TargetLowering.h revision 25cf2275ff7de3de3bc0e508abaf457413d74725
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Constants.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <vector>
36
37namespace llvm {
38  class AllocaInst;
39  class Function;
40  class FastISel;
41  class MachineBasicBlock;
42  class MachineFunction;
43  class MachineFrameInfo;
44  class MachineInstr;
45  class MachineModuleInfo;
46  class SDNode;
47  class SDValue;
48  class SelectionDAG;
49  class TargetData;
50  class TargetMachine;
51  class TargetRegisterClass;
52  class TargetSubtarget;
53  class Value;
54  class VectorType;
55
56//===----------------------------------------------------------------------===//
57/// TargetLowering - This class defines information used to lower LLVM code to
58/// legal SelectionDAG operators that the target instruction selector can accept
59/// natively.
60///
61/// This class also defines callbacks that targets must implement to lower
62/// target-specific constructs to SelectionDAG operators.
63///
64class TargetLowering {
65public:
66  /// LegalizeAction - This enum indicates whether operations are valid for a
67  /// target, and if not, what action should be used to make them valid.
68  enum LegalizeAction {
69    Legal,      // The target natively supports this operation.
70    Promote,    // This operation should be executed in a larger type.
71    Expand,     // Try to expand this to other ops, otherwise use a libcall.
72    Custom      // Use the LowerOperation hook to implement custom lowering.
73  };
74
75  enum OutOfRangeShiftAmount {
76    Undefined,  // Oversized shift amounts are undefined (default).
77    Mask,       // Shift amounts are auto masked (anded) to value size.
78    Extend      // Oversized shift pulls in zeros or sign bits.
79  };
80
81  enum BooleanContent { // How the target represents true/false values.
82    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
83    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
84    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
85  };
86
87  enum SchedPreference {
88    SchedulingForLatency,          // Scheduling for shortest total latency.
89    SchedulingForRegPressure       // Scheduling for lowest register pressure.
90  };
91
92  explicit TargetLowering(TargetMachine &TM);
93  virtual ~TargetLowering();
94
95  TargetMachine &getTargetMachine() const { return TM; }
96  const TargetData *getTargetData() const { return TD; }
97
98  bool isBigEndian() const { return !IsLittleEndian; }
99  bool isLittleEndian() const { return IsLittleEndian; }
100  MVT getPointerTy() const { return PointerTy; }
101  MVT getShiftAmountTy() const { return ShiftAmountTy; }
102  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
103
104  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
105  /// codegen.
106  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
107
108  /// isSelectExpensive - Return true if the select operation is expensive for
109  /// this target.
110  bool isSelectExpensive() const { return SelectIsExpensive; }
111
112  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
113  /// a sequence of several shifts, adds, and multiplies for this target.
114  bool isIntDivCheap() const { return IntDivIsCheap; }
115
116  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
117  /// srl/add/sra.
118  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
119
120  /// getSetCCResultType - Return the ValueType of the result of setcc
121  /// operations.
122  virtual MVT getSetCCResultType(const SDValue &) const;
123
124  /// getBooleanContents - For targets without i1 registers, this gives the
125  /// nature of the high-bits of boolean values held in types wider than i1.
126  /// "Boolean values" are special true/false values produced by nodes like
127  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
128  /// Not to be confused with general values promoted from i1.
129  BooleanContent getBooleanContents() const { return BooleanContents;}
130
131  /// getSchedulingPreference - Return target scheduling preference.
132  SchedPreference getSchedulingPreference() const {
133    return SchedPreferenceInfo;
134  }
135
136  /// getRegClassFor - Return the register class that should be used for the
137  /// specified value type.  This may only be called on legal types.
138  TargetRegisterClass *getRegClassFor(MVT VT) const {
139    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
140    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
141    assert(RC && "This value type is not natively supported!");
142    return RC;
143  }
144
145  /// isTypeLegal - Return true if the target has native support for the
146  /// specified value type.  This means that it has a register that directly
147  /// holds it without promotions or expansions.
148  bool isTypeLegal(MVT VT) const {
149    assert(!VT.isSimple() ||
150           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
151    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
152  }
153
154  class ValueTypeActionImpl {
155    /// ValueTypeActions - This is a bitvector that contains two bits for each
156    /// value type, where the two bits correspond to the LegalizeAction enum.
157    /// This can be queried with "getTypeAction(VT)".
158    uint32_t ValueTypeActions[2];
159  public:
160    ValueTypeActionImpl() {
161      ValueTypeActions[0] = ValueTypeActions[1] = 0;
162    }
163    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
164      ValueTypeActions[0] = RHS.ValueTypeActions[0];
165      ValueTypeActions[1] = RHS.ValueTypeActions[1];
166    }
167
168    LegalizeAction getTypeAction(MVT VT) const {
169      if (VT.isExtended()) {
170        if (VT.isVector()) {
171          // First try vector widening
172          return Promote;
173        }
174        if (VT.isInteger())
175          // First promote to a power-of-two size, then expand if necessary.
176          return VT == VT.getRoundIntegerType() ? Expand : Promote;
177        assert(0 && "Unsupported extended type!");
178        return Legal;
179      }
180      unsigned I = VT.getSimpleVT();
181      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
182      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
183    }
184    void setTypeAction(MVT VT, LegalizeAction Action) {
185      unsigned I = VT.getSimpleVT();
186      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
187      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
188    }
189  };
190
191  const ValueTypeActionImpl &getValueTypeActions() const {
192    return ValueTypeActions;
193  }
194
195  /// getTypeAction - Return how we should legalize values of this type, either
196  /// it is already legal (return 'Legal') or we need to promote it to a larger
197  /// type (return 'Promote'), or we need to expand it into multiple registers
198  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
199  LegalizeAction getTypeAction(MVT VT) const {
200    return ValueTypeActions.getTypeAction(VT);
201  }
202
203  /// getTypeToTransformTo - For types supported by the target, this is an
204  /// identity function.  For types that must be promoted to larger types, this
205  /// returns the larger type to promote to.  For integer types that are larger
206  /// than the largest integer register, this contains one step in the expansion
207  /// to get to the smaller register. For illegal floating point types, this
208  /// returns the integer type to transform to.
209  MVT getTypeToTransformTo(MVT VT) const {
210    if (VT.isSimple()) {
211      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
212      MVT NVT = TransformToType[VT.getSimpleVT()];
213      assert(getTypeAction(NVT) != Promote &&
214             "Promote may not follow Expand or Promote");
215      return NVT;
216    }
217
218    if (VT.isVector()) {
219      unsigned NumElts = VT.getVectorNumElements();
220      MVT EltVT = VT.getVectorElementType();
221      return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
222    } else if (VT.isInteger()) {
223      MVT NVT = VT.getRoundIntegerType();
224      if (NVT == VT)
225        // Size is a power of two - expand to half the size.
226        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
227      else
228        // Promote to a power of two size, avoiding multi-step promotion.
229        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
230    }
231    assert(0 && "Unsupported extended type!");
232    return MVT(); // Not reached
233  }
234
235  /// getTypeToExpandTo - For types supported by the target, this is an
236  /// identity function.  For types that must be expanded (i.e. integer types
237  /// that are larger than the largest integer register or illegal floating
238  /// point types), this returns the largest legal type it will be expanded to.
239  MVT getTypeToExpandTo(MVT VT) const {
240    assert(!VT.isVector());
241    while (true) {
242      switch (getTypeAction(VT)) {
243      case Legal:
244        return VT;
245      case Expand:
246        VT = getTypeToTransformTo(VT);
247        break;
248      default:
249        assert(false && "Type is not legal nor is it to be expanded!");
250        return VT;
251      }
252    }
253    return VT;
254  }
255
256  /// getVectorTypeBreakdown - Vector types are broken down into some number of
257  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
258  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
259  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
260  ///
261  /// This method returns the number of registers needed, and the VT for each
262  /// register.  It also returns the VT and quantity of the intermediate values
263  /// before they are promoted/expanded.
264  ///
265  unsigned getVectorTypeBreakdown(MVT VT,
266                                  MVT &IntermediateVT,
267                                  unsigned &NumIntermediates,
268                                  MVT &RegisterVT) const;
269
270  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
271  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
272  /// this is the case, it returns true and store the intrinsic
273  /// information into the IntrinsicInfo that was passed to the function.
274  typedef struct IntrinsicInfo {
275    unsigned     opc;         // target opcode
276    MVT          memVT;       // memory VT
277    const Value* ptrVal;      // value representing memory location
278    int          offset;      // offset off of ptrVal
279    unsigned     align;       // alignment
280    bool         vol;         // is volatile?
281    bool         readMem;     // reads memory?
282    bool         writeMem;    // writes memory?
283  } IntrinisicInfo;
284
285  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
286                                  CallInst &I, unsigned Intrinsic) {
287    return false;
288  }
289
290  /// getWidenVectorType: given a vector type, returns the type to widen to
291  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
292  /// If there is no vector type that we want to widen to, returns MVT::Other
293  /// When and were to widen is target dependent based on the cost of
294  /// scalarizing vs using the wider vector type.
295  virtual MVT getWidenVectorType(MVT VT);
296
297  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
298  legal_fpimm_iterator legal_fpimm_begin() const {
299    return LegalFPImmediates.begin();
300  }
301  legal_fpimm_iterator legal_fpimm_end() const {
302    return LegalFPImmediates.end();
303  }
304
305  /// isShuffleMaskLegal - Targets can use this to indicate that they only
306  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
307  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
308  /// are assumed to be legal.
309  virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
310    return true;
311  }
312
313  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
314  /// used by Targets can use this to indicate if there is a suitable
315  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
316  /// pool entry.
317  virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
318                                      MVT EVT,
319                                      SelectionDAG &DAG) const {
320    return false;
321  }
322
323  /// getOperationAction - Return how this operation should be treated: either
324  /// it is legal, needs to be promoted to a larger size, needs to be
325  /// expanded to some other code sequence, or the target has a custom expander
326  /// for it.
327  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
328    if (VT.isExtended()) return Expand;
329    assert(Op < array_lengthof(OpActions) &&
330           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
331           "Table isn't big enough!");
332    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
333  }
334
335  /// isOperationLegal - Return true if the specified operation is legal on this
336  /// target.
337  bool isOperationLegal(unsigned Op, MVT VT) const {
338    return (VT == MVT::Other || isTypeLegal(VT)) &&
339      (getOperationAction(Op, VT) == Legal ||
340       getOperationAction(Op, VT) == Custom);
341  }
342
343  /// getLoadExtAction - Return how this load with extension should be treated:
344  /// either it is legal, needs to be promoted to a larger size, needs to be
345  /// expanded to some other code sequence, or the target has a custom expander
346  /// for it.
347  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
348    assert(LType < array_lengthof(LoadExtActions) &&
349           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
350           "Table isn't big enough!");
351    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
352  }
353
354  /// isLoadExtLegal - Return true if the specified load with extension is legal
355  /// on this target.
356  bool isLoadExtLegal(unsigned LType, MVT VT) const {
357    return VT.isSimple() &&
358      (getLoadExtAction(LType, VT) == Legal ||
359       getLoadExtAction(LType, VT) == Custom);
360  }
361
362  /// getTruncStoreAction - Return how this store with truncation should be
363  /// treated: either it is legal, needs to be promoted to a larger size, needs
364  /// to be expanded to some other code sequence, or the target has a custom
365  /// expander for it.
366  LegalizeAction getTruncStoreAction(MVT ValVT,
367                                     MVT MemVT) const {
368    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
369           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
370           "Table isn't big enough!");
371    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
372                             (2*MemVT.getSimpleVT())) & 3);
373  }
374
375  /// isTruncStoreLegal - Return true if the specified store with truncation is
376  /// legal on this target.
377  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
378    return isTypeLegal(ValVT) && MemVT.isSimple() &&
379      (getTruncStoreAction(ValVT, MemVT) == Legal ||
380       getTruncStoreAction(ValVT, MemVT) == Custom);
381  }
382
383  /// getIndexedLoadAction - Return how the indexed load should be treated:
384  /// either it is legal, needs to be promoted to a larger size, needs to be
385  /// expanded to some other code sequence, or the target has a custom expander
386  /// for it.
387  LegalizeAction
388  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
389    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
390           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
391           "Table isn't big enough!");
392    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
393                             (2*VT.getSimpleVT())) & 3);
394  }
395
396  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
397  /// on this target.
398  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
399    return VT.isSimple() &&
400      (getIndexedLoadAction(IdxMode, VT) == Legal ||
401       getIndexedLoadAction(IdxMode, VT) == Custom);
402  }
403
404  /// getIndexedStoreAction - Return how the indexed store should be treated:
405  /// either it is legal, needs to be promoted to a larger size, needs to be
406  /// expanded to some other code sequence, or the target has a custom expander
407  /// for it.
408  LegalizeAction
409  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
410    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
411           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
412           "Table isn't big enough!");
413    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
414                             (2*VT.getSimpleVT())) & 3);
415  }
416
417  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
418  /// on this target.
419  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
420    return VT.isSimple() &&
421      (getIndexedStoreAction(IdxMode, VT) == Legal ||
422       getIndexedStoreAction(IdxMode, VT) == Custom);
423  }
424
425  /// getConvertAction - Return how the conversion should be treated:
426  /// either it is legal, needs to be promoted to a larger size, needs to be
427  /// expanded to some other code sequence, or the target has a custom expander
428  /// for it.
429  LegalizeAction
430  getConvertAction(MVT FromVT, MVT ToVT) const {
431    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
432           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
433           "Table isn't big enough!");
434    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
435                             (2*ToVT.getSimpleVT())) & 3);
436  }
437
438  /// isConvertLegal - Return true if the specified conversion is legal
439  /// on this target.
440  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
441    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
442      (getConvertAction(FromVT, ToVT) == Legal ||
443       getConvertAction(FromVT, ToVT) == Custom);
444  }
445
446  /// getCondCodeAction - Return how the condition code should be treated:
447  /// either it is legal, needs to be expanded to some other code sequence,
448  /// or the target has a custom expander for it.
449  LegalizeAction
450  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
451    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
452           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
453           "Table isn't big enough!");
454    LegalizeAction Action = (LegalizeAction)
455      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
456    assert(Action != Promote && "Can't promote condition code!");
457    return Action;
458  }
459
460  /// isCondCodeLegal - Return true if the specified condition code is legal
461  /// on this target.
462  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
463    return getCondCodeAction(CC, VT) == Legal ||
464           getCondCodeAction(CC, VT) == Custom;
465  }
466
467
468  /// getTypeToPromoteTo - If the action for this operation is to promote, this
469  /// method returns the ValueType to promote to.
470  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
471    assert(getOperationAction(Op, VT) == Promote &&
472           "This operation isn't promoted!");
473
474    // See if this has an explicit type specified.
475    std::map<std::pair<unsigned, MVT::SimpleValueType>,
476             MVT::SimpleValueType>::const_iterator PTTI =
477      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
478    if (PTTI != PromoteToType.end()) return PTTI->second;
479
480    assert((VT.isInteger() || VT.isFloatingPoint()) &&
481           "Cannot autopromote this type, add it with AddPromotedToType.");
482
483    MVT NVT = VT;
484    do {
485      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
486      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
487             "Didn't find type to promote to!");
488    } while (!isTypeLegal(NVT) ||
489              getOperationAction(Op, NVT) == Promote);
490    return NVT;
491  }
492
493  /// getValueType - Return the MVT corresponding to this LLVM type.
494  /// This is fixed by the LLVM operations except for the pointer size.  If
495  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
496  /// counterpart (e.g. structs), otherwise it will assert.
497  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
498    MVT VT = MVT::getMVT(Ty, AllowUnknown);
499    return VT == MVT::iPTR ? PointerTy : VT;
500  }
501
502  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
503  /// function arguments in the caller parameter area.  This is the actual
504  /// alignment, not its logarithm.
505  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
506
507  /// getRegisterType - Return the type of registers that this ValueType will
508  /// eventually require.
509  MVT getRegisterType(MVT VT) const {
510    if (VT.isSimple()) {
511      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
512      return RegisterTypeForVT[VT.getSimpleVT()];
513    }
514    if (VT.isVector()) {
515      MVT VT1, RegisterVT;
516      unsigned NumIntermediates;
517      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
518      return RegisterVT;
519    }
520    if (VT.isInteger()) {
521      return getRegisterType(getTypeToTransformTo(VT));
522    }
523    assert(0 && "Unsupported extended type!");
524    return MVT(); // Not reached
525  }
526
527  /// getNumRegisters - Return the number of registers that this ValueType will
528  /// eventually require.  This is one for any types promoted to live in larger
529  /// registers, but may be more than one for types (like i64) that are split
530  /// into pieces.  For types like i140, which are first promoted then expanded,
531  /// it is the number of registers needed to hold all the bits of the original
532  /// type.  For an i140 on a 32 bit machine this means 5 registers.
533  unsigned getNumRegisters(MVT VT) const {
534    if (VT.isSimple()) {
535      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
536      return NumRegistersForVT[VT.getSimpleVT()];
537    }
538    if (VT.isVector()) {
539      MVT VT1, VT2;
540      unsigned NumIntermediates;
541      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
542    }
543    if (VT.isInteger()) {
544      unsigned BitWidth = VT.getSizeInBits();
545      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
546      return (BitWidth + RegWidth - 1) / RegWidth;
547    }
548    assert(0 && "Unsupported extended type!");
549    return 0; // Not reached
550  }
551
552  /// ShouldShrinkFPConstant - If true, then instruction selection should
553  /// seek to shrink the FP constant of the specified type to a smaller type
554  /// in order to save space and / or reduce runtime.
555  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
556
557  /// hasTargetDAGCombine - If true, the target has custom DAG combine
558  /// transformations that it can perform for the specified node.
559  bool hasTargetDAGCombine(ISD::NodeType NT) const {
560    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
561    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
562  }
563
564  /// This function returns the maximum number of store operations permitted
565  /// to replace a call to llvm.memset. The value is set by the target at the
566  /// performance threshold for such a replacement.
567  /// @brief Get maximum # of store operations permitted for llvm.memset
568  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
569
570  /// This function returns the maximum number of store operations permitted
571  /// to replace a call to llvm.memcpy. The value is set by the target at the
572  /// performance threshold for such a replacement.
573  /// @brief Get maximum # of store operations permitted for llvm.memcpy
574  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
575
576  /// This function returns the maximum number of store operations permitted
577  /// to replace a call to llvm.memmove. The value is set by the target at the
578  /// performance threshold for such a replacement.
579  /// @brief Get maximum # of store operations permitted for llvm.memmove
580  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
581
582  /// This function returns true if the target allows unaligned memory accesses.
583  /// This is used, for example, in situations where an array copy/move/set is
584  /// converted to a sequence of store operations. It's use helps to ensure that
585  /// such replacements don't generate code that causes an alignment error
586  /// (trap) on the target machine.
587  /// @brief Determine if the target supports unaligned memory accesses.
588  bool allowsUnalignedMemoryAccesses() const {
589    return allowUnalignedMemoryAccesses;
590  }
591
592  /// getOptimalMemOpType - Returns the target specific optimal type for load
593  /// and store operations as a result of memset, memcpy, and memmove lowering.
594  /// It returns MVT::iAny if SelectionDAG should be responsible for
595  /// determining it.
596  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
597                                  bool isSrcConst, bool isSrcStr) const {
598    return MVT::iAny;
599  }
600
601  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
602  /// to implement llvm.setjmp.
603  bool usesUnderscoreSetJmp() const {
604    return UseUnderscoreSetJmp;
605  }
606
607  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
608  /// to implement llvm.longjmp.
609  bool usesUnderscoreLongJmp() const {
610    return UseUnderscoreLongJmp;
611  }
612
613  /// getStackPointerRegisterToSaveRestore - If a physical register, this
614  /// specifies the register that llvm.savestack/llvm.restorestack should save
615  /// and restore.
616  unsigned getStackPointerRegisterToSaveRestore() const {
617    return StackPointerRegisterToSaveRestore;
618  }
619
620  /// getExceptionAddressRegister - If a physical register, this returns
621  /// the register that receives the exception address on entry to a landing
622  /// pad.
623  unsigned getExceptionAddressRegister() const {
624    return ExceptionPointerRegister;
625  }
626
627  /// getExceptionSelectorRegister - If a physical register, this returns
628  /// the register that receives the exception typeid on entry to a landing
629  /// pad.
630  unsigned getExceptionSelectorRegister() const {
631    return ExceptionSelectorRegister;
632  }
633
634  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
635  /// set, the default is 200)
636  unsigned getJumpBufSize() const {
637    return JumpBufSize;
638  }
639
640  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
641  /// (if never set, the default is 0)
642  unsigned getJumpBufAlignment() const {
643    return JumpBufAlignment;
644  }
645
646  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
647  /// limit. Any block whose size is greater should not be predicated.
648  unsigned getIfCvtBlockSizeLimit() const {
649    return IfCvtBlockSizeLimit;
650  }
651
652  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
653  /// block to be considered for duplication. Any block whose size is greater
654  /// should not be duplicated to facilitate its predication.
655  unsigned getIfCvtDupBlockSizeLimit() const {
656    return IfCvtDupBlockSizeLimit;
657  }
658
659  /// getPrefLoopAlignment - return the preferred loop alignment.
660  ///
661  unsigned getPrefLoopAlignment() const {
662    return PrefLoopAlignment;
663  }
664
665  /// getPreIndexedAddressParts - returns true by value, base pointer and
666  /// offset pointer and addressing mode by reference if the node's address
667  /// can be legally represented as pre-indexed load / store address.
668  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
669                                         SDValue &Offset,
670                                         ISD::MemIndexedMode &AM,
671                                         SelectionDAG &DAG) {
672    return false;
673  }
674
675  /// getPostIndexedAddressParts - returns true by value, base pointer and
676  /// offset pointer and addressing mode by reference if this node can be
677  /// combined with a load / store to form a post-indexed load / store.
678  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
679                                          SDValue &Base, SDValue &Offset,
680                                          ISD::MemIndexedMode &AM,
681                                          SelectionDAG &DAG) {
682    return false;
683  }
684
685  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
686  /// jumptable.
687  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
688                                             SelectionDAG &DAG) const;
689
690  /// isOffsetFoldingLegal - Return true if folding a constant offset
691  /// with the given GlobalAddress is legal.  It is frequently not legal in
692  /// PIC relocation models.
693  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
694
695  //===--------------------------------------------------------------------===//
696  // TargetLowering Optimization Methods
697  //
698
699  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
700  /// SDValues for returning information from TargetLowering to its clients
701  /// that want to combine
702  struct TargetLoweringOpt {
703    SelectionDAG &DAG;
704    SDValue Old;
705    SDValue New;
706
707    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
708
709    bool CombineTo(SDValue O, SDValue N) {
710      Old = O;
711      New = N;
712      return true;
713    }
714
715    /// ShrinkDemandedConstant - Check to see if the specified operand of the
716    /// specified instruction is a constant integer.  If so, check to see if
717    /// there are any bits set in the constant that are not demanded.  If so,
718    /// shrink the constant and return true.
719    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
720  };
721
722  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
723  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
724  /// use this information to simplify Op, create a new simplified DAG node and
725  /// return true, returning the original and new nodes in Old and New.
726  /// Otherwise, analyze the expression and return a mask of KnownOne and
727  /// KnownZero bits for the expression (used to simplify the caller).
728  /// The KnownZero/One bits may only be accurate for those bits in the
729  /// DemandedMask.
730  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
731                            APInt &KnownZero, APInt &KnownOne,
732                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
733
734  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
735  /// Mask are known to be either zero or one and return them in the
736  /// KnownZero/KnownOne bitsets.
737  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
738                                              const APInt &Mask,
739                                              APInt &KnownZero,
740                                              APInt &KnownOne,
741                                              const SelectionDAG &DAG,
742                                              unsigned Depth = 0) const;
743
744  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
745  /// targets that want to expose additional information about sign bits to the
746  /// DAG Combiner.
747  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
748                                                   unsigned Depth = 0) const;
749
750  struct DAGCombinerInfo {
751    void *DC;  // The DAG Combiner object.
752    bool BeforeLegalize;
753    bool CalledByLegalizer;
754  public:
755    SelectionDAG &DAG;
756
757    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
758      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
759
760    bool isBeforeLegalize() const { return BeforeLegalize; }
761    bool isCalledByLegalizer() const { return CalledByLegalizer; }
762
763    void AddToWorklist(SDNode *N);
764    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To);
765    SDValue CombineTo(SDNode *N, SDValue Res);
766    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1);
767  };
768
769  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
770  /// and cc. If it is unable to simplify it, return a null SDValue.
771  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
772                          ISD::CondCode Cond, bool foldBooleans,
773                          DAGCombinerInfo &DCI) const;
774
775  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
776  /// node is a GlobalAddress + offset.
777  virtual bool
778  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
779
780  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
781  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
782  /// location that the 'Base' load is loading from.
783  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
784                         const MachineFrameInfo *MFI) const;
785
786  /// PerformDAGCombine - This method will be invoked for all target nodes and
787  /// for any target-independent nodes that the target has registered with
788  /// invoke it for.
789  ///
790  /// The semantics are as follows:
791  /// Return Value:
792  ///   SDValue.Val == 0   - No change was made
793  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
794  ///   otherwise          - N should be replaced by the returned Operand.
795  ///
796  /// In addition, methods provided by DAGCombinerInfo may be used to perform
797  /// more complex transformations.
798  ///
799  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
800
801  //===--------------------------------------------------------------------===//
802  // TargetLowering Configuration Methods - These methods should be invoked by
803  // the derived class constructor to configure this object for the target.
804  //
805
806protected:
807  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
808  /// GOT for PC-relative code.
809  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
810
811  /// setShiftAmountType - Describe the type that should be used for shift
812  /// amounts.  This type defaults to the pointer type.
813  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
814
815  /// setBooleanContents - Specify how the target extends the result of a
816  /// boolean value from i1 to a wider type.  See getBooleanContents.
817  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
818
819  /// setSchedulingPreference - Specify the target scheduling preference.
820  void setSchedulingPreference(SchedPreference Pref) {
821    SchedPreferenceInfo = Pref;
822  }
823
824  /// setShiftAmountFlavor - Describe how the target handles out of range shift
825  /// amounts.
826  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
827    ShiftAmtHandling = OORSA;
828  }
829
830  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
831  /// use _setjmp to implement llvm.setjmp or the non _ version.
832  /// Defaults to false.
833  void setUseUnderscoreSetJmp(bool Val) {
834    UseUnderscoreSetJmp = Val;
835  }
836
837  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
838  /// use _longjmp to implement llvm.longjmp or the non _ version.
839  /// Defaults to false.
840  void setUseUnderscoreLongJmp(bool Val) {
841    UseUnderscoreLongJmp = Val;
842  }
843
844  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
845  /// specifies the register that llvm.savestack/llvm.restorestack should save
846  /// and restore.
847  void setStackPointerRegisterToSaveRestore(unsigned R) {
848    StackPointerRegisterToSaveRestore = R;
849  }
850
851  /// setExceptionPointerRegister - If set to a physical register, this sets
852  /// the register that receives the exception address on entry to a landing
853  /// pad.
854  void setExceptionPointerRegister(unsigned R) {
855    ExceptionPointerRegister = R;
856  }
857
858  /// setExceptionSelectorRegister - If set to a physical register, this sets
859  /// the register that receives the exception typeid on entry to a landing
860  /// pad.
861  void setExceptionSelectorRegister(unsigned R) {
862    ExceptionSelectorRegister = R;
863  }
864
865  /// SelectIsExpensive - Tells the code generator not to expand operations
866  /// into sequences that use the select operations if possible.
867  void setSelectIsExpensive() { SelectIsExpensive = true; }
868
869  /// setIntDivIsCheap - Tells the code generator that integer divide is
870  /// expensive, and if possible, should be replaced by an alternate sequence
871  /// of instructions not containing an integer divide.
872  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
873
874  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
875  /// srl/add/sra for a signed divide by power of two, and let the target handle
876  /// it.
877  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
878
879  /// addRegisterClass - Add the specified register class as an available
880  /// regclass for the specified value type.  This indicates the selector can
881  /// handle values of that class natively.
882  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
883    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
884    AvailableRegClasses.push_back(std::make_pair(VT, RC));
885    RegClassForVT[VT.getSimpleVT()] = RC;
886  }
887
888  /// computeRegisterProperties - Once all of the register classes are added,
889  /// this allows us to compute derived properties we expose.
890  void computeRegisterProperties();
891
892  /// setOperationAction - Indicate that the specified operation does not work
893  /// with the specified type and indicate what to do about it.
894  void setOperationAction(unsigned Op, MVT VT,
895                          LegalizeAction Action) {
896    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
897           Op < array_lengthof(OpActions) && "Table isn't big enough!");
898    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
899    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
900  }
901
902  /// setLoadExtAction - Indicate that the specified load with extension does
903  /// not work with the with specified type and indicate what to do about it.
904  void setLoadExtAction(unsigned ExtType, MVT VT,
905                      LegalizeAction Action) {
906    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
907           ExtType < array_lengthof(LoadExtActions) &&
908           "Table isn't big enough!");
909    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
910    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
911  }
912
913  /// setTruncStoreAction - Indicate that the specified truncating store does
914  /// not work with the with specified type and indicate what to do about it.
915  void setTruncStoreAction(MVT ValVT, MVT MemVT,
916                           LegalizeAction Action) {
917    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
918           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
919           "Table isn't big enough!");
920    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
921                                                MemVT.getSimpleVT()*2);
922    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
923      MemVT.getSimpleVT()*2;
924  }
925
926  /// setIndexedLoadAction - Indicate that the specified indexed load does or
927  /// does not work with the with specified type and indicate what to do abort
928  /// it. NOTE: All indexed mode loads are initialized to Expand in
929  /// TargetLowering.cpp
930  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
931                            LegalizeAction Action) {
932    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
933           IdxMode < array_lengthof(IndexedModeActions[0]) &&
934           "Table isn't big enough!");
935    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
936    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
937  }
938
939  /// setIndexedStoreAction - Indicate that the specified indexed store does or
940  /// does not work with the with specified type and indicate what to do about
941  /// it. NOTE: All indexed mode stores are initialized to Expand in
942  /// TargetLowering.cpp
943  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
944                             LegalizeAction Action) {
945    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
946           IdxMode < array_lengthof(IndexedModeActions[1]) &&
947           "Table isn't big enough!");
948    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
949    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
950  }
951
952  /// setConvertAction - Indicate that the specified conversion does or does
953  /// not work with the with specified type and indicate what to do about it.
954  void setConvertAction(MVT FromVT, MVT ToVT,
955                        LegalizeAction Action) {
956    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
957           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
958           "Table isn't big enough!");
959    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
960                                              ToVT.getSimpleVT()*2);
961    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
962      ToVT.getSimpleVT()*2;
963  }
964
965  /// setCondCodeAction - Indicate that the specified condition code is or isn't
966  /// supported on the target and indicate what to do about it.
967  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
968    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
969           (unsigned)CC < array_lengthof(CondCodeActions) &&
970           "Table isn't big enough!");
971    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
972    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
973  }
974
975  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
976  /// promotion code defaults to trying a larger integer/fp until it can find
977  /// one that works.  If that default is insufficient, this method can be used
978  /// by the target to override the default.
979  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
980    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
981      DestVT.getSimpleVT();
982  }
983
984  /// addLegalFPImmediate - Indicate that this target can instruction select
985  /// the specified FP immediate natively.
986  void addLegalFPImmediate(const APFloat& Imm) {
987    LegalFPImmediates.push_back(Imm);
988  }
989
990  /// setTargetDAGCombine - Targets should invoke this method for each target
991  /// independent node that they want to provide a custom DAG combiner for by
992  /// implementing the PerformDAGCombine virtual method.
993  void setTargetDAGCombine(ISD::NodeType NT) {
994    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
995    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
996  }
997
998  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
999  /// bytes); default is 200
1000  void setJumpBufSize(unsigned Size) {
1001    JumpBufSize = Size;
1002  }
1003
1004  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1005  /// alignment (in bytes); default is 0
1006  void setJumpBufAlignment(unsigned Align) {
1007    JumpBufAlignment = Align;
1008  }
1009
1010  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1011  /// limit (in number of instructions); default is 2.
1012  void setIfCvtBlockSizeLimit(unsigned Limit) {
1013    IfCvtBlockSizeLimit = Limit;
1014  }
1015
1016  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1017  /// of instructions) to be considered for code duplication during
1018  /// if-conversion; default is 2.
1019  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1020    IfCvtDupBlockSizeLimit = Limit;
1021  }
1022
1023  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1024  /// alignment is zero, it means the target does not care about loop alignment.
1025  void setPrefLoopAlignment(unsigned Align) {
1026    PrefLoopAlignment = Align;
1027  }
1028
1029public:
1030
1031  virtual const TargetSubtarget *getSubtarget() {
1032    assert(0 && "Not Implemented");
1033    return NULL;    // this is here to silence compiler errors
1034  }
1035  //===--------------------------------------------------------------------===//
1036  // Lowering methods - These methods must be implemented by targets so that
1037  // the SelectionDAGLowering code knows how to lower these.
1038  //
1039
1040  /// LowerArguments - This hook must be implemented to indicate how we should
1041  /// lower the arguments for the specified function, into the specified DAG.
1042  virtual void
1043  LowerArguments(Function &F, SelectionDAG &DAG,
1044                 SmallVectorImpl<SDValue>& ArgValues);
1045
1046  /// LowerCallTo - This hook lowers an abstract call to a function into an
1047  /// actual call.  This returns a pair of operands.  The first element is the
1048  /// return value for the function (if RetTy is not VoidTy).  The second
1049  /// element is the outgoing token chain.
1050  struct ArgListEntry {
1051    SDValue Node;
1052    const Type* Ty;
1053    bool isSExt  : 1;
1054    bool isZExt  : 1;
1055    bool isInReg : 1;
1056    bool isSRet  : 1;
1057    bool isNest  : 1;
1058    bool isByVal : 1;
1059    uint16_t Alignment;
1060
1061    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1062      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1063  };
1064  typedef std::vector<ArgListEntry> ArgListTy;
1065  virtual std::pair<SDValue, SDValue>
1066  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1067              bool isVarArg, bool isInreg, unsigned CallingConv,
1068              bool isTailCall, SDValue Callee, ArgListTy &Args,
1069              SelectionDAG &DAG);
1070
1071  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1072  /// memcpy. This can be used by targets to provide code sequences for cases
1073  /// that don't fit the target's parameters for simple loads/stores and can be
1074  /// more efficient than using a library call. This function can return a null
1075  /// SDValue if the target declines to use custom code and a different
1076  /// lowering strategy should be used.
1077  ///
1078  /// If AlwaysInline is true, the size is constant and the target should not
1079  /// emit any calls and is strongly encouraged to attempt to emit inline code
1080  /// even if it is beyond the usual threshold because this intrinsic is being
1081  /// expanded in a place where calls are not feasible (e.g. within the prologue
1082  /// for another call). If the target chooses to decline an AlwaysInline
1083  /// request here, legalize will resort to using simple loads and stores.
1084  virtual SDValue
1085  EmitTargetCodeForMemcpy(SelectionDAG &DAG,
1086                          SDValue Chain,
1087                          SDValue Op1, SDValue Op2,
1088                          SDValue Op3, unsigned Align,
1089                          bool AlwaysInline,
1090                          const Value *DstSV, uint64_t DstOff,
1091                          const Value *SrcSV, uint64_t SrcOff) {
1092    return SDValue();
1093  }
1094
1095  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1096  /// memmove. This can be used by targets to provide code sequences for cases
1097  /// that don't fit the target's parameters for simple loads/stores and can be
1098  /// more efficient than using a library call. This function can return a null
1099  /// SDValue if the target declines to use custom code and a different
1100  /// lowering strategy should be used.
1101  virtual SDValue
1102  EmitTargetCodeForMemmove(SelectionDAG &DAG,
1103                           SDValue Chain,
1104                           SDValue Op1, SDValue Op2,
1105                           SDValue Op3, unsigned Align,
1106                           const Value *DstSV, uint64_t DstOff,
1107                           const Value *SrcSV, uint64_t SrcOff) {
1108    return SDValue();
1109  }
1110
1111  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1112  /// memset. This can be used by targets to provide code sequences for cases
1113  /// that don't fit the target's parameters for simple stores and can be more
1114  /// efficient than using a library call. This function can return a null
1115  /// SDValue if the target declines to use custom code and a different
1116  /// lowering strategy should be used.
1117  virtual SDValue
1118  EmitTargetCodeForMemset(SelectionDAG &DAG,
1119                          SDValue Chain,
1120                          SDValue Op1, SDValue Op2,
1121                          SDValue Op3, unsigned Align,
1122                          const Value *DstSV, uint64_t DstOff) {
1123    return SDValue();
1124  }
1125
1126  /// LowerOperation - This callback is invoked for operations that are
1127  /// unsupported by the target, which are registered to use 'custom' lowering,
1128  /// and whose defined values are all legal.
1129  /// If the target has no operations that require custom lowering, it need not
1130  /// implement this.  The default implementation of this aborts.
1131  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1132
1133  /// ReplaceNodeResults - This callback is invoked for operations that are
1134  /// unsupported by the target, which are registered to use 'custom' lowering,
1135  /// and whose result type is illegal.  This must return a node whose results
1136  /// precisely match the results of the input node.  This typically involves a
1137  /// MERGE_VALUES node and/or BUILD_PAIR.
1138  ///
1139  /// If the target has no operations that require custom lowering, it need not
1140  /// implement this.  The default implementation aborts.
1141  virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
1142    assert(0 && "ReplaceNodeResults not implemented for this target!");
1143    return 0;
1144  }
1145
1146  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1147  /// tail call optimization. Targets which want to do tail call optimization
1148  /// should override this function.
1149  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1150                                                 SDValue Ret,
1151                                                 SelectionDAG &DAG) const {
1152    return false;
1153  }
1154
1155  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1156  /// preceeds the RET node and whether the return uses the result of the node
1157  /// or is a void return. This function can be used by the target to determine
1158  /// eligiblity of tail call optimization.
1159  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
1160    unsigned NumOps = Ret.getNumOperands();
1161    if ((NumOps == 1 &&
1162       (Ret.getOperand(0) == SDValue(TheCall,1) ||
1163        Ret.getOperand(0) == SDValue(TheCall,0))) ||
1164      (NumOps > 1 &&
1165       Ret.getOperand(0) == SDValue(TheCall,
1166                                    TheCall->getNumValues()-1) &&
1167       Ret.getOperand(1) == SDValue(TheCall,0)))
1168      return true;
1169    return false;
1170  }
1171
1172  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1173  /// it exists skip possible ISD:TokenFactor.
1174  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1175                                                 unsigned TailCallNodeOpCode) {
1176    if (Chain.getOpcode() == TailCallNodeOpCode) {
1177      return Chain;
1178    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1179      if (Chain.getNumOperands() &&
1180          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1181        return Chain.getOperand(0);
1182    }
1183    return Chain;
1184  }
1185
1186  /// getTargetNodeName() - This method returns the name of a target specific
1187  /// DAG node.
1188  virtual const char *getTargetNodeName(unsigned Opcode) const;
1189
1190  /// createFastISel - This method returns a target specific FastISel object,
1191  /// or null if the target does not support "fast" ISel.
1192  virtual FastISel *
1193  createFastISel(MachineFunction &,
1194                 MachineModuleInfo *,
1195                 DenseMap<const Value *, unsigned> &,
1196                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1197                 DenseMap<const AllocaInst *, int> &
1198#ifndef NDEBUG
1199                 , SmallSet<Instruction*, 8> &CatchInfoLost
1200#endif
1201                 ) {
1202    return 0;
1203  }
1204
1205  //===--------------------------------------------------------------------===//
1206  // Inline Asm Support hooks
1207  //
1208
1209  enum ConstraintType {
1210    C_Register,            // Constraint represents specific register(s).
1211    C_RegisterClass,       // Constraint represents any of register(s) in class.
1212    C_Memory,              // Memory constraint.
1213    C_Other,               // Something else.
1214    C_Unknown              // Unsupported constraint.
1215  };
1216
1217  /// AsmOperandInfo - This contains information for each constraint that we are
1218  /// lowering.
1219  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1220    /// ConstraintCode - This contains the actual string for the code, like "m".
1221    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1222    /// most closely matches the operand.
1223    std::string ConstraintCode;
1224
1225    /// ConstraintType - Information about the constraint code, e.g. Register,
1226    /// RegisterClass, Memory, Other, Unknown.
1227    TargetLowering::ConstraintType ConstraintType;
1228
1229    /// CallOperandval - If this is the result output operand or a
1230    /// clobber, this is null, otherwise it is the incoming operand to the
1231    /// CallInst.  This gets modified as the asm is processed.
1232    Value *CallOperandVal;
1233
1234    /// ConstraintVT - The ValueType for the operand value.
1235    MVT ConstraintVT;
1236
1237    /// isMatchingInputConstraint - Return true of this is an input operand that
1238    /// is a matching constraint like "4".
1239    bool isMatchingInputConstraint() const;
1240
1241    /// getMatchedOperand - If this is an input matching constraint, this method
1242    /// returns the output operand it matches.
1243    unsigned getMatchedOperand() const;
1244
1245    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1246      : InlineAsm::ConstraintInfo(info),
1247        ConstraintType(TargetLowering::C_Unknown),
1248        CallOperandVal(0), ConstraintVT(MVT::Other) {
1249    }
1250  };
1251
1252  /// ComputeConstraintToUse - Determines the constraint code and constraint
1253  /// type to use for the specific AsmOperandInfo, setting
1254  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1255  /// being passed in is available, it can be passed in as Op, otherwise an
1256  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1257  /// constraint of the inline asm instruction being processed is 'm'.
1258  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1259                                      SDValue Op,
1260                                      bool hasMemory,
1261                                      SelectionDAG *DAG = 0) const;
1262
1263  /// getConstraintType - Given a constraint, return the type of constraint it
1264  /// is for this target.
1265  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1266
1267  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1268  /// return a list of registers that can be used to satisfy the constraint.
1269  /// This should only be used for C_RegisterClass constraints.
1270  virtual std::vector<unsigned>
1271  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1272                                    MVT VT) const;
1273
1274  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1275  /// {edx}), return the register number and the register class for the
1276  /// register.
1277  ///
1278  /// Given a register class constraint, like 'r', if this corresponds directly
1279  /// to an LLVM register class, return a register of 0 and the register class
1280  /// pointer.
1281  ///
1282  /// This should only be used for C_Register constraints.  On error,
1283  /// this returns a register number of 0 and a null register class pointer..
1284  virtual std::pair<unsigned, const TargetRegisterClass*>
1285    getRegForInlineAsmConstraint(const std::string &Constraint,
1286                                 MVT VT) const;
1287
1288  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1289  /// with another that has more specific requirements based on the type of the
1290  /// corresponding operand.  This returns null if there is no replacement to
1291  /// make.
1292  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1293
1294  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1295  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1296  /// it means one of the asm constraint of the inline asm instruction being
1297  /// processed is 'm'.
1298  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1299                                            bool hasMemory,
1300                                            std::vector<SDValue> &Ops,
1301                                            SelectionDAG &DAG) const;
1302
1303  //===--------------------------------------------------------------------===//
1304  // Scheduler hooks
1305  //
1306
1307  // EmitInstrWithCustomInserter - This method should be implemented by targets
1308  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1309  // instructions are special in various ways, which require special support to
1310  // insert.  The specified MachineInstr is created but not inserted into any
1311  // basic blocks, and the scheduler passes ownership of it to this method.
1312  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1313                                                        MachineBasicBlock *MBB);
1314
1315  //===--------------------------------------------------------------------===//
1316  // Addressing mode description hooks (used by LSR etc).
1317  //
1318
1319  /// AddrMode - This represents an addressing mode of:
1320  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1321  /// If BaseGV is null,  there is no BaseGV.
1322  /// If BaseOffs is zero, there is no base offset.
1323  /// If HasBaseReg is false, there is no base register.
1324  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1325  /// no scale.
1326  ///
1327  struct AddrMode {
1328    GlobalValue *BaseGV;
1329    int64_t      BaseOffs;
1330    bool         HasBaseReg;
1331    int64_t      Scale;
1332    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1333  };
1334
1335  /// isLegalAddressingMode - Return true if the addressing mode represented by
1336  /// AM is legal for this target, for a load/store of the specified type.
1337  /// TODO: Handle pre/postinc as well.
1338  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1339
1340  /// isTruncateFree - Return true if it's free to truncate a value of
1341  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1342  /// register EAX to i16 by referencing its sub-register AX.
1343  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1344    return false;
1345  }
1346
1347  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1348    return false;
1349  }
1350
1351  //===--------------------------------------------------------------------===//
1352  // Div utility functions
1353  //
1354  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1355                      std::vector<SDNode*>* Created) const;
1356  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1357                      std::vector<SDNode*>* Created) const;
1358
1359
1360  //===--------------------------------------------------------------------===//
1361  // Runtime Library hooks
1362  //
1363
1364  /// setLibcallName - Rename the default libcall routine name for the specified
1365  /// libcall.
1366  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1367    LibcallRoutineNames[Call] = Name;
1368  }
1369
1370  /// getLibcallName - Get the libcall routine name for the specified libcall.
1371  ///
1372  const char *getLibcallName(RTLIB::Libcall Call) const {
1373    return LibcallRoutineNames[Call];
1374  }
1375
1376  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1377  /// result of the comparison libcall against zero.
1378  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1379    CmpLibcallCCs[Call] = CC;
1380  }
1381
1382  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1383  /// the comparison libcall against zero.
1384  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1385    return CmpLibcallCCs[Call];
1386  }
1387
1388private:
1389  TargetMachine &TM;
1390  const TargetData *TD;
1391
1392  /// PointerTy - The type to use for pointers, usually i32 or i64.
1393  ///
1394  MVT PointerTy;
1395
1396  /// IsLittleEndian - True if this is a little endian target.
1397  ///
1398  bool IsLittleEndian;
1399
1400  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1401  ///
1402  bool UsesGlobalOffsetTable;
1403
1404  /// SelectIsExpensive - Tells the code generator not to expand operations
1405  /// into sequences that use the select operations if possible.
1406  bool SelectIsExpensive;
1407
1408  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1409  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1410  /// a real cost model is in place.  If we ever optimize for size, this will be
1411  /// set to true unconditionally.
1412  bool IntDivIsCheap;
1413
1414  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1415  /// srl/add/sra for a signed divide by power of two, and let the target handle
1416  /// it.
1417  bool Pow2DivIsCheap;
1418
1419  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1420  /// llvm.setjmp.  Defaults to false.
1421  bool UseUnderscoreSetJmp;
1422
1423  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1424  /// llvm.longjmp.  Defaults to false.
1425  bool UseUnderscoreLongJmp;
1426
1427  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1428  /// PointerTy is.
1429  MVT ShiftAmountTy;
1430
1431  OutOfRangeShiftAmount ShiftAmtHandling;
1432
1433  /// BooleanContents - Information about the contents of the high-bits in
1434  /// boolean values held in a type wider than i1.  See getBooleanContents.
1435  BooleanContent BooleanContents;
1436
1437  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1438  /// total cycles or lowest register usage.
1439  SchedPreference SchedPreferenceInfo;
1440
1441  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1442  unsigned JumpBufSize;
1443
1444  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1445  /// buffers
1446  unsigned JumpBufAlignment;
1447
1448  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1449  /// if-converted.
1450  unsigned IfCvtBlockSizeLimit;
1451
1452  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1453  /// duplicated during if-conversion.
1454  unsigned IfCvtDupBlockSizeLimit;
1455
1456  /// PrefLoopAlignment - The perferred loop alignment.
1457  ///
1458  unsigned PrefLoopAlignment;
1459
1460  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1461  /// specifies the register that llvm.savestack/llvm.restorestack should save
1462  /// and restore.
1463  unsigned StackPointerRegisterToSaveRestore;
1464
1465  /// ExceptionPointerRegister - If set to a physical register, this specifies
1466  /// the register that receives the exception address on entry to a landing
1467  /// pad.
1468  unsigned ExceptionPointerRegister;
1469
1470  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1471  /// the register that receives the exception typeid on entry to a landing
1472  /// pad.
1473  unsigned ExceptionSelectorRegister;
1474
1475  /// RegClassForVT - This indicates the default register class to use for
1476  /// each ValueType the target supports natively.
1477  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1478  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1479  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1480
1481  /// TransformToType - For any value types we are promoting or expanding, this
1482  /// contains the value type that we are changing to.  For Expanded types, this
1483  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1484  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1485  /// by the system, this holds the same type (e.g. i32 -> i32).
1486  MVT TransformToType[MVT::LAST_VALUETYPE];
1487
1488  // Defines the capacity of the TargetLowering::OpActions table
1489  static const int OpActionsCapacity = 218;
1490
1491  /// OpActions - For each operation and each value type, keep a LegalizeAction
1492  /// that indicates how instruction selection should deal with the operation.
1493  /// Most operations are Legal (aka, supported natively by the target), but
1494  /// operations that are not should be described.  Note that operations on
1495  /// non-legal value types are not described here.
1496  uint64_t OpActions[OpActionsCapacity];
1497
1498  /// LoadExtActions - For each load of load extension type and each value type,
1499  /// keep a LegalizeAction that indicates how instruction selection should deal
1500  /// with the load.
1501  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1502
1503  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1504  /// indicates how instruction selection should deal with the store.
1505  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1506
1507  /// IndexedModeActions - For each indexed mode and each value type, keep a
1508  /// pair of LegalizeAction that indicates how instruction selection should
1509  /// deal with the load / store.
1510  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1511
1512  /// ConvertActions - For each conversion from source type to destination type,
1513  /// keep a LegalizeAction that indicates how instruction selection should
1514  /// deal with the conversion.
1515  /// Currently, this is used only for floating->floating conversions
1516  /// (FP_EXTEND and FP_ROUND).
1517  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1518
1519  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1520  /// LegalizeAction that indicates how instruction selection should
1521  /// deal with the condition code.
1522  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1523
1524  ValueTypeActionImpl ValueTypeActions;
1525
1526  std::vector<APFloat> LegalFPImmediates;
1527
1528  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1529
1530  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1531  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1532  /// which sets a bit in this array.
1533  unsigned char
1534  TargetDAGCombineArray[OpActionsCapacity/(sizeof(unsigned char)*8)];
1535
1536  /// PromoteToType - For operations that must be promoted to a specific type,
1537  /// this holds the destination type.  This map should be sparse, so don't hold
1538  /// it as an array.
1539  ///
1540  /// Targets add entries to this map with AddPromotedToType(..), clients access
1541  /// this with getTypeToPromoteTo(..).
1542  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1543    PromoteToType;
1544
1545  /// LibcallRoutineNames - Stores the name each libcall.
1546  ///
1547  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1548
1549  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1550  /// of each of the comparison libcall against zero.
1551  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1552
1553protected:
1554  /// When lowering @llvm.memset this field specifies the maximum number of
1555  /// store operations that may be substituted for the call to memset. Targets
1556  /// must set this value based on the cost threshold for that target. Targets
1557  /// should assume that the memset will be done using as many of the largest
1558  /// store operations first, followed by smaller ones, if necessary, per
1559  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1560  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1561  /// store.  This only applies to setting a constant array of a constant size.
1562  /// @brief Specify maximum number of store instructions per memset call.
1563  unsigned maxStoresPerMemset;
1564
1565  /// When lowering @llvm.memcpy this field specifies the maximum number of
1566  /// store operations that may be substituted for a call to memcpy. Targets
1567  /// must set this value based on the cost threshold for that target. Targets
1568  /// should assume that the memcpy will be done using as many of the largest
1569  /// store operations first, followed by smaller ones, if necessary, per
1570  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1571  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1572  /// and one 1-byte store. This only applies to copying a constant array of
1573  /// constant size.
1574  /// @brief Specify maximum bytes of store instructions per memcpy call.
1575  unsigned maxStoresPerMemcpy;
1576
1577  /// When lowering @llvm.memmove this field specifies the maximum number of
1578  /// store instructions that may be substituted for a call to memmove. Targets
1579  /// must set this value based on the cost threshold for that target. Targets
1580  /// should assume that the memmove will be done using as many of the largest
1581  /// store operations first, followed by smaller ones, if necessary, per
1582  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1583  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1584  /// applies to copying a constant array of constant size.
1585  /// @brief Specify maximum bytes of store instructions per memmove call.
1586  unsigned maxStoresPerMemmove;
1587
1588  /// This field specifies whether the target machine permits unaligned memory
1589  /// accesses.  This is used, for example, to determine the size of store
1590  /// operations when copying small arrays and other similar tasks.
1591  /// @brief Indicate whether the target permits unaligned memory accesses.
1592  bool allowUnalignedMemoryAccesses;
1593};
1594} // end llvm namespace
1595
1596#endif
1597