TargetLowering.h revision 211ffa13519cadfb7f9baf4c8447fa055bf38fe8
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  /// NOTE: The constructor takes ownership of TLOF.
101  explicit TargetLowering(const TargetMachine &TM,
102                          const TargetLoweringObjectFile *TLOF);
103  virtual ~TargetLowering();
104
105  const TargetMachine &getTargetMachine() const { return TM; }
106  const TargetData *getTargetData() const { return TD; }
107  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
108
109  bool isBigEndian() const { return !IsLittleEndian; }
110  bool isLittleEndian() const { return IsLittleEndian; }
111  MVT getPointerTy() const { return PointerTy; }
112  MVT getShiftAmountTy() const { return ShiftAmountTy; }
113
114  /// isSelectExpensive - Return true if the select operation is expensive for
115  /// this target.
116  bool isSelectExpensive() const { return SelectIsExpensive; }
117
118  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
119  /// a sequence of several shifts, adds, and multiplies for this target.
120  bool isIntDivCheap() const { return IntDivIsCheap; }
121
122  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
123  /// srl/add/sra.
124  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
125
126  /// getSetCCResultType - Return the ValueType of the result of SETCC
127  /// operations.  Also used to obtain the target's preferred type for
128  /// the condition operand of SELECT and BRCOND nodes.  In the case of
129  /// BRCOND the argument passed is MVT::Other since there are no other
130  /// operands to get a type hint from.
131  virtual
132  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
133
134  /// getCmpLibcallReturnType - Return the ValueType for comparison
135  /// libcalls. Comparions libcalls include floating point comparion calls,
136  /// and Ordered/Unordered check calls on floating point numbers.
137  virtual
138  MVT::SimpleValueType getCmpLibcallReturnType() const;
139
140  /// getBooleanContents - For targets without i1 registers, this gives the
141  /// nature of the high-bits of boolean values held in types wider than i1.
142  /// "Boolean values" are special true/false values produced by nodes like
143  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
144  /// Not to be confused with general values promoted from i1.
145  BooleanContent getBooleanContents() const { return BooleanContents;}
146
147  /// getSchedulingPreference - Return target scheduling preference.
148  Sched::Preference getSchedulingPreference() const {
149    return SchedPreferenceInfo;
150  }
151
152  /// getRegClassFor - Return the register class that should be used for the
153  /// specified value type.
154  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
155    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
156    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
157    assert(RC && "This value type is not natively supported!");
158    return RC;
159  }
160
161  /// isTypeLegal - Return true if the target has native support for the
162  /// specified value type.  This means that it has a register that directly
163  /// holds it without promotions or expansions.
164  bool isTypeLegal(EVT VT) const {
165    assert(!VT.isSimple() ||
166           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
167    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
168  }
169
170  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
171  /// new operations of this type.  All Legal types are synthesizable except
172  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
173  bool isTypeSynthesizable(EVT VT) const {
174    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
175  }
176
177  class ValueTypeActionImpl {
178    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
179    /// that indicates how instruction selection should deal with the type.
180    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
181  public:
182    ValueTypeActionImpl() {
183      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
184    }
185    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
186      if (VT.isExtended()) {
187        if (VT.isVector()) {
188          return VT.isPow2VectorType() ? Expand : Promote;
189        }
190        if (VT.isInteger())
191          // First promote to a power-of-two size, then expand if necessary.
192          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
193        assert(0 && "Unsupported extended type!");
194        return Legal;
195      }
196      unsigned I = VT.getSimpleVT().SimpleTy;
197      return (LegalizeAction)ValueTypeActions[I];
198    }
199    void setTypeAction(EVT VT, LegalizeAction Action) {
200      unsigned I = VT.getSimpleVT().SimpleTy;
201      ValueTypeActions[I] = Action;
202    }
203  };
204
205  const ValueTypeActionImpl &getValueTypeActions() const {
206    return ValueTypeActions;
207  }
208
209  /// getTypeAction - Return how we should legalize values of this type, either
210  /// it is already legal (return 'Legal') or we need to promote it to a larger
211  /// type (return 'Promote'), or we need to expand it into multiple registers
212  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
213  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
214    return ValueTypeActions.getTypeAction(Context, VT);
215  }
216
217  /// getTypeToTransformTo - For types supported by the target, this is an
218  /// identity function.  For types that must be promoted to larger types, this
219  /// returns the larger type to promote to.  For integer types that are larger
220  /// than the largest integer register, this contains one step in the expansion
221  /// to get to the smaller register. For illegal floating point types, this
222  /// returns the integer type to transform to.
223  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
224    if (VT.isSimple()) {
225      assert((unsigned)VT.getSimpleVT().SimpleTy <
226             array_lengthof(TransformToType));
227      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
228      assert(getTypeAction(Context, NVT) != Promote &&
229             "Promote may not follow Expand or Promote");
230      return NVT;
231    }
232
233    if (VT.isVector()) {
234      EVT NVT = VT.getPow2VectorType(Context);
235      if (NVT == VT) {
236        // Vector length is a power of 2 - split to half the size.
237        unsigned NumElts = VT.getVectorNumElements();
238        EVT EltVT = VT.getVectorElementType();
239        return (NumElts == 1) ?
240          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
241      }
242      // Promote to a power of two size, avoiding multi-step promotion.
243      return getTypeAction(Context, NVT) == Promote ?
244        getTypeToTransformTo(Context, NVT) : NVT;
245    } else if (VT.isInteger()) {
246      EVT NVT = VT.getRoundIntegerType(Context);
247      if (NVT == VT)
248        // Size is a power of two - expand to half the size.
249        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
250      else
251        // Promote to a power of two size, avoiding multi-step promotion.
252        return getTypeAction(Context, NVT) == Promote ?
253          getTypeToTransformTo(Context, NVT) : NVT;
254    }
255    assert(0 && "Unsupported extended type!");
256    return MVT(MVT::Other); // Not reached
257  }
258
259  /// getTypeToExpandTo - For types supported by the target, this is an
260  /// identity function.  For types that must be expanded (i.e. integer types
261  /// that are larger than the largest integer register or illegal floating
262  /// point types), this returns the largest legal type it will be expanded to.
263  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
264    assert(!VT.isVector());
265    while (true) {
266      switch (getTypeAction(Context, VT)) {
267      case Legal:
268        return VT;
269      case Expand:
270        VT = getTypeToTransformTo(Context, VT);
271        break;
272      default:
273        assert(false && "Type is not legal nor is it to be expanded!");
274        return VT;
275      }
276    }
277    return VT;
278  }
279
280  /// getVectorTypeBreakdown - Vector types are broken down into some number of
281  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
282  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
283  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
284  ///
285  /// This method returns the number of registers needed, and the VT for each
286  /// register.  It also returns the VT and quantity of the intermediate values
287  /// before they are promoted/expanded.
288  ///
289  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
290                                  EVT &IntermediateVT,
291                                  unsigned &NumIntermediates,
292                                  EVT &RegisterVT) const;
293
294  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
295  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
296  /// this is the case, it returns true and store the intrinsic
297  /// information into the IntrinsicInfo that was passed to the function.
298  struct IntrinsicInfo {
299    unsigned     opc;         // target opcode
300    EVT          memVT;       // memory VT
301    const Value* ptrVal;      // value representing memory location
302    int          offset;      // offset off of ptrVal
303    unsigned     align;       // alignment
304    bool         vol;         // is volatile?
305    bool         readMem;     // reads memory?
306    bool         writeMem;    // writes memory?
307  };
308
309  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
310                                  const CallInst &I, unsigned Intrinsic) const {
311    return false;
312  }
313
314  /// isFPImmLegal - Returns true if the target can instruction select the
315  /// specified FP immediate natively. If false, the legalizer will materialize
316  /// the FP immediate as a load from a constant pool.
317  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
318    return false;
319  }
320
321  /// isShuffleMaskLegal - Targets can use this to indicate that they only
322  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
323  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
324  /// are assumed to be legal.
325  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
326                                  EVT VT) const {
327    return true;
328  }
329
330  /// canOpTrap - Returns true if the operation can trap for the value type.
331  /// VT must be a legal type. By default, we optimistically assume most
332  /// operations don't trap except for divide and remainder.
333  virtual bool canOpTrap(unsigned Op, EVT VT) const;
334
335  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
336  /// used by Targets can use this to indicate if there is a suitable
337  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
338  /// pool entry.
339  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
340                                      EVT VT) const {
341    return false;
342  }
343
344  /// getOperationAction - Return how this operation should be treated: either
345  /// it is legal, needs to be promoted to a larger size, needs to be
346  /// expanded to some other code sequence, or the target has a custom expander
347  /// for it.
348  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
349    if (VT.isExtended()) return Expand;
350    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
351    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
352    return (LegalizeAction)OpActions[I][Op];
353  }
354
355  /// isOperationLegalOrCustom - Return true if the specified operation is
356  /// legal on this target or can be made legal with custom lowering. This
357  /// is used to help guide high-level lowering decisions.
358  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
359    return (VT == MVT::Other || isTypeLegal(VT)) &&
360      (getOperationAction(Op, VT) == Legal ||
361       getOperationAction(Op, VT) == Custom);
362  }
363
364  /// isOperationLegal - Return true if the specified operation is legal on this
365  /// target.
366  bool isOperationLegal(unsigned Op, EVT VT) const {
367    return (VT == MVT::Other || isTypeLegal(VT)) &&
368           getOperationAction(Op, VT) == Legal;
369  }
370
371  /// getLoadExtAction - Return how this load with extension should be treated:
372  /// either it is legal, needs to be promoted to a larger size, needs to be
373  /// expanded to some other code sequence, or the target has a custom expander
374  /// for it.
375  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
376    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
377           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
378           "Table isn't big enough!");
379    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
380  }
381
382  /// isLoadExtLegal - Return true if the specified load with extension is legal
383  /// on this target.
384  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
385    return VT.isSimple() &&
386      (getLoadExtAction(ExtType, VT) == Legal ||
387       getLoadExtAction(ExtType, VT) == Custom);
388  }
389
390  /// getTruncStoreAction - Return how this store with truncation should be
391  /// treated: either it is legal, needs to be promoted to a larger size, needs
392  /// to be expanded to some other code sequence, or the target has a custom
393  /// expander for it.
394  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
395    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
396           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
397           "Table isn't big enough!");
398    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
399                                            [MemVT.getSimpleVT().SimpleTy];
400  }
401
402  /// isTruncStoreLegal - Return true if the specified store with truncation is
403  /// legal on this target.
404  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
405    return isTypeLegal(ValVT) && MemVT.isSimple() &&
406      (getTruncStoreAction(ValVT, MemVT) == Legal ||
407       getTruncStoreAction(ValVT, MemVT) == Custom);
408  }
409
410  /// getIndexedLoadAction - Return how the indexed load should be treated:
411  /// either it is legal, needs to be promoted to a larger size, needs to be
412  /// expanded to some other code sequence, or the target has a custom expander
413  /// for it.
414  LegalizeAction
415  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
416    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
417           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
418           "Table isn't big enough!");
419    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
420    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
421  }
422
423  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
424  /// on this target.
425  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
426    return VT.isSimple() &&
427      (getIndexedLoadAction(IdxMode, VT) == Legal ||
428       getIndexedLoadAction(IdxMode, VT) == Custom);
429  }
430
431  /// getIndexedStoreAction - Return how the indexed store should be treated:
432  /// either it is legal, needs to be promoted to a larger size, needs to be
433  /// expanded to some other code sequence, or the target has a custom expander
434  /// for it.
435  LegalizeAction
436  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
437    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
438           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
439           "Table isn't big enough!");
440    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
441    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
442  }
443
444  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
445  /// on this target.
446  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
447    return VT.isSimple() &&
448      (getIndexedStoreAction(IdxMode, VT) == Legal ||
449       getIndexedStoreAction(IdxMode, VT) == Custom);
450  }
451
452  /// getCondCodeAction - Return how the condition code should be treated:
453  /// either it is legal, needs to be expanded to some other code sequence,
454  /// or the target has a custom expander for it.
455  LegalizeAction
456  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
457    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
458           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
459           "Table isn't big enough!");
460    LegalizeAction Action = (LegalizeAction)
461      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
462    assert(Action != Promote && "Can't promote condition code!");
463    return Action;
464  }
465
466  /// isCondCodeLegal - Return true if the specified condition code is legal
467  /// on this target.
468  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
469    return getCondCodeAction(CC, VT) == Legal ||
470           getCondCodeAction(CC, VT) == Custom;
471  }
472
473
474  /// getTypeToPromoteTo - If the action for this operation is to promote, this
475  /// method returns the ValueType to promote to.
476  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
477    assert(getOperationAction(Op, VT) == Promote &&
478           "This operation isn't promoted!");
479
480    // See if this has an explicit type specified.
481    std::map<std::pair<unsigned, MVT::SimpleValueType>,
482             MVT::SimpleValueType>::const_iterator PTTI =
483      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
484    if (PTTI != PromoteToType.end()) return PTTI->second;
485
486    assert((VT.isInteger() || VT.isFloatingPoint()) &&
487           "Cannot autopromote this type, add it with AddPromotedToType.");
488
489    EVT NVT = VT;
490    do {
491      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
492      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
493             "Didn't find type to promote to!");
494    } while (!isTypeLegal(NVT) ||
495              getOperationAction(Op, NVT) == Promote);
496    return NVT;
497  }
498
499  /// getValueType - Return the EVT corresponding to this LLVM type.
500  /// This is fixed by the LLVM operations except for the pointer size.  If
501  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
502  /// counterpart (e.g. structs), otherwise it will assert.
503  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
504    EVT VT = EVT::getEVT(Ty, AllowUnknown);
505    return VT == MVT::iPTR ? PointerTy : VT;
506  }
507
508  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
509  /// function arguments in the caller parameter area.  This is the actual
510  /// alignment, not its logarithm.
511  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
512
513  /// getRegisterType - Return the type of registers that this ValueType will
514  /// eventually require.
515  EVT getRegisterType(MVT VT) const {
516    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
517    return RegisterTypeForVT[VT.SimpleTy];
518  }
519
520  /// getRegisterType - Return the type of registers that this ValueType will
521  /// eventually require.
522  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
523    if (VT.isSimple()) {
524      assert((unsigned)VT.getSimpleVT().SimpleTy <
525                array_lengthof(RegisterTypeForVT));
526      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
527    }
528    if (VT.isVector()) {
529      EVT VT1, RegisterVT;
530      unsigned NumIntermediates;
531      (void)getVectorTypeBreakdown(Context, VT, VT1,
532                                   NumIntermediates, RegisterVT);
533      return RegisterVT;
534    }
535    if (VT.isInteger()) {
536      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
537    }
538    assert(0 && "Unsupported extended type!");
539    return EVT(MVT::Other); // Not reached
540  }
541
542  /// getNumRegisters - Return the number of registers that this ValueType will
543  /// eventually require.  This is one for any types promoted to live in larger
544  /// registers, but may be more than one for types (like i64) that are split
545  /// into pieces.  For types like i140, which are first promoted then expanded,
546  /// it is the number of registers needed to hold all the bits of the original
547  /// type.  For an i140 on a 32 bit machine this means 5 registers.
548  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
549    if (VT.isSimple()) {
550      assert((unsigned)VT.getSimpleVT().SimpleTy <
551                array_lengthof(NumRegistersForVT));
552      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
553    }
554    if (VT.isVector()) {
555      EVT VT1, VT2;
556      unsigned NumIntermediates;
557      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
558    }
559    if (VT.isInteger()) {
560      unsigned BitWidth = VT.getSizeInBits();
561      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
562      return (BitWidth + RegWidth - 1) / RegWidth;
563    }
564    assert(0 && "Unsupported extended type!");
565    return 0; // Not reached
566  }
567
568  /// ShouldShrinkFPConstant - If true, then instruction selection should
569  /// seek to shrink the FP constant of the specified type to a smaller type
570  /// in order to save space and / or reduce runtime.
571  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
572
573  /// hasTargetDAGCombine - If true, the target has custom DAG combine
574  /// transformations that it can perform for the specified node.
575  bool hasTargetDAGCombine(ISD::NodeType NT) const {
576    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
577    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
578  }
579
580  /// This function returns the maximum number of store operations permitted
581  /// to replace a call to llvm.memset. The value is set by the target at the
582  /// performance threshold for such a replacement.
583  /// @brief Get maximum # of store operations permitted for llvm.memset
584  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
585
586  /// This function returns the maximum number of store operations permitted
587  /// to replace a call to llvm.memcpy. The value is set by the target at the
588  /// performance threshold for such a replacement.
589  /// @brief Get maximum # of store operations permitted for llvm.memcpy
590  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
591
592  /// This function returns the maximum number of store operations permitted
593  /// to replace a call to llvm.memmove. The value is set by the target at the
594  /// performance threshold for such a replacement.
595  /// @brief Get maximum # of store operations permitted for llvm.memmove
596  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
597
598  /// This function returns true if the target allows unaligned memory accesses.
599  /// of the specified type. This is used, for example, in situations where an
600  /// array copy/move/set is  converted to a sequence of store operations. It's
601  /// use helps to ensure that such replacements don't generate code that causes
602  /// an alignment error  (trap) on the target machine.
603  /// @brief Determine if the target supports unaligned memory accesses.
604  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
605    return false;
606  }
607
608  /// This function returns true if the target would benefit from code placement
609  /// optimization.
610  /// @brief Determine if the target should perform code placement optimization.
611  bool shouldOptimizeCodePlacement() const {
612    return benefitFromCodePlacementOpt;
613  }
614
615  /// getOptimalMemOpType - Returns the target specific optimal type for load
616  /// and store operations as a result of memset, memcpy, and memmove
617  /// lowering. If DstAlign is zero that means it's safe to destination
618  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
619  /// means there isn't a need to check it against alignment requirement,
620  /// probably because the source does not need to be loaded. If
621  /// 'NonScalarIntSafe' is true, that means it's safe to return a
622  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
623  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
624  /// constant so it does not need to be loaded.
625  /// It returns EVT::Other if the type should be determined using generic
626  /// target-independent logic.
627  virtual EVT getOptimalMemOpType(uint64_t Size,
628                                  unsigned DstAlign, unsigned SrcAlign,
629                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
630                                  MachineFunction &MF) const {
631    return MVT::Other;
632  }
633
634  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
635  /// to implement llvm.setjmp.
636  bool usesUnderscoreSetJmp() const {
637    return UseUnderscoreSetJmp;
638  }
639
640  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
641  /// to implement llvm.longjmp.
642  bool usesUnderscoreLongJmp() const {
643    return UseUnderscoreLongJmp;
644  }
645
646  /// getStackPointerRegisterToSaveRestore - If a physical register, this
647  /// specifies the register that llvm.savestack/llvm.restorestack should save
648  /// and restore.
649  unsigned getStackPointerRegisterToSaveRestore() const {
650    return StackPointerRegisterToSaveRestore;
651  }
652
653  /// getExceptionAddressRegister - If a physical register, this returns
654  /// the register that receives the exception address on entry to a landing
655  /// pad.
656  unsigned getExceptionAddressRegister() const {
657    return ExceptionPointerRegister;
658  }
659
660  /// getExceptionSelectorRegister - If a physical register, this returns
661  /// the register that receives the exception typeid on entry to a landing
662  /// pad.
663  unsigned getExceptionSelectorRegister() const {
664    return ExceptionSelectorRegister;
665  }
666
667  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
668  /// set, the default is 200)
669  unsigned getJumpBufSize() const {
670    return JumpBufSize;
671  }
672
673  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
674  /// (if never set, the default is 0)
675  unsigned getJumpBufAlignment() const {
676    return JumpBufAlignment;
677  }
678
679  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
680  /// limit. Any block whose size is greater should not be predicated.
681  unsigned getIfCvtBlockSizeLimit() const {
682    return IfCvtBlockSizeLimit;
683  }
684
685  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
686  /// block to be considered for duplication. Any block whose size is greater
687  /// should not be duplicated to facilitate its predication.
688  unsigned getIfCvtDupBlockSizeLimit() const {
689    return IfCvtDupBlockSizeLimit;
690  }
691
692  /// getPrefLoopAlignment - return the preferred loop alignment.
693  ///
694  unsigned getPrefLoopAlignment() const {
695    return PrefLoopAlignment;
696  }
697
698  /// getPreIndexedAddressParts - returns true by value, base pointer and
699  /// offset pointer and addressing mode by reference if the node's address
700  /// can be legally represented as pre-indexed load / store address.
701  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
702                                         SDValue &Offset,
703                                         ISD::MemIndexedMode &AM,
704                                         SelectionDAG &DAG) const {
705    return false;
706  }
707
708  /// getPostIndexedAddressParts - returns true by value, base pointer and
709  /// offset pointer and addressing mode by reference if this node can be
710  /// combined with a load / store to form a post-indexed load / store.
711  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
712                                          SDValue &Base, SDValue &Offset,
713                                          ISD::MemIndexedMode &AM,
714                                          SelectionDAG &DAG) const {
715    return false;
716  }
717
718  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
719  /// current function.  The returned value is a member of the
720  /// MachineJumpTableInfo::JTEntryKind enum.
721  virtual unsigned getJumpTableEncoding() const;
722
723  virtual const MCExpr *
724  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
725                            const MachineBasicBlock *MBB, unsigned uid,
726                            MCContext &Ctx) const {
727    assert(0 && "Need to implement this hook if target has custom JTIs");
728    return 0;
729  }
730
731  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
732  /// jumptable.
733  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
734                                           SelectionDAG &DAG) const;
735
736  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
737  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
738  /// MCExpr.
739  virtual const MCExpr *
740  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
741                               unsigned JTI, MCContext &Ctx) const;
742
743  /// isOffsetFoldingLegal - Return true if folding a constant offset
744  /// with the given GlobalAddress is legal.  It is frequently not legal in
745  /// PIC relocation models.
746  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
747
748  /// getFunctionAlignment - Return the Log2 alignment of this function.
749  virtual unsigned getFunctionAlignment(const Function *) const = 0;
750
751  //===--------------------------------------------------------------------===//
752  // TargetLowering Optimization Methods
753  //
754
755  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
756  /// SDValues for returning information from TargetLowering to its clients
757  /// that want to combine
758  struct TargetLoweringOpt {
759    SelectionDAG &DAG;
760    bool LegalTys;
761    bool LegalOps;
762    bool ShrinkOps;
763    SDValue Old;
764    SDValue New;
765
766    explicit TargetLoweringOpt(SelectionDAG &InDAG,
767                               bool LT, bool LO,
768                               bool Shrink = false) :
769      DAG(InDAG), LegalTys(LT), LegalOps(LO), ShrinkOps(Shrink) {}
770
771    bool LegalTypes() const { return LegalTys; }
772    bool LegalOperations() const { return LegalOps; }
773
774    bool CombineTo(SDValue O, SDValue N) {
775      Old = O;
776      New = N;
777      return true;
778    }
779
780    /// ShrinkDemandedConstant - Check to see if the specified operand of the
781    /// specified instruction is a constant integer.  If so, check to see if
782    /// there are any bits set in the constant that are not demanded.  If so,
783    /// shrink the constant and return true.
784    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
785
786    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
787    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
788    /// cast, but it could be generalized for targets with other types of
789    /// implicit widening casts.
790    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
791                          DebugLoc dl);
792  };
793
794  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
795  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
796  /// use this information to simplify Op, create a new simplified DAG node and
797  /// return true, returning the original and new nodes in Old and New.
798  /// Otherwise, analyze the expression and return a mask of KnownOne and
799  /// KnownZero bits for the expression (used to simplify the caller).
800  /// The KnownZero/One bits may only be accurate for those bits in the
801  /// DemandedMask.
802  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
803                            APInt &KnownZero, APInt &KnownOne,
804                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
805
806  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
807  /// Mask are known to be either zero or one and return them in the
808  /// KnownZero/KnownOne bitsets.
809  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
810                                              const APInt &Mask,
811                                              APInt &KnownZero,
812                                              APInt &KnownOne,
813                                              const SelectionDAG &DAG,
814                                              unsigned Depth = 0) const;
815
816  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
817  /// targets that want to expose additional information about sign bits to the
818  /// DAG Combiner.
819  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
820                                                   unsigned Depth = 0) const;
821
822  struct DAGCombinerInfo {
823    void *DC;  // The DAG Combiner object.
824    bool BeforeLegalize;
825    bool BeforeLegalizeOps;
826    bool CalledByLegalizer;
827  public:
828    SelectionDAG &DAG;
829
830    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
831      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
832        CalledByLegalizer(cl), DAG(dag) {}
833
834    bool isBeforeLegalize() const { return BeforeLegalize; }
835    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
836    bool isCalledByLegalizer() const { return CalledByLegalizer; }
837
838    void AddToWorklist(SDNode *N);
839    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
840                      bool AddTo = true);
841    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
842    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
843
844    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
845  };
846
847  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
848  /// and cc. If it is unable to simplify it, return a null SDValue.
849  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
850                          ISD::CondCode Cond, bool foldBooleans,
851                          DAGCombinerInfo &DCI, DebugLoc dl) const;
852
853  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
854  /// node is a GlobalAddress + offset.
855  virtual bool
856  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
857
858  /// PerformDAGCombine - This method will be invoked for all target nodes and
859  /// for any target-independent nodes that the target has registered with
860  /// invoke it for.
861  ///
862  /// The semantics are as follows:
863  /// Return Value:
864  ///   SDValue.Val == 0   - No change was made
865  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
866  ///   otherwise          - N should be replaced by the returned Operand.
867  ///
868  /// In addition, methods provided by DAGCombinerInfo may be used to perform
869  /// more complex transformations.
870  ///
871  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
872
873  /// isTypeDesirableForOp - Return true if the target has native support for
874  /// the specified value type and it is 'desirable' to use the type for the
875  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
876  /// instruction encodings are longer and some i16 instructions are slow.
877  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
878    // By default, assume all legal types are desirable.
879    return isTypeLegal(VT);
880  }
881
882  /// IsDesirableToPromoteOp - This method query the target whether it is
883  /// beneficial for dag combiner to promote the specified node. If true, it
884  /// should return the desired promotion type by reference.
885  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
886    return false;
887  }
888
889  //===--------------------------------------------------------------------===//
890  // TargetLowering Configuration Methods - These methods should be invoked by
891  // the derived class constructor to configure this object for the target.
892  //
893
894protected:
895  /// setShiftAmountType - Describe the type that should be used for shift
896  /// amounts.  This type defaults to the pointer type.
897  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
898
899  /// setBooleanContents - Specify how the target extends the result of a
900  /// boolean value from i1 to a wider type.  See getBooleanContents.
901  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
902
903  /// setSchedulingPreference - Specify the target scheduling preference.
904  void setSchedulingPreference(Sched::Preference Pref) {
905    SchedPreferenceInfo = Pref;
906  }
907
908  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
909  /// use _setjmp to implement llvm.setjmp or the non _ version.
910  /// Defaults to false.
911  void setUseUnderscoreSetJmp(bool Val) {
912    UseUnderscoreSetJmp = Val;
913  }
914
915  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
916  /// use _longjmp to implement llvm.longjmp or the non _ version.
917  /// Defaults to false.
918  void setUseUnderscoreLongJmp(bool Val) {
919    UseUnderscoreLongJmp = Val;
920  }
921
922  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
923  /// specifies the register that llvm.savestack/llvm.restorestack should save
924  /// and restore.
925  void setStackPointerRegisterToSaveRestore(unsigned R) {
926    StackPointerRegisterToSaveRestore = R;
927  }
928
929  /// setExceptionPointerRegister - If set to a physical register, this sets
930  /// the register that receives the exception address on entry to a landing
931  /// pad.
932  void setExceptionPointerRegister(unsigned R) {
933    ExceptionPointerRegister = R;
934  }
935
936  /// setExceptionSelectorRegister - If set to a physical register, this sets
937  /// the register that receives the exception typeid on entry to a landing
938  /// pad.
939  void setExceptionSelectorRegister(unsigned R) {
940    ExceptionSelectorRegister = R;
941  }
942
943  /// SelectIsExpensive - Tells the code generator not to expand operations
944  /// into sequences that use the select operations if possible.
945  void setSelectIsExpensive() { SelectIsExpensive = true; }
946
947  /// setIntDivIsCheap - Tells the code generator that integer divide is
948  /// expensive, and if possible, should be replaced by an alternate sequence
949  /// of instructions not containing an integer divide.
950  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
951
952  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
953  /// srl/add/sra for a signed divide by power of two, and let the target handle
954  /// it.
955  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
956
957  /// addRegisterClass - Add the specified register class as an available
958  /// regclass for the specified value type.  This indicates the selector can
959  /// handle values of that class natively.
960  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
961                        bool isSynthesizable = true) {
962    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
963    AvailableRegClasses.push_back(std::make_pair(VT, RC));
964    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
965    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
966  }
967
968  /// computeRegisterProperties - Once all of the register classes are added,
969  /// this allows us to compute derived properties we expose.
970  void computeRegisterProperties();
971
972  /// setOperationAction - Indicate that the specified operation does not work
973  /// with the specified type and indicate what to do about it.
974  void setOperationAction(unsigned Op, MVT VT,
975                          LegalizeAction Action) {
976    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
977    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
978  }
979
980  /// setLoadExtAction - Indicate that the specified load with extension does
981  /// not work with the specified type and indicate what to do about it.
982  void setLoadExtAction(unsigned ExtType, MVT VT,
983                        LegalizeAction Action) {
984    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
985           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
986           "Table isn't big enough!");
987    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
988  }
989
990  /// setTruncStoreAction - Indicate that the specified truncating store does
991  /// not work with the specified type and indicate what to do about it.
992  void setTruncStoreAction(MVT ValVT, MVT MemVT,
993                           LegalizeAction Action) {
994    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
995           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
996           "Table isn't big enough!");
997    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
998  }
999
1000  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1001  /// does not work with the specified type and indicate what to do abort
1002  /// it. NOTE: All indexed mode loads are initialized to Expand in
1003  /// TargetLowering.cpp
1004  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1005                            LegalizeAction Action) {
1006    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1007           IdxMode < ISD::LAST_INDEXED_MODE &&
1008           (unsigned)Action < 0xf &&
1009           "Table isn't big enough!");
1010    // Load action are kept in the upper half.
1011    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1012    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1013  }
1014
1015  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1016  /// does not work with the specified type and indicate what to do about
1017  /// it. NOTE: All indexed mode stores are initialized to Expand in
1018  /// TargetLowering.cpp
1019  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1020                             LegalizeAction Action) {
1021    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1022           IdxMode < ISD::LAST_INDEXED_MODE &&
1023           (unsigned)Action < 0xf &&
1024           "Table isn't big enough!");
1025    // Store action are kept in the lower half.
1026    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1027    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1028  }
1029
1030  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1031  /// supported on the target and indicate what to do about it.
1032  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1033                         LegalizeAction Action) {
1034    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1035           (unsigned)CC < array_lengthof(CondCodeActions) &&
1036           "Table isn't big enough!");
1037    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1038    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1039  }
1040
1041  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1042  /// promotion code defaults to trying a larger integer/fp until it can find
1043  /// one that works.  If that default is insufficient, this method can be used
1044  /// by the target to override the default.
1045  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1046    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1047  }
1048
1049  /// setTargetDAGCombine - Targets should invoke this method for each target
1050  /// independent node that they want to provide a custom DAG combiner for by
1051  /// implementing the PerformDAGCombine virtual method.
1052  void setTargetDAGCombine(ISD::NodeType NT) {
1053    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1054    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1055  }
1056
1057  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1058  /// bytes); default is 200
1059  void setJumpBufSize(unsigned Size) {
1060    JumpBufSize = Size;
1061  }
1062
1063  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1064  /// alignment (in bytes); default is 0
1065  void setJumpBufAlignment(unsigned Align) {
1066    JumpBufAlignment = Align;
1067  }
1068
1069  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1070  /// limit (in number of instructions); default is 2.
1071  void setIfCvtBlockSizeLimit(unsigned Limit) {
1072    IfCvtBlockSizeLimit = Limit;
1073  }
1074
1075  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1076  /// of instructions) to be considered for code duplication during
1077  /// if-conversion; default is 2.
1078  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1079    IfCvtDupBlockSizeLimit = Limit;
1080  }
1081
1082  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1083  /// alignment is zero, it means the target does not care about loop alignment.
1084  void setPrefLoopAlignment(unsigned Align) {
1085    PrefLoopAlignment = Align;
1086  }
1087
1088public:
1089  //===--------------------------------------------------------------------===//
1090  // Lowering methods - These methods must be implemented by targets so that
1091  // the SelectionDAGLowering code knows how to lower these.
1092  //
1093
1094  /// LowerFormalArguments - This hook must be implemented to lower the
1095  /// incoming (formal) arguments, described by the Ins array, into the
1096  /// specified DAG. The implementation should fill in the InVals array
1097  /// with legal-type argument values, and return the resulting token
1098  /// chain value.
1099  ///
1100  virtual SDValue
1101    LowerFormalArguments(SDValue Chain,
1102                         CallingConv::ID CallConv, bool isVarArg,
1103                         const SmallVectorImpl<ISD::InputArg> &Ins,
1104                         DebugLoc dl, SelectionDAG &DAG,
1105                         SmallVectorImpl<SDValue> &InVals) const {
1106    assert(0 && "Not Implemented");
1107    return SDValue();    // this is here to silence compiler errors
1108  }
1109
1110  /// LowerCallTo - This function lowers an abstract call to a function into an
1111  /// actual call.  This returns a pair of operands.  The first element is the
1112  /// return value for the function (if RetTy is not VoidTy).  The second
1113  /// element is the outgoing token chain. It calls LowerCall to do the actual
1114  /// lowering.
1115  struct ArgListEntry {
1116    SDValue Node;
1117    const Type* Ty;
1118    bool isSExt  : 1;
1119    bool isZExt  : 1;
1120    bool isInReg : 1;
1121    bool isSRet  : 1;
1122    bool isNest  : 1;
1123    bool isByVal : 1;
1124    uint16_t Alignment;
1125
1126    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1127      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1128  };
1129  typedef std::vector<ArgListEntry> ArgListTy;
1130  std::pair<SDValue, SDValue>
1131  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1132              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1133              CallingConv::ID CallConv, bool isTailCall,
1134              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1135              SelectionDAG &DAG, DebugLoc dl) const;
1136
1137  /// LowerCall - This hook must be implemented to lower calls into the
1138  /// the specified DAG. The outgoing arguments to the call are described
1139  /// by the Outs array, and the values to be returned by the call are
1140  /// described by the Ins array. The implementation should fill in the
1141  /// InVals array with legal-type return values from the call, and return
1142  /// the resulting token chain value.
1143  virtual SDValue
1144    LowerCall(SDValue Chain, SDValue Callee,
1145              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1146              const SmallVectorImpl<ISD::OutputArg> &Outs,
1147              const SmallVectorImpl<ISD::InputArg> &Ins,
1148              DebugLoc dl, SelectionDAG &DAG,
1149              SmallVectorImpl<SDValue> &InVals) const {
1150    assert(0 && "Not Implemented");
1151    return SDValue();    // this is here to silence compiler errors
1152  }
1153
1154  /// CanLowerReturn - This hook should be implemented to check whether the
1155  /// return values described by the Outs array can fit into the return
1156  /// registers.  If false is returned, an sret-demotion is performed.
1157  ///
1158  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1159               const SmallVectorImpl<EVT> &OutTys,
1160               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1161               SelectionDAG &DAG) const
1162  {
1163    // Return true by default to get preexisting behavior.
1164    return true;
1165  }
1166
1167  /// LowerReturn - This hook must be implemented to lower outgoing
1168  /// return values, described by the Outs array, into the specified
1169  /// DAG. The implementation should return the resulting token chain
1170  /// value.
1171  ///
1172  virtual SDValue
1173    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1174                const SmallVectorImpl<ISD::OutputArg> &Outs,
1175                DebugLoc dl, SelectionDAG &DAG) const {
1176    assert(0 && "Not Implemented");
1177    return SDValue();    // this is here to silence compiler errors
1178  }
1179
1180  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1181  /// to legalize nodes with an illegal operand type but legal result types.
1182  /// It replaces the LowerOperation callback in the type Legalizer.
1183  /// The reason we can not do away with LowerOperation entirely is that
1184  /// LegalizeDAG isn't yet ready to use this callback.
1185  /// TODO: Consider merging with ReplaceNodeResults.
1186
1187  /// The target places new result values for the node in Results (their number
1188  /// and types must exactly match those of the original return values of
1189  /// the node), or leaves Results empty, which indicates that the node is not
1190  /// to be custom lowered after all.
1191  /// The default implementation calls LowerOperation.
1192  virtual void LowerOperationWrapper(SDNode *N,
1193                                     SmallVectorImpl<SDValue> &Results,
1194                                     SelectionDAG &DAG) const;
1195
1196  /// LowerOperation - This callback is invoked for operations that are
1197  /// unsupported by the target, which are registered to use 'custom' lowering,
1198  /// and whose defined values are all legal.
1199  /// If the target has no operations that require custom lowering, it need not
1200  /// implement this.  The default implementation of this aborts.
1201  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1202
1203  /// ReplaceNodeResults - This callback is invoked when a node result type is
1204  /// illegal for the target, and the operation was registered to use 'custom'
1205  /// lowering for that result type.  The target places new result values for
1206  /// the node in Results (their number and types must exactly match those of
1207  /// the original return values of the node), or leaves Results empty, which
1208  /// indicates that the node is not to be custom lowered after all.
1209  ///
1210  /// If the target has no operations that require custom lowering, it need not
1211  /// implement this.  The default implementation aborts.
1212  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1213                                  SelectionDAG &DAG) const {
1214    assert(0 && "ReplaceNodeResults not implemented for this target!");
1215  }
1216
1217  /// getTargetNodeName() - This method returns the name of a target specific
1218  /// DAG node.
1219  virtual const char *getTargetNodeName(unsigned Opcode) const;
1220
1221  /// createFastISel - This method returns a target specific FastISel object,
1222  /// or null if the target does not support "fast" ISel.
1223  virtual FastISel *
1224  createFastISel(MachineFunction &,
1225                 DenseMap<const Value *, unsigned> &,
1226                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1227                 DenseMap<const AllocaInst *, int> &,
1228                 std::vector<std::pair<MachineInstr*, unsigned> > &
1229#ifndef NDEBUG
1230                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1231#endif
1232                 ) const {
1233    return 0;
1234  }
1235
1236  //===--------------------------------------------------------------------===//
1237  // Inline Asm Support hooks
1238  //
1239
1240  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1241  /// call to be explicit llvm code if it wants to.  This is useful for
1242  /// turning simple inline asms into LLVM intrinsics, which gives the
1243  /// compiler more information about the behavior of the code.
1244  virtual bool ExpandInlineAsm(CallInst *CI) const {
1245    return false;
1246  }
1247
1248  enum ConstraintType {
1249    C_Register,            // Constraint represents specific register(s).
1250    C_RegisterClass,       // Constraint represents any of register(s) in class.
1251    C_Memory,              // Memory constraint.
1252    C_Other,               // Something else.
1253    C_Unknown              // Unsupported constraint.
1254  };
1255
1256  /// AsmOperandInfo - This contains information for each constraint that we are
1257  /// lowering.
1258  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1259    /// ConstraintCode - This contains the actual string for the code, like "m".
1260    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1261    /// most closely matches the operand.
1262    std::string ConstraintCode;
1263
1264    /// ConstraintType - Information about the constraint code, e.g. Register,
1265    /// RegisterClass, Memory, Other, Unknown.
1266    TargetLowering::ConstraintType ConstraintType;
1267
1268    /// CallOperandval - If this is the result output operand or a
1269    /// clobber, this is null, otherwise it is the incoming operand to the
1270    /// CallInst.  This gets modified as the asm is processed.
1271    Value *CallOperandVal;
1272
1273    /// ConstraintVT - The ValueType for the operand value.
1274    EVT ConstraintVT;
1275
1276    /// isMatchingInputConstraint - Return true of this is an input operand that
1277    /// is a matching constraint like "4".
1278    bool isMatchingInputConstraint() const;
1279
1280    /// getMatchedOperand - If this is an input matching constraint, this method
1281    /// returns the output operand it matches.
1282    unsigned getMatchedOperand() const;
1283
1284    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1285      : InlineAsm::ConstraintInfo(info),
1286        ConstraintType(TargetLowering::C_Unknown),
1287        CallOperandVal(0), ConstraintVT(MVT::Other) {
1288    }
1289  };
1290
1291  /// ComputeConstraintToUse - Determines the constraint code and constraint
1292  /// type to use for the specific AsmOperandInfo, setting
1293  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1294  /// being passed in is available, it can be passed in as Op, otherwise an
1295  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1296  /// constraint of the inline asm instruction being processed is 'm'.
1297  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1298                                      SDValue Op,
1299                                      bool hasMemory,
1300                                      SelectionDAG *DAG = 0) const;
1301
1302  /// getConstraintType - Given a constraint, return the type of constraint it
1303  /// is for this target.
1304  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1305
1306  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1307  /// return a list of registers that can be used to satisfy the constraint.
1308  /// This should only be used for C_RegisterClass constraints.
1309  virtual std::vector<unsigned>
1310  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1311                                    EVT VT) const;
1312
1313  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1314  /// {edx}), return the register number and the register class for the
1315  /// register.
1316  ///
1317  /// Given a register class constraint, like 'r', if this corresponds directly
1318  /// to an LLVM register class, return a register of 0 and the register class
1319  /// pointer.
1320  ///
1321  /// This should only be used for C_Register constraints.  On error,
1322  /// this returns a register number of 0 and a null register class pointer..
1323  virtual std::pair<unsigned, const TargetRegisterClass*>
1324    getRegForInlineAsmConstraint(const std::string &Constraint,
1325                                 EVT VT) const;
1326
1327  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1328  /// with another that has more specific requirements based on the type of the
1329  /// corresponding operand.  This returns null if there is no replacement to
1330  /// make.
1331  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1332
1333  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1334  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1335  /// it means one of the asm constraint of the inline asm instruction being
1336  /// processed is 'm'.
1337  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1338                                            bool hasMemory,
1339                                            std::vector<SDValue> &Ops,
1340                                            SelectionDAG &DAG) const;
1341
1342  //===--------------------------------------------------------------------===//
1343  // Instruction Emitting Hooks
1344  //
1345
1346  // EmitInstrWithCustomInserter - This method should be implemented by targets
1347  // that mark instructions with the 'usesCustomInserter' flag.  These
1348  // instructions are special in various ways, which require special support to
1349  // insert.  The specified MachineInstr is created but not inserted into any
1350  // basic blocks, and this method is called to expand it into a sequence of
1351  // instructions, potentially also creating new basic blocks and control flow.
1352  virtual MachineBasicBlock *
1353    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1354
1355  //===--------------------------------------------------------------------===//
1356  // Addressing mode description hooks (used by LSR etc).
1357  //
1358
1359  /// AddrMode - This represents an addressing mode of:
1360  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1361  /// If BaseGV is null,  there is no BaseGV.
1362  /// If BaseOffs is zero, there is no base offset.
1363  /// If HasBaseReg is false, there is no base register.
1364  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1365  /// no scale.
1366  ///
1367  struct AddrMode {
1368    GlobalValue *BaseGV;
1369    int64_t      BaseOffs;
1370    bool         HasBaseReg;
1371    int64_t      Scale;
1372    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1373  };
1374
1375  /// isLegalAddressingMode - Return true if the addressing mode represented by
1376  /// AM is legal for this target, for a load/store of the specified type.
1377  /// The type may be VoidTy, in which case only return true if the addressing
1378  /// mode is legal for a load/store of any legal type.
1379  /// TODO: Handle pre/postinc as well.
1380  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1381
1382  /// isTruncateFree - Return true if it's free to truncate a value of
1383  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1384  /// register EAX to i16 by referencing its sub-register AX.
1385  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1386    return false;
1387  }
1388
1389  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1390    return false;
1391  }
1392
1393  /// isZExtFree - Return true if any actual instruction that defines a
1394  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1395  /// register. This does not necessarily include registers defined in
1396  /// unknown ways, such as incoming arguments, or copies from unknown
1397  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1398  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1399  /// all instructions that define 32-bit values implicit zero-extend the
1400  /// result out to 64 bits.
1401  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1402    return false;
1403  }
1404
1405  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1406    return false;
1407  }
1408
1409  /// isNarrowingProfitable - Return true if it's profitable to narrow
1410  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1411  /// from i32 to i8 but not from i32 to i16.
1412  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1413    return false;
1414  }
1415
1416  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1417  /// icmp immediate, that is the target has icmp instructions which can compare
1418  /// a register against the immediate without having to materialize the
1419  /// immediate into a register.
1420  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1421    return true;
1422  }
1423
1424  //===--------------------------------------------------------------------===//
1425  // Div utility functions
1426  //
1427  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1428                      std::vector<SDNode*>* Created) const;
1429  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1430                      std::vector<SDNode*>* Created) const;
1431
1432
1433  //===--------------------------------------------------------------------===//
1434  // Runtime Library hooks
1435  //
1436
1437  /// setLibcallName - Rename the default libcall routine name for the specified
1438  /// libcall.
1439  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1440    LibcallRoutineNames[Call] = Name;
1441  }
1442
1443  /// getLibcallName - Get the libcall routine name for the specified libcall.
1444  ///
1445  const char *getLibcallName(RTLIB::Libcall Call) const {
1446    return LibcallRoutineNames[Call];
1447  }
1448
1449  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1450  /// result of the comparison libcall against zero.
1451  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1452    CmpLibcallCCs[Call] = CC;
1453  }
1454
1455  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1456  /// the comparison libcall against zero.
1457  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1458    return CmpLibcallCCs[Call];
1459  }
1460
1461  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1462  /// specified libcall.
1463  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1464    LibcallCallingConvs[Call] = CC;
1465  }
1466
1467  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1468  /// specified libcall.
1469  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1470    return LibcallCallingConvs[Call];
1471  }
1472
1473private:
1474  const TargetMachine &TM;
1475  const TargetData *TD;
1476  const TargetLoweringObjectFile &TLOF;
1477
1478  /// PointerTy - The type to use for pointers, usually i32 or i64.
1479  ///
1480  MVT PointerTy;
1481
1482  /// IsLittleEndian - True if this is a little endian target.
1483  ///
1484  bool IsLittleEndian;
1485
1486  /// SelectIsExpensive - Tells the code generator not to expand operations
1487  /// into sequences that use the select operations if possible.
1488  bool SelectIsExpensive;
1489
1490  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1491  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1492  /// a real cost model is in place.  If we ever optimize for size, this will be
1493  /// set to true unconditionally.
1494  bool IntDivIsCheap;
1495
1496  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1497  /// srl/add/sra for a signed divide by power of two, and let the target handle
1498  /// it.
1499  bool Pow2DivIsCheap;
1500
1501  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1502  /// llvm.setjmp.  Defaults to false.
1503  bool UseUnderscoreSetJmp;
1504
1505  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1506  /// llvm.longjmp.  Defaults to false.
1507  bool UseUnderscoreLongJmp;
1508
1509  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1510  /// PointerTy is.
1511  MVT ShiftAmountTy;
1512
1513  /// BooleanContents - Information about the contents of the high-bits in
1514  /// boolean values held in a type wider than i1.  See getBooleanContents.
1515  BooleanContent BooleanContents;
1516
1517  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1518  /// total cycles or lowest register usage.
1519  Sched::Preference SchedPreferenceInfo;
1520
1521  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1522  unsigned JumpBufSize;
1523
1524  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1525  /// buffers
1526  unsigned JumpBufAlignment;
1527
1528  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1529  /// if-converted.
1530  unsigned IfCvtBlockSizeLimit;
1531
1532  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1533  /// duplicated during if-conversion.
1534  unsigned IfCvtDupBlockSizeLimit;
1535
1536  /// PrefLoopAlignment - The perferred loop alignment.
1537  ///
1538  unsigned PrefLoopAlignment;
1539
1540  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1541  /// specifies the register that llvm.savestack/llvm.restorestack should save
1542  /// and restore.
1543  unsigned StackPointerRegisterToSaveRestore;
1544
1545  /// ExceptionPointerRegister - If set to a physical register, this specifies
1546  /// the register that receives the exception address on entry to a landing
1547  /// pad.
1548  unsigned ExceptionPointerRegister;
1549
1550  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1551  /// the register that receives the exception typeid on entry to a landing
1552  /// pad.
1553  unsigned ExceptionSelectorRegister;
1554
1555  /// RegClassForVT - This indicates the default register class to use for
1556  /// each ValueType the target supports natively.
1557  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1558  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1559  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1560
1561  /// Synthesizable indicates whether it is OK for the compiler to create new
1562  /// operations using this type.  All Legal types are Synthesizable except
1563  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1564  bool Synthesizable[MVT::LAST_VALUETYPE];
1565
1566  /// TransformToType - For any value types we are promoting or expanding, this
1567  /// contains the value type that we are changing to.  For Expanded types, this
1568  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1569  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1570  /// by the system, this holds the same type (e.g. i32 -> i32).
1571  EVT TransformToType[MVT::LAST_VALUETYPE];
1572
1573  /// OpActions - For each operation and each value type, keep a LegalizeAction
1574  /// that indicates how instruction selection should deal with the operation.
1575  /// Most operations are Legal (aka, supported natively by the target), but
1576  /// operations that are not should be described.  Note that operations on
1577  /// non-legal value types are not described here.
1578  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1579
1580  /// LoadExtActions - For each load extension type and each value type,
1581  /// keep a LegalizeAction that indicates how instruction selection should deal
1582  /// with a load of a specific value type and extension type.
1583  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1584
1585  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1586  /// indicates whether a truncating store of a specific value type and
1587  /// truncating type is legal.
1588  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1589
1590  /// IndexedModeActions - For each indexed mode and each value type,
1591  /// keep a pair of LegalizeAction that indicates how instruction
1592  /// selection should deal with the load / store.  The first dimension is the
1593  /// value_type for the reference. The second dimension represents the various
1594  /// modes for load store.
1595  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1596
1597  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1598  /// LegalizeAction that indicates how instruction selection should
1599  /// deal with the condition code.
1600  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1601
1602  ValueTypeActionImpl ValueTypeActions;
1603
1604  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1605
1606  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1607  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1608  /// which sets a bit in this array.
1609  unsigned char
1610  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1611
1612  /// PromoteToType - For operations that must be promoted to a specific type,
1613  /// this holds the destination type.  This map should be sparse, so don't hold
1614  /// it as an array.
1615  ///
1616  /// Targets add entries to this map with AddPromotedToType(..), clients access
1617  /// this with getTypeToPromoteTo(..).
1618  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1619    PromoteToType;
1620
1621  /// LibcallRoutineNames - Stores the name each libcall.
1622  ///
1623  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1624
1625  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1626  /// of each of the comparison libcall against zero.
1627  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1628
1629  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1630  /// libcall.
1631  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1632
1633protected:
1634  /// When lowering \@llvm.memset this field specifies the maximum number of
1635  /// store operations that may be substituted for the call to memset. Targets
1636  /// must set this value based on the cost threshold for that target. Targets
1637  /// should assume that the memset will be done using as many of the largest
1638  /// store operations first, followed by smaller ones, if necessary, per
1639  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1640  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1641  /// store.  This only applies to setting a constant array of a constant size.
1642  /// @brief Specify maximum number of store instructions per memset call.
1643  unsigned maxStoresPerMemset;
1644
1645  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1646  /// store operations that may be substituted for a call to memcpy. Targets
1647  /// must set this value based on the cost threshold for that target. Targets
1648  /// should assume that the memcpy will be done using as many of the largest
1649  /// store operations first, followed by smaller ones, if necessary, per
1650  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1651  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1652  /// and one 1-byte store. This only applies to copying a constant array of
1653  /// constant size.
1654  /// @brief Specify maximum bytes of store instructions per memcpy call.
1655  unsigned maxStoresPerMemcpy;
1656
1657  /// When lowering \@llvm.memmove this field specifies the maximum number of
1658  /// store instructions that may be substituted for a call to memmove. Targets
1659  /// must set this value based on the cost threshold for that target. Targets
1660  /// should assume that the memmove will be done using as many of the largest
1661  /// store operations first, followed by smaller ones, if necessary, per
1662  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1663  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1664  /// applies to copying a constant array of constant size.
1665  /// @brief Specify maximum bytes of store instructions per memmove call.
1666  unsigned maxStoresPerMemmove;
1667
1668  /// This field specifies whether the target can benefit from code placement
1669  /// optimization.
1670  bool benefitFromCodePlacementOpt;
1671};
1672} // end llvm namespace
1673
1674#endif
1675