT.getSimpleVT().SimpleTy <
636                array_lengthof(NumRegistersForVT));
637      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
638    }
639    if (VT.isVector()) {
640      EVT VT1, VT2;
641      unsigned NumIntermediates;
642      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
643    }
644    if (VT.isInteger()) {
645      unsigned BitWidth = VT.getSizeInBits();
646      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
647      return (BitWidth + RegWidth - 1) / RegWidth;
648    }
649    llvm_unreachable("Unsupported extended type!");
650  }
651
652  /// ShouldShrinkFPConstant - If true, then instruction selection should
653  /// seek to shrink the FP constant of the specified type to a smaller type
654  /// in order to save space and / or reduce runtime.
655  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
656
657  /// hasTargetDAGCombine - If true, the target has custom DAG combine
658  /// transformations that it can perform for the specified node.
659  bool hasTargetDAGCombine(ISD::NodeType NT) const {
660    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
661    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
662  }
663
664  /// This function returns the maximum number of store operations permitted
665  /// to replace a call to llvm.memset. The value is set by the target at the
666  /// performance threshold for such a replacement. If OptSize is true,
667  /// return the limit for functions that have OptSize attribute.
668  /// @brief Get maximum # of store operations permitted for llvm.memset
669  unsigned getMaxStoresPerMemset(bool OptSize) const {
670    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
671  }
672
673  /// This function returns the maximum number of store operations permitted
674  /// to replace a call to llvm.memcpy. The value is set by the target at the
675  /// performance threshold for such a replacement. If OptSize is true,
676  /// return the limit for functions that have OptSize attribute.
677  /// @brief Get maximum # of store operations permitted for llvm.memcpy
678  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
679    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
680  }
681
682  /// This function returns the maximum number of store operations permitted
683  /// to replace a call to llvm.memmove. The value is set by the target at the
684  /// performance threshold for such a replacement. If OptSize is true,
685  /// return the limit for functions that have OptSize attribute.
686  /// @brief Get maximum # of store operations permitted for llvm.memmove
687  unsigned getMaxStoresPerMemmove(bool OptSize) const {
688    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
689  }
690
691  /// This function returns true if the target allows unaligned memory accesses.
692  /// of the specified type. If true, it also returns whether the unaligned
693  /// memory access is "fast" in the second argument by reference. This is used,
694  /// for example, in situations where an array copy/move/set is  converted to a
695  /// sequence of store operations. It's use helps to ensure that such
696  /// replacements don't generate code that causes an alignment error  (trap) on
697  /// the target machine.
698  /// @brief Determine if the target supports unaligned memory accesses.
699  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
700    return false;
701  }
702
703  /// This function returns true if the target would benefit from code placement
704  /// optimization.
705  /// @brief Determine if the target should perform code placement optimization.
706  bool shouldOptimizeCodePlacement() const {
707    return benefitFromCodePlacementOpt;
708  }
709
710  /// getOptimalMemOpType - Returns the target specific optimal type for load
711  /// and store operations as a result of memset, memcpy, and memmove
712  /// lowering. If DstAlign is zero that means it's safe to destination
713  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
714  /// means there isn't a need to check it against alignment requirement,
715  /// probably because the source does not need to be loaded. If
716  /// 'IsZeroVal' is true, that means it's safe to return a
717  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
718  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
719  /// constant so it does not need to be loaded.
720  /// It returns EVT::Other if the type should be determined using generic
721  /// target-independent logic.
722  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
723                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
724                                  bool /*IsZeroVal*/,
725                                  bool /*MemcpyStrSrc*/,
726                                  MachineFunction &/*MF*/) const {
727    return MVT::Other;
728  }
729
730  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
731  /// to implement llvm.setjmp.
732  bool usesUnderscoreSetJmp() const {
733    return UseUnderscoreSetJmp;
734  }
735
736  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
737  /// to implement llvm.longjmp.
738  bool usesUnderscoreLongJmp() const {
739    return UseUnderscoreLongJmp;
740  }
741
742  /// supportJumpTables - return whether the target can generate code for
743  /// jump tables.
744  bool supportJumpTables() const {
745    return SupportJumpTables;
746  }
747
748  /// getMinimumJumpTableEntries - return integer threshold on number of
749  /// blocks to use jump tables rather than if sequence.
750  int getMinimumJumpTableEntries() const {
751    return MinimumJumpTableEntries;
752  }
753
754  /// getStackPointerRegisterToSaveRestore - If a physical register, this
755  /// specifies the register that llvm.savestack/llvm.restorestack should save
756  /// and restore.
757  unsigned getStackPointerRegisterToSaveRestore() const {
758    return StackPointerRegisterToSaveRestore;
759  }
760
761  /// getExceptionPointerRegister - If a physical register, this returns
762  /// the register that receives the exception address on entry to a landing
763  /// pad.
764  unsigned getExceptionPointerRegister() const {
765    return ExceptionPointerRegister;
766  }
767
768  /// getExceptionSelectorRegister - If a physical register, this returns
769  /// the register that receives the exception typeid on entry to a landing
770  /// pad.
771  unsigned getExceptionSelectorRegister() const {
772    return ExceptionSelectorRegister;
773  }
774
775  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
776  /// set, the default is 200)
777  unsigned getJumpBufSize() const {
778    return JumpBufSize;
779  }
780
781  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
782  /// (if never set, the default is 0)
783  unsigned getJumpBufAlignment() const {
784    return JumpBufAlignment;
785  }
786
787  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
788  /// argument.
789  unsigned getMinStackArgumentAlignment() const {
790    return MinStackArgumentAlignment;
791  }
792
793  /// getMinFunctionAlignment - return the minimum function alignment.
794  ///
795  unsigned getMinFunctionAlignment() const {
796    return MinFunctionAlignment;
797  }
798
799  /// getPrefFunctionAlignment - return the preferred function alignment.
800  ///
801  unsigned getPrefFunctionAlignment() const {
802    return PrefFunctionAlignment;
803  }
804
805  /// getPrefLoopAlignment - return the preferred loop alignment.
806  ///
807  unsigned getPrefLoopAlignment() const {
808    return PrefLoopAlignment;
809  }
810
811  /// getShouldFoldAtomicFences - return whether the combiner should fold
812  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
813  ///
814  bool getShouldFoldAtomicFences() const {
815    return ShouldFoldAtomicFences;
816  }
817
818  /// getInsertFencesFor - return whether the DAG builder should automatically
819  /// insert fences and reduce ordering for atomics.
820  ///
821  bool getInsertFencesForAtomic() const {
822    return InsertFencesForAtomic;
823  }
824
825  /// getPreIndexedAddressParts - returns true by value, base pointer and
826  /// offset pointer and addressing mode by reference if the node's address
827  /// can be legally represented as pre-indexed load / store address.
828  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
829                                         SDValue &/*Offset*/,
830                                         ISD::MemIndexedMode &/*AM*/,
831                                         SelectionDAG &/*DAG*/) const {
832    return false;
833  }
834
835  /// getPostIndexedAddressParts - returns true by value, base pointer and
836  /// offset pointer and addressing mode by reference if this node can be
837  /// combined with a load / store to form a post-indexed load / store.
838  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
839                                          SDValue &/*Base*/, SDValue &/*Offset*/,
840                                          ISD::MemIndexedMode &/*AM*/,
841                                          SelectionDAG &/*DAG*/) const {
842    return false;
843  }
844
845  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
846  /// current function.  The returned value is a member of the
847  /// MachineJumpTableInfo::JTEntryKind enum.
848  virtual unsigned getJumpTableEncoding() const;
849
850  virtual const MCExpr *
851  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
852                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
853                            MCContext &/*Ctx*/) const {
854    llvm_unreachable("Need to implement this hook if target has custom JTIs");
855  }
856
857  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
858  /// jumptable.
859  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
860                                           SelectionDAG &DAG) const;
861
862  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
863  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
864  /// MCExpr.
865  virtual const MCExpr *
866  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
867                               unsigned JTI, MCContext &Ctx) const;
868
869  /// isOffsetFoldingLegal - Return true if folding a constant offset
870  /// with the given GlobalAddress is legal.  It is frequently not legal in
871  /// PIC relocation models.
872  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
873
874  /// getStackCookieLocation - Return true if the target stores stack
875  /// protector cookies at a fixed offset in some non-standard address
876  /// space, and populates the address space and offset as
877  /// appropriate.
878  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
879                                      unsigned &/*Offset*/) const {
880    return false;
881  }
882
883  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
884  /// used for loads / stores from the global.
885  virtual unsigned getMaximalGlobalOffset() const {
886    return 0;
887  }
888
889  //===--------------------------------------------------------------------===//
890  // TargetLowering Optimization Methods
891  //
892
893  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
894  /// SDValues for returning information from TargetLowering to its clients
895  /// that want to combine
896  struct TargetLoweringOpt {
897    SelectionDAG &DAG;
898    bool LegalTys;
899    bool LegalOps;
900    SDValue Old;
901    SDValue New;
902
903    explicit TargetLoweringOpt(SelectionDAG &InDAG,
904                               bool LT, bool LO) :
905      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
906
907    bool LegalTypes() const { return LegalTys; }
908    bool LegalOperations() const { return LegalOps; }
909
910    bool CombineTo(SDValue O, SDValue N) {
911      Old = O;
912      New = N;
913      return true;
914    }
915
916    /// ShrinkDemandedConstant - Check to see if the specified operand of the
917    /// specified instruction is a constant integer.  If so, check to see if
918    /// there are any bits set in the constant that are not demanded.  If so,
919    /// shrink the constant and return true.
920    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
921
922    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
923    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
924    /// cast, but it could be generalized for targets with other types of
925    /// implicit widening casts.
926    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
927                          DebugLoc dl);
928  };
929
930  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
931  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
932  /// use this information to simplify Op, create a new simplified DAG node and
933  /// return true, returning the original and new nodes in Old and New.
934  /// Otherwise, analyze the expression and return a mask of KnownOne and
935  /// KnownZero bits for the expression (used to simplify the caller).
936  /// The KnownZero/One bits may only be accurate for those bits in the
937  /// DemandedMask.
938  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
939                            APInt &KnownZero, APInt &KnownOne,
940                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
941
942  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
943  /// Mask are known to be either zero or one and return them in the
944  /// KnownZero/KnownOne bitsets.
945  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
946                                              APInt &KnownZero,
947                                              APInt &KnownOne,
948                                              const SelectionDAG &DAG,
949                                              unsigned Depth = 0) const;
950
951  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
952  /// targets that want to expose additional information about sign bits to the
953  /// DAG Combiner.
954  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
955                                                   unsigned Depth = 0) const;
956
957  struct DAGCombinerInfo {
958    void *DC;  // The DAG Combiner object.
959    bool BeforeLegalize;
960    bool BeforeLegalizeOps;
961    bool CalledByLegalizer;
962  public:
963    SelectionDAG &DAG;
964
965    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
966      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
967        CalledByLegalizer(cl), DAG(dag) {}
968
969    bool isBeforeLegalize() const { return BeforeLegalize; }
970    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
971    bool isCalledByLegalizer() const { return CalledByLegalizer; }
972
973    void AddToWorklist(SDNode *N);
974    void RemoveFromWorklist(SDNode *N);
975    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
976                      bool AddTo = true);
977    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
978    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
979
980    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
981  };
982
983  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
984  /// and cc. If it is unable to simplify it, return a null SDValue.
985  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
986                          ISD::CondCode Cond, bool foldBooleans,
987                          DAGCombinerInfo &DCI, DebugLoc dl) const;
988
989  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
990  /// node is a GlobalAddress + offset.
991  virtual bool
992  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
993
994  /// PerformDAGCombine - This method will be invoked for all target nodes and
995  /// for any target-independent nodes that the target has registered with
996  /// invoke it for.
997  ///
998  /// The semantics are as follows:
999  /// Return Value:
1000  ///   SDValue.Val == 0   - No change was made
1001  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1002  ///   otherwise          - N should be replaced by the returned Operand.
1003  ///
1004  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1005  /// more complex transformations.
1006  ///
1007  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1008
1009  /// isTypeDesirableForOp - Return true if the target has native support for
1010  /// the specified value type and it is 'desirable' to use the type for the
1011  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1012  /// instruction encodings are longer and some i16 instructions are slow.
1013  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1014    // By default, assume all legal types are desirable.
1015    return isTypeLegal(VT);
1016  }
1017
1018  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1019  /// to transform a floating point op of specified opcode to a equivalent op of
1020  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1021  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1022                                                 EVT /*VT*/) const {
1023    return false;
1024  }
1025
1026  /// IsDesirableToPromoteOp - This method query the target whether it is
1027  /// beneficial for dag combiner to promote the specified node. If true, it
1028  /// should return the desired promotion type by reference.
1029  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1030    return false;
1031  }
1032
1033  //===--------------------------------------------------------------------===//
1034  // TargetLowering Configuration Methods - These methods should be invoked by
1035  // the derived class constructor to configure this object for the target.
1036  //
1037
1038protected:
1039  /// setBooleanContents - Specify how the target extends the result of a
1040  /// boolean value from i1 to a wider type.  See getBooleanContents.
1041  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1042  /// setBooleanVectorContents - Specify how the target extends the result
1043  /// of a vector boolean value from a vector of i1 to a wider type.  See
1044  /// getBooleanContents.
1045  void setBooleanVectorContents(BooleanContent Ty) {
1046    BooleanVectorContents = Ty;
1047  }
1048
1049  /// setSchedulingPreference - Specify the target scheduling preference.
1050  void setSchedulingPreference(Sched::Preference Pref) {
1051    SchedPreferenceInfo = Pref;
1052  }
1053
1054  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1055  /// use _setjmp to implement llvm.setjmp or the non _ version.
1056  /// Defaults to false.
1057  void setUseUnderscoreSetJmp(bool Val) {
1058    UseUnderscoreSetJmp = Val;
1059  }
1060
1061  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1062  /// use _longjmp to implement llvm.longjmp or the non _ version.
1063  /// Defaults to false.
1064  void setUseUnderscoreLongJmp(bool Val) {
1065    UseUnderscoreLongJmp = Val;
1066  }
1067
1068  /// setSupportJumpTables - Indicate whether the target can generate code for
1069  /// jump tables.
1070  void setSupportJumpTables(bool Val) {
1071    SupportJumpTables = Val;
1072  }
1073
1074  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1075  /// jump tables rather than if sequence.
1076  void setMinimumJumpTableEntries(int Val) {
1077    MinimumJumpTableEntries = Val;
1078  }
1079
1080  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1081  /// specifies the register that llvm.savestack/llvm.restorestack should save
1082  /// and restore.
1083  void setStackPointerRegisterToSaveRestore(unsigned R) {
1084    StackPointerRegisterToSaveRestore = R;
1085  }
1086
1087  /// setExceptionPointerRegister - If set to a physical register, this sets
1088  /// the register that receives the exception address on entry to a landing
1089  /// pad.
1090  void setExceptionPointerRegister(unsigned R) {
1091    ExceptionPointerRegister = R;
1092  }
1093
1094  /// setExceptionSelectorRegister - If set to a physical register, this sets
1095  /// the register that receives the exception typeid on entry to a landing
1096  /// pad.
1097  void setExceptionSelectorRegister(unsigned R) {
1098    ExceptionSelectorRegister = R;
1099  }
1100
1101  /// SelectIsExpensive - Tells the code generator not to expand operations
1102  /// into sequences that use the select operations if possible.
1103  void setSelectIsExpensive(bool isExpensive = true) {
1104    SelectIsExpensive = isExpensive;
1105  }
1106
1107  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1108  /// operations into a separate sequences that increases the amount of
1109  /// flow control.
1110  void setJumpIsExpensive(bool isExpensive = true) {
1111    JumpIsExpensive = isExpensive;
1112  }
1113
1114  /// setIntDivIsCheap - Tells the code generator that integer divide is
1115  /// expensive, and if possible, should be replaced by an alternate sequence
1116  /// of instructions not containing an integer divide.
1117  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1118
1119  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1120  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1121    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1122  }
1123
1124  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1125  /// srl/add/sra for a signed divide by power of two, and let the target handle
1126  /// it.
1127  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1128
1129  /// addRegisterClass - Add the specified register class as an available
1130  /// regclass for the specified value type.  This indicates the selector can
1131  /// handle values of that class natively.
1132  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1133    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1134    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1135    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1136  }
1137
1138  /// findRepresentativeClass - Return the largest legal super-reg register class
1139  /// of the register class for the specified type and its associated "cost".
1140  virtual std::pair<const TargetRegisterClass*, uint8_t>
1141  findRepresentativeClass(EVT VT) const;
1142
1143  /// computeRegisterProperties - Once all of the register classes are added,
1144  /// this allows us to compute derived properties we expose.
1145  void computeRegisterProperties();
1146
1147  /// setOperationAction - Indicate that the specified operation does not work
1148  /// with the specified type and indicate what to do about it.
1149  void setOperationAction(unsigned Op, MVT VT,
1150                          LegalizeAction Action) {
1151    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1152    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1153  }
1154
1155  /// setLoadExtAction - Indicate that the specified load with extension does
1156  /// not work with the specified type and indicate what to do about it.
1157  void setLoadExtAction(unsigned ExtType, MVT VT,
1158                        LegalizeAction Action) {
1159    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1160           "Table isn't big enough!");
1161    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1162  }
1163
1164  /// setTruncStoreAction - Indicate that the specified truncating store does
1165  /// not work with the specified type and indicate what to do about it.
1166  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1167                           LegalizeAction Action) {
1168    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1169           "Table isn't big enough!");
1170    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1171  }
1172
1173  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1174  /// does not work with the specified type and indicate what to do abort
1175  /// it. NOTE: All indexed mode loads are initialized to Expand in
1176  /// TargetLowering.cpp
1177  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1178                            LegalizeAction Action) {
1179    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1180           (unsigned)Action < 0xf && "Table isn't big enough!");
1181    // Load action are kept in the upper half.
1182    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1183    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1184  }
1185
1186  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1187  /// does not work with the specified type and indicate what to do about
1188  /// it. NOTE: All indexed mode stores are initialized to Expand in
1189  /// TargetLowering.cpp
1190  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1191                             LegalizeAction Action) {
1192    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1193           (unsigned)Action < 0xf && "Table isn't big enough!");
1194    // Store action are kept in the lower half.
1195    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1196    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1197  }
1198
1199  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1200  /// supported on the target and indicate what to do about it.
1201  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1202                         LegalizeAction Action) {
1203    assert(VT < MVT::LAST_VALUETYPE &&
1204           (unsigned)CC < array_lengthof(CondCodeActions) &&
1205           "Table isn't big enough!");
1206    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1207    /// value and the upper 27 bits index into the second dimension of the
1208    /// array to select what 64bit value to use.
1209    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1210      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1211    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1212      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1213  }
1214
1215  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1216  /// promotion code defaults to trying a larger integer/fp until it can find
1217  /// one that works.  If that default is insufficient, this method can be used
1218  /// by the target to override the default.
1219  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1220    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1221  }
1222
1223  /// setTargetDAGCombine - Targets should invoke this method for each target
1224  /// independent node that they want to provide a custom DAG combiner for by
1225  /// implementing the PerformDAGCombine virtual method.
1226  void setTargetDAGCombine(ISD::NodeType NT) {
1227    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1228    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1229  }
1230
1231  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1232  /// bytes); default is 200
1233  void setJumpBufSize(unsigned Size) {
1234    JumpBufSize = Size;
1235  }
1236
1237  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1238  /// alignment (in bytes); default is 0
1239  void setJumpBufAlignment(unsigned Align) {
1240    JumpBufAlignment = Align;
1241  }
1242
1243  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1244  /// log2(bytes))
1245  void setMinFunctionAlignment(unsigned Align) {
1246    MinFunctionAlignment = Align;
1247  }
1248
1249  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1250  /// This should be set if there is a performance benefit to
1251  /// higher-than-minimum alignment (in log2(bytes))
1252  void setPrefFunctionAlignment(unsigned Align) {
1253    PrefFunctionAlignment = Align;
1254  }
1255
1256  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1257  /// alignment is zero, it means the target does not care about loop alignment.
1258  /// The alignment is specified in log2(bytes).
1259  void setPrefLoopAlignment(unsigned Align) {
1260    PrefLoopAlignment = Align;
1261  }
1262
1263  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1264  /// argument (in log2(bytes)).
1265  void setMinStackArgumentAlignment(unsigned Align) {
1266    MinStackArgumentAlignment = Align;
1267  }
1268
1269  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1270  /// atomic operation intrinsics includes locking. Default is false.
1271  void setShouldFoldAtomicFences(bool fold) {
1272    ShouldFoldAtomicFences = fold;
1273  }
1274
1275  /// setInsertFencesForAtomic - Set if the DAG builder should
1276  /// automatically insert fences and reduce the order of atomic memory
1277  /// operations to Monotonic.
1278  void setInsertFencesForAtomic(bool fence) {
1279    InsertFencesForAtomic = fence;
1280  }
1281
1282public:
1283  //===--------------------------------------------------------------------===//
1284  // Lowering methods - These methods must be implemented by targets so that
1285  // the SelectionDAGBuilder code knows how to lower these.
1286  //
1287
1288  /// LowerFormalArguments - This hook must be implemented to lower the
1289  /// incoming (formal) arguments, described by the Ins array, into the
1290  /// specified DAG. The implementation should fill in the InVals array
1291  /// with legal-type argument values, and return the resulting token
1292  /// chain value.
1293  ///
1294  virtual SDValue
1295    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1296                         bool /*isVarArg*/,
1297                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1298                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1299                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1300    llvm_unreachable("Not Implemented");
1301  }
1302
1303  struct ArgListEntry {
1304    SDValue Node;
1305    Type* Ty;
1306    bool isSExt  : 1;
1307    bool isZExt  : 1;
1308    bool isInReg : 1;
1309    bool isSRet  : 1;
1310    bool isNest  : 1;
1311    bool isByVal : 1;
1312    uint16_t Alignment;
1313
1314    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1315      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1316  };
1317  typedef std::vector<ArgListEntry> ArgListTy;
1318
1319  /// CallLoweringInfo - This structure contains all information that is
1320  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1321  /// SelectionDAG builder needs to lower a call, and targets will see this
1322  /// struct in their LowerCall implementation.
1323  struct CallLoweringInfo {
1324    SDValue Chain;
1325    Type *RetTy;
1326    bool RetSExt           : 1;
1327    bool RetZExt           : 1;
1328    bool IsVarArg          : 1;
1329    bool IsInReg           : 1;
1330    bool DoesNotReturn     : 1;
1331    bool IsReturnValueUsed : 1;
1332
1333    // IsTailCall should be modified by implementations of
1334    // TargetLowering::LowerCall that perform tail call conversions.
1335    bool IsTailCall;
1336
1337    unsigned NumFixedArgs;
1338    CallingConv::ID CallConv;
1339    SDValue Callee;
1340    ArgListTy &Args;
1341    SelectionDAG &DAG;
1342    DebugLoc DL;
1343    ImmutableCallSite *CS;
1344    SmallVector<ISD::OutputArg, 32> Outs;
1345    SmallVector<SDValue, 32> OutVals;
1346    SmallVector<ISD::InputArg, 32> Ins;
1347
1348
1349    /// CallLoweringInfo - Constructs a call lowering context based on the
1350    /// ImmutableCallSite \p cs.
1351    CallLoweringInfo(SDValue chain, Type *retTy,
1352                     FunctionType *FTy, bool isTailCall, SDValue callee,
1353                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1354                     ImmutableCallSite &cs)
1355    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attributes::SExt)),
1356      RetZExt(cs.paramHasAttr(0, Attributes::ZExt)), IsVarArg(FTy->isVarArg()),
1357      IsInReg(cs.paramHasAttr(0, Attributes::InReg)),
1358      DoesNotReturn(cs.doesNotReturn()),
1359      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1360      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1361      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1362      DL(dl), CS(&cs) {}
1363
1364    /// CallLoweringInfo - Constructs a call lowering context based on the
1365    /// provided call information.
1366    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1367                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1368                     CallingConv::ID callConv, bool isTailCall,
1369                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1370                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1371    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1372      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1373      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1374      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1375      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1376  };
1377
1378  /// LowerCallTo - This function lowers an abstract call to a function into an
1379  /// actual call.  This returns a pair of operands.  The first element is the
1380  /// return value for the function (if RetTy is not VoidTy).  The second
1381  /// element is the outgoing token chain. It calls LowerCall to do the actual
1382  /// lowering.
1383  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1384
1385  /// LowerCall - This hook must be implemented to lower calls into the
1386  /// the specified DAG. The outgoing arguments to the call are described
1387  /// by the Outs array, and the values to be returned by the call are
1388  /// described by the Ins array. The implementation should fill in the
1389  /// InVals array with legal-type return values from the call, and return
1390  /// the resulting token chain value.
1391  virtual SDValue
1392    LowerCall(CallLoweringInfo &/*CLI*/,
1393              SmallVectorImpl<SDValue> &/*InVals*/) const {
1394    llvm_unreachable("Not Implemented");
1395  }
1396
1397  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1398  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1399
1400  /// CanLowerReturn - This hook should be implemented to check whether the
1401  /// return values described by the Outs array can fit into the return
1402  /// registers.  If false is returned, an sret-demotion is performed.
1403  ///
1404  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1405                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1406               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1407               LLVMContext &/*Context*/) const
1408  {
1409    // Return true by default to get preexisting behavior.
1410    return true;
1411  }
1412
1413  /// LowerReturn - This hook must be implemented to lower outgoing
1414  /// return values, described by the Outs array, into the specified
1415  /// DAG. The implementation should return the resulting token chain
1416  /// value.
1417  ///
1418  virtual SDValue
1419    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1420                bool /*isVarArg*/,
1421                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1422                const SmallVectorImpl<SDValue> &/*OutVals*/,
1423                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1424    llvm_unreachable("Not Implemented");
1425  }
1426
1427  /// isUsedByReturnOnly - Return true if result of the specified node is used
1428  /// by a return node only. It also compute and return the input chain for the
1429  /// tail call.
1430  /// This is used to determine whether it is possible
1431  /// to codegen a libcall as tail call at legalization time.
1432  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1433    return false;
1434  }
1435
1436  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1437  /// call instruction as a tail call. This is used by optimization passes to
1438  /// determine if it's profitable to duplicate return instructions to enable
1439  /// tailcall optimization.
1440  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1441    return false;
1442  }
1443
1444  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1445  /// sign extend a zeroext/signext integer argument or return value.
1446  /// FIXME: Most C calling convention requires the return type to be promoted,
1447  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1448  /// necessary for non-C calling conventions. The frontend should handle this
1449  /// and include all of the necessary information.
1450  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1451                                       ISD::NodeType /*ExtendKind*/) const {
1452    EVT MinVT = getRegisterType(Context, MVT::i32);
1453    return VT.bitsLT(MinVT) ? MinVT : VT;
1454  }
1455
1456  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1457  /// to legalize nodes with an illegal operand type but legal result types.
1458  /// It replaces the LowerOperation callback in the type Legalizer.
1459  /// The reason we can not do away with LowerOperation entirely is that
1460  /// LegalizeDAG isn't yet ready to use this callback.
1461  /// TODO: Consider merging with ReplaceNodeResults.
1462
1463  /// The target places new result values for the node in Results (their number
1464  /// and types must exactly match those of the original return values of
1465  /// the node), or leaves Results empty, which indicates that the node is not
1466  /// to be custom lowered after all.
1467  /// The default implementation calls LowerOperation.
1468  virtual void LowerOperationWrapper(SDNode *N,
1469                                     SmallVectorImpl<SDValue> &Results,
1470                                     SelectionDAG &DAG) const;
1471
1472  /// LowerOperation - This callback is invoked for operations that are
1473  /// unsupported by the target, which are registered to use 'custom' lowering,
1474  /// and whose defined values are all legal.
1475  /// If the target has no operations that require custom lowering, it need not
1476  /// implement this.  The default implementation of this aborts.
1477  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1478
1479  /// ReplaceNodeResults - This callback is invoked when a node result type is
1480  /// illegal for the target, and the operation was registered to use 'custom'
1481  /// lowering for that result type.  The target places new result values for
1482  /// the node in Results (their number and types must exactly match those of
1483  /// the original return values of the node), or leaves Results empty, which
1484  /// indicates that the node is not to be custom lowered after all.
1485  ///
1486  /// If the target has no operations that require custom lowering, it need not
1487  /// implement this.  The default implementation aborts.
1488  virtual void ReplaceNodeResults(SDNode * /*N*/,
1489                                  SmallVectorImpl<SDValue> &/*Results*/,
1490                                  SelectionDAG &/*DAG*/) const {
1491    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1492  }
1493
1494  /// getTargetNodeName() - This method returns the name of a target specific
1495  /// DAG node.
1496  virtual const char *getTargetNodeName(unsigned Opcode) const;
1497
1498  /// createFastISel - This method returns a target specific FastISel object,
1499  /// or null if the target does not support "fast" ISel.
1500  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1501                                   const TargetLibraryInfo *) const {
1502    return 0;
1503  }
1504
1505  //===--------------------------------------------------------------------===//
1506  // Inline Asm Support hooks
1507  //
1508
1509  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1510  /// call to be explicit llvm code if it wants to.  This is useful for
1511  /// turning simple inline asms into LLVM intrinsics, which gives the
1512  /// compiler more information about the behavior of the code.
1513  virtual bool ExpandInlineAsm(CallInst *) const {
1514    return false;
1515  }
1516
1517  enum ConstraintType {
1518    C_Register,            // Constraint represents specific register(s).
1519    C_RegisterClass,       // Constraint represents any of register(s) in class.
1520    C_Memory,              // Memory constraint.
1521    C_Other,               // Something else.
1522    C_Unknown              // Unsupported constraint.
1523  };
1524
1525  enum ConstraintWeight {
1526    // Generic weights.
1527    CW_Invalid  = -1,     // No match.
1528    CW_Okay     = 0,      // Acceptable.
1529    CW_Good     = 1,      // Good weight.
1530    CW_Better   = 2,      // Better weight.
1531    CW_Best     = 3,      // Best weight.
1532
1533    // Well-known weights.
1534    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1535    CW_Register     = CW_Good,    // Register operands.
1536    CW_Memory       = CW_Better,  // Memory operands.
1537    CW_Constant     = CW_Best,    // Constant operand.
1538    CW_Default      = CW_Okay     // Default or don't know type.
1539  };
1540
1541  /// AsmOperandInfo - This contains information for each constraint that we are
1542  /// lowering.
1543  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1544    /// ConstraintCode - This contains the actual string for the code, like "m".
1545    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1546    /// most closely matches the operand.
1547    std::string ConstraintCode;
1548
1549    /// ConstraintType - Information about the constraint code, e.g. Register,
1550    /// RegisterClass, Memory, Other, Unknown.
1551    TargetLowering::ConstraintType ConstraintType;
1552
1553    /// CallOperandval - If this is the result output operand or a
1554    /// clobber, this is null, otherwise it is the incoming operand to the
1555    /// CallInst.  This gets modified as the asm is processed.
1556    Value *CallOperandVal;
1557
1558    /// ConstraintVT - The ValueType for the operand value.
1559    EVT ConstraintVT;
1560
1561    /// isMatchingInputConstraint - Return true of this is an input operand that
1562    /// is a matching constraint like "4".
1563    bool isMatchingInputConstraint() const;
1564
1565    /// getMatchedOperand - If this is an input matching constraint, this method
1566    /// returns the output operand it matches.
1567    unsigned getMatchedOperand() const;
1568
1569    /// Copy constructor for copying from an AsmOperandInfo.
1570    AsmOperandInfo(const AsmOperandInfo &info)
1571      : InlineAsm::ConstraintInfo(info),
1572        ConstraintCode(info.ConstraintCode),
1573        ConstraintType(info.ConstraintType),
1574        CallOperandVal(info.CallOperandVal),
1575        ConstraintVT(info.ConstraintVT) {
1576    }
1577
1578    /// Copy constructor for copying from a ConstraintInfo.
1579    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1580      : InlineAsm::ConstraintInfo(info),
1581        ConstraintType(TargetLowering::C_Unknown),
1582        CallOperandVal(0), ConstraintVT(MVT::Other) {
1583    }
1584  };
1585
1586  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1587
1588  /// ParseConstraints - Split up the constraint string from the inline
1589  /// assembly value into the specific constraints and their prefixes,
1590  /// and also tie in the associated operand values.
1591  /// If this returns an empty vector, and if the constraint string itself
1592  /// isn't empty, there was an error parsing.
1593  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1594
1595  /// Examine constraint type and operand type and determine a weight value.
1596  /// The operand object must already have been set up with the operand type.
1597  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1598      AsmOperandInfo &info, int maIndex) const;
1599
1600  /// Examine constraint string and operand type and determine a weight value.
1601  /// The operand object must already have been set up with the operand type.
1602  virtual ConstraintWeight getSingleConstraintMatchWeight(
1603      AsmOperandInfo &info, const char *constraint) const;
1604
1605  /// ComputeConstraintToUse - Determines the constraint code and constraint
1606  /// type to use for the specific AsmOperandInfo, setting
1607  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1608  /// being passed in is available, it can be passed in as Op, otherwise an
1609  /// empty SDValue can be passed.
1610  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1611                                      SDValue Op,
1612                                      SelectionDAG *DAG = 0) const;
1613
1614  /// getConstraintType - Given a constraint, return the type of constraint it
1615  /// is for this target.
1616  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1617
1618  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1619  /// {edx}), return the register number and the register class for the
1620  /// register.
1621  ///
1622  /// Given a register class constraint, like 'r', if this corresponds directly
1623  /// to an LLVM register class, return a register of 0 and the register class
1624  /// pointer.
1625  ///
1626  /// This should only be used for C_Register constraints.  On error,
1627  /// this returns a register number of 0 and a null register class pointer..
1628  virtual std::pair<unsigned, const TargetRegisterClass*>
1629    getRegForInlineAsmConstraint(const std::string &Constraint,
1630                                 EVT VT) const;
1631
1632  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1633  /// with another that has more specific requirements based on the type of the
1634  /// corresponding operand.  This returns null if there is no replacement to
1635  /// make.
1636  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1637
1638  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1639  /// vector.  If it is invalid, don't add anything to Ops.
1640  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1641                                            std::vector<SDValue> &Ops,
1642                                            SelectionDAG &DAG) const;
1643
1644  //===--------------------------------------------------------------------===//
1645  // Instruction Emitting Hooks
1646  //
1647
1648  // EmitInstrWithCustomInserter - This method should be implemented by targets
1649  // that mark instructions with the 'usesCustomInserter' flag.  These
1650  // instructions are special in various ways, which require special support to
1651  // insert.  The specified MachineInstr is created but not inserted into any
1652  // basic blocks, and this method is called to expand it into a sequence of
1653  // instructions, potentially also creating new basic blocks and control flow.
1654  virtual MachineBasicBlock *
1655    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1656
1657  /// AdjustInstrPostInstrSelection - This method should be implemented by
1658  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1659  /// instructions must be adjusted after instruction selection by target hooks.
1660  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1661  virtual void
1662  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1663
1664  //===--------------------------------------------------------------------===//
1665  // Addressing mode description hooks (used by LSR etc).
1666  //
1667
1668  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1669  /// same BB as Load/Store instructions reading the address.  This allows as
1670  /// much computation as possible to be done in the address mode for that
1671  /// operand.  This hook lets targets also pass back when this should be done
1672  /// on intrinsics which load/store.
1673  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1674                                    SmallVectorImpl<Value*> &Ops,
1675                                    Type *&AccessTy) const {
1676    return false;
1677  }
1678
1679  /// isLegalAddressingMode - Return true if the addressing mode represented by
1680  /// AM is legal for this target, for a load/store of the specified type.
1681  /// The type may be VoidTy, in which case only return true if the addressing
1682  /// mode is legal for a load/store of any legal type.
1683  /// TODO: Handle pre/postinc as well.
1684  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1685
1686  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1687  /// icmp immediate, that is the target has icmp instructions which can compare
1688  /// a register against the immediate without having to materialize the
1689  /// immediate into a register.
1690  virtual bool isLegalICmpImmediate(int64_t) const {
1691    return true;
1692  }
1693
1694  /// isLegalAddImmediate - Return true if the specified immediate is legal
1695  /// add immediate, that is the target has add instructions which can add
1696  /// a register with the immediate without having to materialize the
1697  /// immediate into a register.
1698  virtual bool isLegalAddImmediate(int64_t) const {
1699    return true;
1700  }
1701
1702  /// isTruncateFree - Return true if it's free to truncate a value of
1703  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1704  /// register EAX to i16 by referencing its sub-register AX.
1705  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1706    return false;
1707  }
1708
1709  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1710    return false;
1711  }
1712
1713  /// isZExtFree - Return true if any actual instruction that defines a
1714  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1715  /// register. This does not necessarily include registers defined in
1716  /// unknown ways, such as incoming arguments, or copies from unknown
1717  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1718  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1719  /// all instructions that define 32-bit values implicit zero-extend the
1720  /// result out to 64 bits.
1721  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1722    return false;
1723  }
1724
1725  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1726    return false;
1727  }
1728
1729  /// isZExtFree - Return true if zero-extending the specific node Val to type
1730  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1731  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1732  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1733    return isZExtFree(Val.getValueType(), VT2);
1734  }
1735
1736  /// isFNegFree - Return true if an fneg operation is free to the point where
1737  /// it is never worthwhile to replace it with a bitwise operation.
1738  virtual bool isFNegFree(EVT) const {
1739    return false;
1740  }
1741
1742  /// isFAbsFree - Return true if an fneg operation is free to the point where
1743  /// it is never worthwhile to replace it with a bitwise operation.
1744  virtual bool isFAbsFree(EVT) const {
1745    return false;
1746  }
1747
1748  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1749  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1750  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1751  /// is expanded to mul + add.
1752  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1753    return false;
1754  }
1755
1756  /// isNarrowingProfitable - Return true if it's profitable to narrow
1757  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1758  /// from i32 to i8 but not from i32 to i16.
1759  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1760    return false;
1761  }
1762
1763  //===--------------------------------------------------------------------===//
1764  // Div utility functions
1765  //
1766  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1767                         SelectionDAG &DAG) const;
1768  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1769                      std::vector<SDNode*> *Created) const;
1770  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1771                      std::vector<SDNode*> *Created) const;
1772
1773
1774  //===--------------------------------------------------------------------===//
1775  // Runtime Library hooks
1776  //
1777
1778  /// setLibcallName - Rename the default libcall routine name for the specified
1779  /// libcall.
1780  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1781    LibcallRoutineNames[Call] = Name;
1782  }
1783
1784  /// getLibcallName - Get the libcall routine name for the specified libcall.
1785  ///
1786  const char *getLibcallName(RTLIB::Libcall Call) const {
1787    return LibcallRoutineNames[Call];
1788  }
1789
1790  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1791  /// result of the comparison libcall against zero.
1792  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1793    CmpLibcallCCs[Call] = CC;
1794  }
1795
1796  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1797  /// the comparison libcall against zero.
1798  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1799    return CmpLibcallCCs[Call];
1800  }
1801
1802  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1803  /// specified libcall.
1804  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1805    LibcallCallingConvs[Call] = CC;
1806  }
1807
1808  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1809  /// specified libcall.
1810  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1811    return LibcallCallingConvs[Call];
1812  }
1813
1814private:
1815  const TargetMachine &TM;
1816  const DataLayout *TD;
1817  const TargetLoweringObjectFile &TLOF;
1818
1819  /// PointerTy - The type to use for pointers for the default address space,
1820  /// usually i32 or i64.
1821  ///
1822  MVT PointerTy;
1823
1824  /// IsLittleEndian - True if this is a little endian target.
1825  ///
1826  bool IsLittleEndian;
1827
1828  /// SelectIsExpensive - Tells the code generator not to expand operations
1829  /// into sequences that use the select operations if possible.
1830  bool SelectIsExpensive;
1831
1832  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1833  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1834  /// a real cost model is in place.  If we ever optimize for size, this will be
1835  /// set to true unconditionally.
1836  bool IntDivIsCheap;
1837
1838  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1839  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1840  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1841  /// integer div/rem when the operands are positive and less than 256.
1842  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1843
1844  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1845  /// srl/add/sra for a signed divide by power of two, and let the target handle
1846  /// it.
1847  bool Pow2DivIsCheap;
1848
1849  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1850  /// extra flow control instructions and should attempt to combine flow
1851  /// control instructions via predication.
1852  bool JumpIsExpensive;
1853
1854  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1855  /// llvm.setjmp.  Defaults to false.
1856  bool UseUnderscoreSetJmp;
1857
1858  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1859  /// llvm.longjmp.  Defaults to false.
1860  bool UseUnderscoreLongJmp;
1861
1862  /// SupportJumpTables - Whether the target can generate code for jumptables.
1863  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1864  bool SupportJumpTables;
1865
1866  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1867  int MinimumJumpTableEntries;
1868
1869  /// BooleanContents - Information about the contents of the high-bits in
1870  /// boolean values held in a type wider than i1.  See getBooleanContents.
1871  BooleanContent BooleanContents;
1872  /// BooleanVectorContents - Information about the contents of the high-bits
1873  /// in boolean vector values when the element type is wider than i1.  See
1874  /// getBooleanContents.
1875  BooleanContent BooleanVectorContents;
1876
1877  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1878  /// total cycles or lowest register usage.
1879  Sched::Preference SchedPreferenceInfo;
1880
1881  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1882  unsigned JumpBufSize;
1883
1884  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1885  /// buffers
1886  unsigned JumpBufAlignment;
1887
1888  /// MinStackArgumentAlignment - The minimum alignment that any argument
1889  /// on the stack needs to have.
1890  ///
1891  unsigned MinStackArgumentAlignment;
1892
1893  /// MinFunctionAlignment - The minimum function alignment (used when
1894  /// optimizing for size, and to prevent explicitly provided alignment
1895  /// from leading to incorrect code).
1896  ///
1897  unsigned MinFunctionAlignment;
1898
1899  /// PrefFunctionAlignment - The preferred function alignment (used when
1900  /// alignment unspecified and optimizing for speed).
1901  ///
1902  unsigned PrefFunctionAlignment;
1903
1904  /// PrefLoopAlignment - The preferred loop alignment.
1905  ///
1906  unsigned PrefLoopAlignment;
1907
1908  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1909  /// be folded into the enclosed atomic intrinsic instruction by the
1910  /// combiner.
1911  bool ShouldFoldAtomicFences;
1912
1913  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1914  /// insert fences and reduce ordering for atomics.  (This will be set for
1915  /// for most architectures with weak memory ordering.)
1916  bool InsertFencesForAtomic;
1917
1918  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1919  /// specifies the register that llvm.savestack/llvm.restorestack should save
1920  /// and restore.
1921  unsigned StackPointerRegisterToSaveRestore;
1922
1923  /// ExceptionPointerRegister - If set to a physical register, this specifies
1924  /// the register that receives the exception address on entry to a landing
1925  /// pad.
1926  unsigned ExceptionPointerRegister;
1927
1928  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1929  /// the register that receives the exception typeid on entry to a landing
1930  /// pad.
1931  unsigned ExceptionSelectorRegister;
1932
1933  /// RegClassForVT - This indicates the default register class to use for
1934  /// each ValueType the target supports natively.
1935  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1936  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1937  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1938
1939  /// RepRegClassForVT - This indicates the "representative" register class to
1940  /// use for each ValueType the target supports natively. This information is
1941  /// used by the scheduler to track register pressure. By default, the
1942  /// representative register class is the largest legal super-reg register
1943  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1944  /// and i32's representative class would be GR32.
1945  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1946
1947  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1948  /// register class for each ValueType. The cost is used by the scheduler to
1949  /// approximate register pressure.
1950  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1951
1952  /// TransformToType - For any value types we are promoting or expanding, this
1953  /// contains the value type that we are changing to.  For Expanded types, this
1954  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1955  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1956  /// by the system, this holds the same type (e.g. i32 -> i32).
1957  EVT TransformToType[MVT::LAST_VALUETYPE];
1958
1959  /// OpActions - For each operation and each value type, keep a LegalizeAction
1960  /// that indicates how instruction selection should deal with the operation.
1961  /// Most operations are Legal (aka, supported natively by the target), but
1962  /// operations that are not should be described.  Note that operations on
1963  /// non-legal value types are not described here.
1964  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1965
1966  /// LoadExtActions - For each load extension type and each value type,
1967  /// keep a LegalizeAction that indicates how instruction selection should deal
1968  /// with a load of a specific value type and extension type.
1969  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1970
1971  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1972  /// indicates whether a truncating store of a specific value type and
1973  /// truncating type is legal.
1974  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1975
1976  /// IndexedModeActions - For each indexed mode and each value type,
1977  /// keep a pair of LegalizeAction that indicates how instruction
1978  /// selection should deal with the load / store.  The first dimension is the
1979  /// value_type for the reference. The second dimension represents the various
1980  /// modes for load store.
1981  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1982
1983  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1984  /// LegalizeAction that indicates how instruction selection should
1985  /// deal with the condition code.
1986  /// Because each CC action takes up 2 bits, we need to have the array size
1987  /// be large enough to fit all of the value types. This can be done by
1988  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1989  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1990
1991  ValueTypeActionImpl ValueTypeActions;
1992
1993public:
1994  LegalizeKind
1995  getTypeConversion(LLVMContext &Context, EVT VT) const {
1996    // If this is a simple type, use the ComputeRegisterProp mechanism.
1997    if (VT.isSimple()) {
1998      assert((unsigned)VT.getSimpleVT().SimpleTy <
1999             array_lengthof(TransformToType));
2000      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
2001      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
2002
2003      assert(
2004        (!(NVT.isSimple() && LA != TypeLegal) ||
2005         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
2006         && "Promote may not follow Expand or Promote");
2007
2008      if (LA == TypeSplitVector)
2009        NVT = EVT::getVectorVT(Context, VT.getVectorElementType(),
2010                               VT.getVectorNumElements() / 2);
2011      return LegalizeKind(LA, NVT);
2012    }
2013
2014    // Handle Extended Scalar Types.
2015    if (!VT.isVector()) {
2016      assert(VT.isInteger() && "Float types must be simple");
2017      unsigned BitSize = VT.getSizeInBits();
2018      // First promote to a power-of-two size, then expand if necessary.
2019      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
2020        EVT NVT = VT.getRoundIntegerType(Context);
2021        assert(NVT != VT && "Unable to round integer VT");
2022        LegalizeKind NextStep = getTypeConversion(Context, NVT);
2023        // Avoid multi-step promotion.
2024        if (NextStep.first == TypePromoteInteger) return NextStep;
2025        // Return rounded integer type.
2026        return LegalizeKind(TypePromoteInteger, NVT);
2027      }
2028
2029      return LegalizeKind(TypeExpandInteger,
2030                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2031    }
2032
2033    // Handle vector types.
2034    unsigned NumElts = VT.getVectorNumElements();
2035    EVT EltVT = VT.getVectorElementType();
2036
2037    // Vectors with only one element are always scalarized.
2038    if (NumElts == 1)
2039      return LegalizeKind(TypeScalarizeVector, EltVT);
2040
2041    // Try to widen vector elements until a legal type is found.
2042    if (EltVT.isInteger()) {
2043      // Vectors with a number of elements that is not a power of two are always
2044      // widened, for example <3 x float> -> <4 x float>.
2045      if (!VT.isPow2VectorType()) {
2046        NumElts = (unsigned)NextPowerOf2(NumElts);
2047        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2048        return LegalizeKind(TypeWidenVector, NVT);
2049      }
2050
2051      // Examine the element type.
2052      LegalizeKind LK = getTypeConversion(Context, EltVT);
2053
2054      // If type is to be expanded, split the vector.
2055      //  <4 x i140> -> <2 x i140>
2056      if (LK.first == TypeExpandInteger)
2057        return LegalizeKind(TypeSplitVector,
2058                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2059
2060      // Promote the integer element types until a legal vector type is found
2061      // or until the element integer type is too big. If a legal type was not
2062      // found, fallback to the usual mechanism of widening/splitting the
2063      // vector.
2064      while (1) {
2065        // Increase the bitwidth of the element to the next pow-of-two
2066        // (which is greater than 8 bits).
2067        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2068                                 ).getRoundIntegerType(Context);
2069
2070        // Stop trying when getting a non-simple element type.
2071        // Note that vector elements may be greater than legal vector element
2072        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2073        if (!EltVT.isSimple()) break;
2074
2075        // Build a new vector type and check if it is legal.
2076        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2077        // Found a legal promoted vector type.
2078        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2079          return LegalizeKind(TypePromoteInteger,
2080                              EVT::getVectorVT(Context, EltVT, NumElts));
2081      }
2082    }
2083
2084    // Try to widen the vector until a legal type is found.
2085    // If there is no wider legal type, split the vector.
2086    while (1) {
2087      // Round up to the next power of 2.
2088      NumElts = (unsigned)NextPowerOf2(NumElts);
2089
2090      // If there is no simple vector type with this many elements then there
2091      // cannot be a larger legal vector type.  Note that this assumes that
2092      // there are no skipped intermediate vector types in the simple types.
2093      if (!EltVT.isSimple()) break;
2094      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2095      if (LargerVector == MVT()) break;
2096
2097      // If this type is legal then widen the vector.
2098      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2099        return LegalizeKind(TypeWidenVector, LargerVector);
2100    }
2101
2102    // Widen odd vectors to next power of two.
2103    if (!VT.isPow2VectorType()) {
2104      EVT NVT = VT.getPow2VectorType(Context);
2105      return LegalizeKind(TypeWidenVector, NVT);
2106    }
2107
2108    // Vectors with illegal element types are expanded.
2109    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2110    return LegalizeKind(TypeSplitVector, NVT);
2111  }
2112
2113private:
2114  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
2115
2116  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2117  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2118  /// which sets a bit in this array.
2119  unsigned char
2120  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2121
2122  /// PromoteToType - For operations that must be promoted to a specific type,
2123  /// this holds the destination type.  This map should be sparse, so don't hold
2124  /// it as an array.
2125  ///
2126  /// Targets add entries to this map with AddPromotedToType(..), clients access
2127  /// this with getTypeToPromoteTo(..).
2128  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2129    PromoteToType;
2130
2131  /// LibcallRoutineNames - Stores the name each libcall.
2132  ///
2133  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2134
2135  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2136  /// of each of the comparison libcall against zero.
2137  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2138
2139  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2140  /// libcall.
2141  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2142
2143protected:
2144  /// When lowering \@llvm.memset this field specifies the maximum number of
2145  /// store operations that may be substituted for the call to memset. Targets
2146  /// must set this value based on the cost threshold for that target. Targets
2147  /// should assume that the memset will be done using as many of the largest
2148  /// store operations first, followed by smaller ones, if necessary, per
2149  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2150  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2151  /// store.  This only applies to setting a constant array of a constant size.
2152  /// @brief Specify maximum number of store instructions per memset call.
2153  unsigned maxStoresPerMemset;
2154
2155  /// Maximum number of stores operations that may be substituted for the call
2156  /// to memset, used for functions with OptSize attribute.
2157  unsigned maxStoresPerMemsetOptSize;
2158
2159  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2160  /// store operations that may be substituted for a call to memcpy. Targets
2161  /// must set this value based on the cost threshold for that target. Targets
2162  /// should assume that the memcpy will be done using as many of the largest
2163  /// store operations first, followed by smaller ones, if necessary, per
2164  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2165  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2166  /// and one 1-byte store. This only applies to copying a constant array of
2167  /// constant size.
2168  /// @brief Specify maximum bytes of store instructions per memcpy call.
2169  unsigned maxStoresPerMemcpy;
2170
2171  /// Maximum number of store operations that may be substituted for a call
2172  /// to memcpy, used for functions with OptSize attribute.
2173  unsigned maxStoresPerMemcpyOptSize;
2174
2175  /// When lowering \@llvm.memmove this field specifies the maximum number of
2176  /// store instructions that may be substituted for a call to memmove. Targets
2177  /// must set this value based on the cost threshold for that target. Targets
2178  /// should assume that the memmove will be done using as many of the largest
2179  /// store operations first, followed by smaller ones, if necessary, per
2180  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2181  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2182  /// applies to copying a constant array of constant size.
2183  /// @brief Specify maximum bytes of store instructions per memmove call.
2184  unsigned maxStoresPerMemmove;
2185
2186  /// Maximum number of store instructions that may be substituted for a call
2187  /// to memmove, used for functions with OpSize attribute.
2188  unsigned maxStoresPerMemmoveOptSize;
2189
2190  /// This field specifies whether the target can benefit from code placement
2191  /// optimization.
2192  bool benefitFromCodePlacementOpt;
2193
2194  /// predictableSelectIsExpensive - Tells the code generator that select is
2195  /// more expensive than a branch if the branch is usually predicted right.
2196  bool predictableSelectIsExpensive;
2197
2198private:
2199  /// isLegalRC - Return true if the value types that can be represented by the
2200  /// specified register class are all legal.
2201  bool isLegalRC(const TargetRegisterClass *RC) const;
2202};
2203
2204/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2205/// compute the return value EVTs and flags, and optionally also
2206/// the offsets, if the return value is being lowered to memory.
2207void GetReturnInfo(Type* ReturnType, Attributes attr,
2208                   SmallVectorImpl<ISD::OutputArg> &Outs,
2209                   const TargetLowering &TLI);
2210
2211} // end llvm namespace
2212
2213#endif
2214