TargetLowering.h revision 2b0002b579dba5604a2673bbee2cd9969e183a71
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71/// This base class for TargetLowering contains the SelectionDAG-independent
72/// parts that can be used from the rest of CodeGen.
73class TargetLoweringBase {
74  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
75  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
76
77public:
78  /// This enum indicates whether operations are valid for a target, and if not,
79  /// what action should be used to make them valid.
80  enum LegalizeAction {
81    Legal,      // The target natively supports this operation.
82    Promote,    // This operation should be executed in a larger type.
83    Expand,     // Try to expand this to other ops, otherwise use a libcall.
84    Custom      // Use the LowerOperation hook to implement custom lowering.
85  };
86
87  /// This enum indicates whether a types are legal for a target, and if not,
88  /// what action should be used to make them valid.
89  enum LegalizeTypeAction {
90    TypeLegal,           // The target natively supports this type.
91    TypePromoteInteger,  // Replace this integer with a larger one.
92    TypeExpandInteger,   // Split this integer into two of half the size.
93    TypeSoftenFloat,     // Convert this float to a same size integer type.
94    TypeExpandFloat,     // Split this float into two of half the size.
95    TypeScalarizeVector, // Replace this one-element vector with its element.
96    TypeSplitVector,     // Split this vector into two of half the size.
97    TypeWidenVector      // This vector should be widened into a larger vector.
98  };
99
100  /// LegalizeKind holds the legalization kind that needs to happen to EVT
101  /// in order to type-legalize it.
102  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
103
104  /// Enum that describes how the target represents true/false values.
105  enum BooleanContent {
106    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
107    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
108    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
109  };
110
111  /// Enum that describes what type of support for selects the target has.
112  enum SelectSupportKind {
113    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
114    ScalarCondVectorVal,  // The target supports selects with a scalar condition
115                          // and vector values (ex: cmov).
116    VectorMaskSelect      // The target supports vector selects with a vector
117                          // mask (ex: x86 blends).
118  };
119
120  static ISD::NodeType getExtendForContent(BooleanContent Content) {
121    switch (Content) {
122    case UndefinedBooleanContent:
123      // Extend by adding rubbish bits.
124      return ISD::ANY_EXTEND;
125    case ZeroOrOneBooleanContent:
126      // Extend by adding zero bits.
127      return ISD::ZERO_EXTEND;
128    case ZeroOrNegativeOneBooleanContent:
129      // Extend by copying the sign bit.
130      return ISD::SIGN_EXTEND;
131    }
132    llvm_unreachable("Invalid content kind");
133  }
134
135  /// NOTE: The constructor takes ownership of TLOF.
136  explicit TargetLoweringBase(const TargetMachine &TM,
137                              const TargetLoweringObjectFile *TLOF);
138  virtual ~TargetLoweringBase();
139
140protected:
141  /// \brief Initialize all of the actions to default values.
142  void initActions();
143
144public:
145  const TargetMachine &getTargetMachine() const { return TM; }
146  const DataLayout *getDataLayout() const { return TD; }
147  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
148
149  bool isBigEndian() const { return !IsLittleEndian; }
150  bool isLittleEndian() const { return IsLittleEndian; }
151  // Return the pointer type for the given address space, defaults to
152  // the pointer type from the data layout.
153  // FIXME: The default needs to be removed once all the code is updated.
154  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
155  unsigned getPointerSizeInBits(uint32_t AS = 0) const;
156  unsigned getPointerTypeSizeInBits(Type *Ty) const;
157  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
158
159  EVT getShiftAmountTy(EVT LHSTy) const;
160
161  /// Returns the type to be used for the index operand of:
162  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
163  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
164  virtual MVT getVectorIdxTy() const {
165    return getPointerTy();
166  }
167
168  /// Return true if the select operation is expensive for this target.
169  bool isSelectExpensive() const { return SelectIsExpensive; }
170
171  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
172    return true;
173  }
174
175  /// Return true if a vector of the given type should be split
176  /// (TypeSplitVector) instead of promoted (TypePromoteInteger) during type
177  /// legalization.
178  virtual bool shouldSplitVectorElementType(EVT /*VT*/) const { return false; }
179
180  /// Return true if integer divide is usually cheaper than a sequence of
181  /// several shifts, adds, and multiplies for this target.
182  bool isIntDivCheap() const { return IntDivIsCheap; }
183
184  /// Returns true if target has indicated at least one type should be bypassed.
185  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
186
187  /// Returns map of slow types for division or remainder with corresponding
188  /// fast types
189  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
190    return BypassSlowDivWidths;
191  }
192
193  /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
194  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
195
196  /// Return true if Flow Control is an expensive operation that should be
197  /// avoided.
198  bool isJumpExpensive() const { return JumpIsExpensive; }
199
200  /// Return true if selects are only cheaper than branches if the branch is
201  /// unlikely to be predicted right.
202  bool isPredictableSelectExpensive() const {
203    return PredictableSelectIsExpensive;
204  }
205
206  /// Return the ValueType of the result of SETCC operations.  Also used to
207  /// obtain the target's preferred type for the condition operand of SELECT and
208  /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
209  /// since there are no other operands to get a type hint from.
210  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
211
212  /// Return the ValueType for comparison libcalls. Comparions libcalls include
213  /// floating point comparion calls, and Ordered/Unordered check calls on
214  /// floating point numbers.
215  virtual
216  MVT::SimpleValueType getCmpLibcallReturnType() const;
217
218  /// For targets without i1 registers, this gives the nature of the high-bits
219  /// of boolean values held in types wider than i1.
220  ///
221  /// "Boolean values" are special true/false values produced by nodes like
222  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
223  /// Not to be confused with general values promoted from i1.  Some cpus
224  /// distinguish between vectors of boolean and scalars; the isVec parameter
225  /// selects between the two kinds.  For example on X86 a scalar boolean should
226  /// be zero extended from i1, while the elements of a vector of booleans
227  /// should be sign extended from i1.
228  BooleanContent getBooleanContents(bool isVec) const {
229    return isVec ? BooleanVectorContents : BooleanContents;
230  }
231
232  /// Return target scheduling preference.
233  Sched::Preference getSchedulingPreference() const {
234    return SchedPreferenceInfo;
235  }
236
237  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
238  /// for different nodes. This function returns the preference (or none) for
239  /// the given node.
240  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
241    return Sched::None;
242  }
243
244  /// Return the register class that should be used for the specified value
245  /// type.
246  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
247    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
248    assert(RC && "This value type is not natively supported!");
249    return RC;
250  }
251
252  /// Return the 'representative' register class for the specified value
253  /// type.
254  ///
255  /// The 'representative' register class is the largest legal super-reg
256  /// register class for the register class of the value type.  For example, on
257  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
258  /// register class is GR64 on x86_64.
259  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
260    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
261    return RC;
262  }
263
264  /// Return the cost of the 'representative' register class for the specified
265  /// value type.
266  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
267    return RepRegClassCostForVT[VT.SimpleTy];
268  }
269
270  /// Return true if the target has native support for the specified value type.
271  /// This means that it has a register that directly holds it without
272  /// promotions or expansions.
273  bool isTypeLegal(EVT VT) const {
274    assert(!VT.isSimple() ||
275           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
276    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
277  }
278
279  class ValueTypeActionImpl {
280    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
281    /// that indicates how instruction selection should deal with the type.
282    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
283
284  public:
285    ValueTypeActionImpl() {
286      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
287    }
288
289    LegalizeTypeAction getTypeAction(MVT VT) const {
290      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
291    }
292
293    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
294      unsigned I = VT.SimpleTy;
295      ValueTypeActions[I] = Action;
296    }
297  };
298
299  const ValueTypeActionImpl &getValueTypeActions() const {
300    return ValueTypeActions;
301  }
302
303  /// Return how we should legalize values of this type, either it is already
304  /// legal (return 'Legal') or we need to promote it to a larger type (return
305  /// 'Promote'), or we need to expand it into multiple registers of smaller
306  /// integer type (return 'Expand').  'Custom' is not an option.
307  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
308    return getTypeConversion(Context, VT).first;
309  }
310  LegalizeTypeAction getTypeAction(MVT VT) const {
311    return ValueTypeActions.getTypeAction(VT);
312  }
313
314  /// For types supported by the target, this is an identity function.  For
315  /// types that must be promoted to larger types, this returns the larger type
316  /// to promote to.  For integer types that are larger than the largest integer
317  /// register, this contains one step in the expansion to get to the smaller
318  /// register. For illegal floating point types, this returns the integer type
319  /// to transform to.
320  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
321    return getTypeConversion(Context, VT).second;
322  }
323
324  /// For types supported by the target, this is an identity function.  For
325  /// types that must be expanded (i.e. integer types that are larger than the
326  /// largest integer register or illegal floating point types), this returns
327  /// the largest legal type it will be expanded to.
328  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
329    assert(!VT.isVector());
330    while (true) {
331      switch (getTypeAction(Context, VT)) {
332      case TypeLegal:
333        return VT;
334      case TypeExpandInteger:
335        VT = getTypeToTransformTo(Context, VT);
336        break;
337      default:
338        llvm_unreachable("Type is not legal nor is it to be expanded!");
339      }
340    }
341  }
342
343  /// Vector types are broken down into some number of legal first class types.
344  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
345  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
346  /// turns into 4 EVT::i32 values with both PPC and X86.
347  ///
348  /// This method returns the number of registers needed, and the VT for each
349  /// register.  It also returns the VT and quantity of the intermediate values
350  /// before they are promoted/expanded.
351  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
352                                  EVT &IntermediateVT,
353                                  unsigned &NumIntermediates,
354                                  MVT &RegisterVT) const;
355
356  struct IntrinsicInfo {
357    unsigned     opc;         // target opcode
358    EVT          memVT;       // memory VT
359    const Value* ptrVal;      // value representing memory location
360    int          offset;      // offset off of ptrVal
361    unsigned     align;       // alignment
362    bool         vol;         // is volatile?
363    bool         readMem;     // reads memory?
364    bool         writeMem;    // writes memory?
365  };
366
367  /// Given an intrinsic, checks if on the target the intrinsic will need to map
368  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
369  /// true and store the intrinsic information into the IntrinsicInfo that was
370  /// passed to the function.
371  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
372                                  unsigned /*Intrinsic*/) const {
373    return false;
374  }
375
376  /// Returns true if the target can instruction select the specified FP
377  /// immediate natively. If false, the legalizer will materialize the FP
378  /// immediate as a load from a constant pool.
379  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
380    return false;
381  }
382
383  /// Targets can use this to indicate that they only support *some*
384  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
385  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
386  /// legal.
387  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
388                                  EVT /*VT*/) const {
389    return true;
390  }
391
392  /// Returns true if the operation can trap for the value type.
393  ///
394  /// VT must be a legal type. By default, we optimistically assume most
395  /// operations don't trap except for divide and remainder.
396  virtual bool canOpTrap(unsigned Op, EVT VT) const;
397
398  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
399  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
400  /// a VAND with a constant pool entry.
401  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
402                                      EVT /*VT*/) const {
403    return false;
404  }
405
406  /// Return how this operation should be treated: either it is legal, needs to
407  /// be promoted to a larger size, needs to be expanded to some other code
408  /// sequence, or the target has a custom expander for it.
409  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
410    if (VT.isExtended()) return Expand;
411    // If a target-specific SDNode requires legalization, require the target
412    // to provide custom legalization for it.
413    if (Op > array_lengthof(OpActions[0])) return Custom;
414    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
415    return (LegalizeAction)OpActions[I][Op];
416  }
417
418  /// Return true if the specified operation is legal on this target or can be
419  /// made legal with custom lowering. This is used to help guide high-level
420  /// lowering decisions.
421  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
422    return (VT == MVT::Other || isTypeLegal(VT)) &&
423      (getOperationAction(Op, VT) == Legal ||
424       getOperationAction(Op, VT) == Custom);
425  }
426
427  /// Return true if the specified operation is legal on this target or can be
428  /// made legal using promotion. This is used to help guide high-level lowering
429  /// decisions.
430  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
431    return (VT == MVT::Other || isTypeLegal(VT)) &&
432      (getOperationAction(Op, VT) == Legal ||
433       getOperationAction(Op, VT) == Promote);
434  }
435
436  /// Return true if the specified operation is illegal on this target or
437  /// unlikely to be made legal with custom lowering. This is used to help guide
438  /// high-level lowering decisions.
439  bool isOperationExpand(unsigned Op, EVT VT) const {
440    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
441  }
442
443  /// Return true if the specified operation is legal on this target.
444  bool isOperationLegal(unsigned Op, EVT VT) const {
445    return (VT == MVT::Other || isTypeLegal(VT)) &&
446           getOperationAction(Op, VT) == Legal;
447  }
448
449  /// Return how this load with extension should be treated: either it is legal,
450  /// needs to be promoted to a larger size, needs to be expanded to some other
451  /// code sequence, or the target has a custom expander for it.
452  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
453    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
454           "Table isn't big enough!");
455    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
456  }
457
458  /// Return true if the specified load with extension is legal on this target.
459  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
460    return VT.isSimple() &&
461      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
462  }
463
464  /// Return how this store with truncation should be treated: either it is
465  /// legal, needs to be promoted to a larger size, needs to be expanded to some
466  /// other code sequence, or the target has a custom expander for it.
467  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
468    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
469           "Table isn't big enough!");
470    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
471                                            [MemVT.SimpleTy];
472  }
473
474  /// Return true if the specified store with truncation is legal on this
475  /// target.
476  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
477    return isTypeLegal(ValVT) && MemVT.isSimple() &&
478      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
479  }
480
481  /// Return how the indexed load should be treated: either it is legal, needs
482  /// to be promoted to a larger size, needs to be expanded to some other code
483  /// sequence, or the target has a custom expander for it.
484  LegalizeAction
485  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
486    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
487           "Table isn't big enough!");
488    unsigned Ty = (unsigned)VT.SimpleTy;
489    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
490  }
491
492  /// Return true if the specified indexed load is legal on this target.
493  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
494    return VT.isSimple() &&
495      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
496       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
497  }
498
499  /// Return how the indexed store should be treated: either it is legal, needs
500  /// to be promoted to a larger size, needs to be expanded to some other code
501  /// sequence, or the target has a custom expander for it.
502  LegalizeAction
503  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
504    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
505           "Table isn't big enough!");
506    unsigned Ty = (unsigned)VT.SimpleTy;
507    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
508  }
509
510  /// Return true if the specified indexed load is legal on this target.
511  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
512    return VT.isSimple() &&
513      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
514       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
515  }
516
517  /// Return how the condition code should be treated: either it is legal, needs
518  /// to be expanded to some other code sequence, or the target has a custom
519  /// expander for it.
520  LegalizeAction
521  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
522    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
523           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
524           "Table isn't big enough!");
525    // See setCondCodeAction for how this is encoded.
526    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
527    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
528    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
529    assert(Action != Promote && "Can't promote condition code!");
530    return Action;
531  }
532
533  /// Return true if the specified condition code is legal on this target.
534  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
535    return
536      getCondCodeAction(CC, VT) == Legal ||
537      getCondCodeAction(CC, VT) == Custom;
538  }
539
540
541  /// If the action for this operation is to promote, this method returns the
542  /// ValueType to promote to.
543  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
544    assert(getOperationAction(Op, VT) == Promote &&
545           "This operation isn't promoted!");
546
547    // See if this has an explicit type specified.
548    std::map<std::pair<unsigned, MVT::SimpleValueType>,
549             MVT::SimpleValueType>::const_iterator PTTI =
550      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
551    if (PTTI != PromoteToType.end()) return PTTI->second;
552
553    assert((VT.isInteger() || VT.isFloatingPoint()) &&
554           "Cannot autopromote this type, add it with AddPromotedToType.");
555
556    MVT NVT = VT;
557    do {
558      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
559      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
560             "Didn't find type to promote to!");
561    } while (!isTypeLegal(NVT) ||
562              getOperationAction(Op, NVT) == Promote);
563    return NVT;
564  }
565
566  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
567  /// operations except for the pointer size.  If AllowUnknown is true, this
568  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
569  /// otherwise it will assert.
570  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
571    // Lower scalar pointers to native pointer types.
572    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
573      return getPointerTy(PTy->getAddressSpace());
574
575    if (Ty->isVectorTy()) {
576      VectorType *VTy = cast<VectorType>(Ty);
577      Type *Elm = VTy->getElementType();
578      // Lower vectors of pointers to native pointer types.
579      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
580        EVT PointerTy(getPointerTy(PT->getAddressSpace()));
581        Elm = PointerTy.getTypeForEVT(Ty->getContext());
582      }
583
584      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
585                       VTy->getNumElements());
586    }
587    return EVT::getEVT(Ty, AllowUnknown);
588  }
589
590  /// Return the MVT corresponding to this LLVM type. See getValueType.
591  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
592    return getValueType(Ty, AllowUnknown).getSimpleVT();
593  }
594
595  /// Return the desired alignment for ByVal aggregate function arguments in the
596  /// caller parameter area.  This is the actual alignment, not its logarithm.
597  virtual unsigned getByValTypeAlignment(Type *Ty) const;
598
599  /// Return the type of registers that this ValueType will eventually require.
600  MVT getRegisterType(MVT VT) const {
601    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
602    return RegisterTypeForVT[VT.SimpleTy];
603  }
604
605  /// Return the type of registers that this ValueType will eventually require.
606  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
607    if (VT.isSimple()) {
608      assert((unsigned)VT.getSimpleVT().SimpleTy <
609                array_lengthof(RegisterTypeForVT));
610      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
611    }
612    if (VT.isVector()) {
613      EVT VT1;
614      MVT RegisterVT;
615      unsigned NumIntermediates;
616      (void)getVectorTypeBreakdown(Context, VT, VT1,
617                                   NumIntermediates, RegisterVT);
618      return RegisterVT;
619    }
620    if (VT.isInteger()) {
621      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
622    }
623    llvm_unreachable("Unsupported extended type!");
624  }
625
626  /// Return the number of registers that this ValueType will eventually
627  /// require.
628  ///
629  /// This is one for any types promoted to live in larger registers, but may be
630  /// more than one for types (like i64) that are split into pieces.  For types
631  /// like i140, which are first promoted then expanded, it is the number of
632  /// registers needed to hold all the bits of the original type.  For an i140
633  /// on a 32 bit machine this means 5 registers.
634  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
635    if (VT.isSimple()) {
636      assert((unsigned)VT.getSimpleVT().SimpleTy <
637                array_lengthof(NumRegistersForVT));
638      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
639    }
640    if (VT.isVector()) {
641      EVT VT1;
642      MVT VT2;
643      unsigned NumIntermediates;
644      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
645    }
646    if (VT.isInteger()) {
647      unsigned BitWidth = VT.getSizeInBits();
648      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
649      return (BitWidth + RegWidth - 1) / RegWidth;
650    }
651    llvm_unreachable("Unsupported extended type!");
652  }
653
654  /// If true, then instruction selection should seek to shrink the FP constant
655  /// of the specified type to a smaller type in order to save space and / or
656  /// reduce runtime.
657  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
658
659  /// If true, the target has custom DAG combine transformations that it can
660  /// perform for the specified node.
661  bool hasTargetDAGCombine(ISD::NodeType NT) const {
662    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
663    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
664  }
665
666  /// \brief Get maximum # of store operations permitted for llvm.memset
667  ///
668  /// This function returns the maximum number of store operations permitted
669  /// to replace a call to llvm.memset. The value is set by the target at the
670  /// performance threshold for such a replacement. If OptSize is true,
671  /// return the limit for functions that have OptSize attribute.
672  unsigned getMaxStoresPerMemset(bool OptSize) const {
673    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
674  }
675
676  /// \brief Get maximum # of store operations permitted for llvm.memcpy
677  ///
678  /// This function returns the maximum number of store operations permitted
679  /// to replace a call to llvm.memcpy. The value is set by the target at the
680  /// performance threshold for such a replacement. If OptSize is true,
681  /// return the limit for functions that have OptSize attribute.
682  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
683    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
684  }
685
686  /// \brief Get maximum # of store operations permitted for llvm.memmove
687  ///
688  /// This function returns the maximum number of store operations permitted
689  /// to replace a call to llvm.memmove. The value is set by the target at the
690  /// performance threshold for such a replacement. If OptSize is true,
691  /// return the limit for functions that have OptSize attribute.
692  unsigned getMaxStoresPerMemmove(bool OptSize) const {
693    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
694  }
695
696  /// \brief Determine if the target supports unaligned memory accesses.
697  ///
698  /// This function returns true if the target allows unaligned memory accesses.
699  /// of the specified type. If true, it also returns whether the unaligned
700  /// memory access is "fast" in the second argument by reference. This is used,
701  /// for example, in situations where an array copy/move/set is converted to a
702  /// sequence of store operations. It's use helps to ensure that such
703  /// replacements don't generate code that causes an alignment error (trap) on
704  /// the target machine.
705  virtual bool allowsUnalignedMemoryAccesses(EVT, bool * /*Fast*/ = 0) const {
706    return false;
707  }
708
709  /// Returns the target specific optimal type for load and store operations as
710  /// a result of memset, memcpy, and memmove lowering.
711  ///
712  /// If DstAlign is zero that means it's safe to destination alignment can
713  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
714  /// a need to check it against alignment requirement, probably because the
715  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
716  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
717  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
718  /// does not need to be loaded.  It returns EVT::Other if the type should be
719  /// determined using generic target-independent logic.
720  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
721                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
722                                  bool /*IsMemset*/,
723                                  bool /*ZeroMemset*/,
724                                  bool /*MemcpyStrSrc*/,
725                                  MachineFunction &/*MF*/) const {
726    return MVT::Other;
727  }
728
729  /// Returns true if it's safe to use load / store of the specified type to
730  /// expand memcpy / memset inline.
731  ///
732  /// This is mostly true for all types except for some special cases. For
733  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
734  /// fstpl which also does type conversion. Note the specified type doesn't
735  /// have to be legal as the hook is used before type legalization.
736  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
737
738  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
739  bool usesUnderscoreSetJmp() const {
740    return UseUnderscoreSetJmp;
741  }
742
743  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
744  bool usesUnderscoreLongJmp() const {
745    return UseUnderscoreLongJmp;
746  }
747
748  /// Return whether the target can generate code for jump tables.
749  bool supportJumpTables() const {
750    return SupportJumpTables;
751  }
752
753  /// Return integer threshold on number of blocks to use jump tables rather
754  /// than if sequence.
755  int getMinimumJumpTableEntries() const {
756    return MinimumJumpTableEntries;
757  }
758
759  /// If a physical register, this specifies the register that
760  /// llvm.savestack/llvm.restorestack should save and restore.
761  unsigned getStackPointerRegisterToSaveRestore() const {
762    return StackPointerRegisterToSaveRestore;
763  }
764
765  /// If a physical register, this returns the register that receives the
766  /// exception address on entry to a landing pad.
767  unsigned getExceptionPointerRegister() const {
768    return ExceptionPointerRegister;
769  }
770
771  /// If a physical register, this returns the register that receives the
772  /// exception typeid on entry to a landing pad.
773  unsigned getExceptionSelectorRegister() const {
774    return ExceptionSelectorRegister;
775  }
776
777  /// Returns the target's jmp_buf size in bytes (if never set, the default is
778  /// 200)
779  unsigned getJumpBufSize() const {
780    return JumpBufSize;
781  }
782
783  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
784  /// is 0)
785  unsigned getJumpBufAlignment() const {
786    return JumpBufAlignment;
787  }
788
789  /// Return the minimum stack alignment of an argument.
790  unsigned getMinStackArgumentAlignment() const {
791    return MinStackArgumentAlignment;
792  }
793
794  /// Return the minimum function alignment.
795  unsigned getMinFunctionAlignment() const {
796    return MinFunctionAlignment;
797  }
798
799  /// Return the preferred function alignment.
800  unsigned getPrefFunctionAlignment() const {
801    return PrefFunctionAlignment;
802  }
803
804  /// Return the preferred loop alignment.
805  unsigned getPrefLoopAlignment() const {
806    return PrefLoopAlignment;
807  }
808
809  /// Return whether the DAG builder should automatically insert fences and
810  /// reduce ordering for atomics.
811  bool getInsertFencesForAtomic() const {
812    return InsertFencesForAtomic;
813  }
814
815  /// Return true if the target stores stack protector cookies at a fixed offset
816  /// in some non-standard address space, and populates the address space and
817  /// offset as appropriate.
818  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
819                                      unsigned &/*Offset*/) const {
820    return false;
821  }
822
823  /// Returns the maximal possible offset which can be used for loads / stores
824  /// from the global.
825  virtual unsigned getMaximalGlobalOffset() const {
826    return 0;
827  }
828
829  //===--------------------------------------------------------------------===//
830  /// \name Helpers for TargetTransformInfo implementations
831  /// @{
832
833  /// Get the ISD node that corresponds to the Instruction class opcode.
834  int InstructionOpcodeToISD(unsigned Opcode) const;
835
836  /// Estimate the cost of type-legalization and the legalized type.
837  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
838
839  /// @}
840
841  //===--------------------------------------------------------------------===//
842  // TargetLowering Configuration Methods - These methods should be invoked by
843  // the derived class constructor to configure this object for the target.
844  //
845
846  /// \brief Reset the operation actions based on target options.
847  virtual void resetOperationActions() {}
848
849protected:
850  /// Specify how the target extends the result of a boolean value from i1 to a
851  /// wider type.  See getBooleanContents.
852  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
853
854  /// Specify how the target extends the result of a vector boolean value from a
855  /// vector of i1 to a wider type.  See getBooleanContents.
856  void setBooleanVectorContents(BooleanContent Ty) {
857    BooleanVectorContents = Ty;
858  }
859
860  /// Specify the target scheduling preference.
861  void setSchedulingPreference(Sched::Preference Pref) {
862    SchedPreferenceInfo = Pref;
863  }
864
865  /// Indicate whether this target prefers to use _setjmp to implement
866  /// llvm.setjmp or the non _ version.  Defaults to false.
867  void setUseUnderscoreSetJmp(bool Val) {
868    UseUnderscoreSetJmp = Val;
869  }
870
871  /// Indicate whether this target prefers to use _longjmp to implement
872  /// llvm.longjmp or the non _ version.  Defaults to false.
873  void setUseUnderscoreLongJmp(bool Val) {
874    UseUnderscoreLongJmp = Val;
875  }
876
877  /// Indicate whether the target can generate code for jump tables.
878  void setSupportJumpTables(bool Val) {
879    SupportJumpTables = Val;
880  }
881
882  /// Indicate the number of blocks to generate jump tables rather than if
883  /// sequence.
884  void setMinimumJumpTableEntries(int Val) {
885    MinimumJumpTableEntries = Val;
886  }
887
888  /// If set to a physical register, this specifies the register that
889  /// llvm.savestack/llvm.restorestack should save and restore.
890  void setStackPointerRegisterToSaveRestore(unsigned R) {
891    StackPointerRegisterToSaveRestore = R;
892  }
893
894  /// If set to a physical register, this sets the register that receives the
895  /// exception address on entry to a landing pad.
896  void setExceptionPointerRegister(unsigned R) {
897    ExceptionPointerRegister = R;
898  }
899
900  /// If set to a physical register, this sets the register that receives the
901  /// exception typeid on entry to a landing pad.
902  void setExceptionSelectorRegister(unsigned R) {
903    ExceptionSelectorRegister = R;
904  }
905
906  /// Tells the code generator not to expand operations into sequences that use
907  /// the select operations if possible.
908  void setSelectIsExpensive(bool isExpensive = true) {
909    SelectIsExpensive = isExpensive;
910  }
911
912  /// Tells the code generator not to expand sequence of operations into a
913  /// separate sequences that increases the amount of flow control.
914  void setJumpIsExpensive(bool isExpensive = true) {
915    JumpIsExpensive = isExpensive;
916  }
917
918  /// Tells the code generator that integer divide is expensive, and if
919  /// possible, should be replaced by an alternate sequence of instructions not
920  /// containing an integer divide.
921  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
922
923  /// Tells the code generator which bitwidths to bypass.
924  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
925    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
926  }
927
928  /// Tells the code generator that it shouldn't generate srl/add/sra for a
929  /// signed divide by power of two, and let the target handle it.
930  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
931
932  /// Add the specified register class as an available regclass for the
933  /// specified value type. This indicates the selector can handle values of
934  /// that class natively.
935  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
936    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
937    AvailableRegClasses.push_back(std::make_pair(VT, RC));
938    RegClassForVT[VT.SimpleTy] = RC;
939  }
940
941  /// Remove all register classes.
942  void clearRegisterClasses() {
943    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
944
945    AvailableRegClasses.clear();
946  }
947
948  /// \brief Remove all operation actions.
949  void clearOperationActions() {
950  }
951
952  /// Return the largest legal super-reg register class of the register class
953  /// for the specified type and its associated "cost".
954  virtual std::pair<const TargetRegisterClass*, uint8_t>
955  findRepresentativeClass(MVT VT) const;
956
957  /// Once all of the register classes are added, this allows us to compute
958  /// derived properties we expose.
959  void computeRegisterProperties();
960
961  /// Indicate that the specified operation does not work with the specified
962  /// type and indicate what to do about it.
963  void setOperationAction(unsigned Op, MVT VT,
964                          LegalizeAction Action) {
965    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
966    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
967  }
968
969  /// Indicate that the specified load with extension does not work with the
970  /// specified type and indicate what to do about it.
971  void setLoadExtAction(unsigned ExtType, MVT VT,
972                        LegalizeAction Action) {
973    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
974           "Table isn't big enough!");
975    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
976  }
977
978  /// Indicate that the specified truncating store does not work with the
979  /// specified type and indicate what to do about it.
980  void setTruncStoreAction(MVT ValVT, MVT MemVT,
981                           LegalizeAction Action) {
982    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
983           "Table isn't big enough!");
984    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
985  }
986
987  /// Indicate that the specified indexed load does or does not work with the
988  /// specified type and indicate what to do abort it.
989  ///
990  /// NOTE: All indexed mode loads are initialized to Expand in
991  /// TargetLowering.cpp
992  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
993                            LegalizeAction Action) {
994    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
995           (unsigned)Action < 0xf && "Table isn't big enough!");
996    // Load action are kept in the upper half.
997    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
998    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
999  }
1000
1001  /// Indicate that the specified indexed store does or does not work with the
1002  /// specified type and indicate what to do about it.
1003  ///
1004  /// NOTE: All indexed mode stores are initialized to Expand in
1005  /// TargetLowering.cpp
1006  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1007                             LegalizeAction Action) {
1008    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1009           (unsigned)Action < 0xf && "Table isn't big enough!");
1010    // Store action are kept in the lower half.
1011    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1012    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1013  }
1014
1015  /// Indicate that the specified condition code is or isn't supported on the
1016  /// target and indicate what to do about it.
1017  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1018                         LegalizeAction Action) {
1019    assert(VT < MVT::LAST_VALUETYPE &&
1020           (unsigned)CC < array_lengthof(CondCodeActions) &&
1021           "Table isn't big enough!");
1022    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1023    /// value and the upper 27 bits index into the second dimension of the array
1024    /// to select what 32-bit value to use.
1025    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1026    CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1027    CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1028  }
1029
1030  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1031  /// to trying a larger integer/fp until it can find one that works. If that
1032  /// default is insufficient, this method can be used by the target to override
1033  /// the default.
1034  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1035    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1036  }
1037
1038  /// Targets should invoke this method for each target independent node that
1039  /// they want to provide a custom DAG combiner for by implementing the
1040  /// PerformDAGCombine virtual method.
1041  void setTargetDAGCombine(ISD::NodeType NT) {
1042    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1043    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1044  }
1045
1046  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1047  void setJumpBufSize(unsigned Size) {
1048    JumpBufSize = Size;
1049  }
1050
1051  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1052  /// 0
1053  void setJumpBufAlignment(unsigned Align) {
1054    JumpBufAlignment = Align;
1055  }
1056
1057  /// Set the target's minimum function alignment (in log2(bytes))
1058  void setMinFunctionAlignment(unsigned Align) {
1059    MinFunctionAlignment = Align;
1060  }
1061
1062  /// Set the target's preferred function alignment.  This should be set if
1063  /// there is a performance benefit to higher-than-minimum alignment (in
1064  /// log2(bytes))
1065  void setPrefFunctionAlignment(unsigned Align) {
1066    PrefFunctionAlignment = Align;
1067  }
1068
1069  /// Set the target's preferred loop alignment. Default alignment is zero, it
1070  /// means the target does not care about loop alignment.  The alignment is
1071  /// specified in log2(bytes).
1072  void setPrefLoopAlignment(unsigned Align) {
1073    PrefLoopAlignment = Align;
1074  }
1075
1076  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1077  void setMinStackArgumentAlignment(unsigned Align) {
1078    MinStackArgumentAlignment = Align;
1079  }
1080
1081  /// Set if the DAG builder should automatically insert fences and reduce the
1082  /// order of atomic memory operations to Monotonic.
1083  void setInsertFencesForAtomic(bool fence) {
1084    InsertFencesForAtomic = fence;
1085  }
1086
1087public:
1088  //===--------------------------------------------------------------------===//
1089  // Addressing mode description hooks (used by LSR etc).
1090  //
1091
1092  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1093  /// instructions reading the address. This allows as much computation as
1094  /// possible to be done in the address mode for that operand. This hook lets
1095  /// targets also pass back when this should be done on intrinsics which
1096  /// load/store.
1097  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1098                                    SmallVectorImpl<Value*> &/*Ops*/,
1099                                    Type *&/*AccessTy*/) const {
1100    return false;
1101  }
1102
1103  /// This represents an addressing mode of:
1104  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1105  /// If BaseGV is null,  there is no BaseGV.
1106  /// If BaseOffs is zero, there is no base offset.
1107  /// If HasBaseReg is false, there is no base register.
1108  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1109  /// no scale.
1110  struct AddrMode {
1111    GlobalValue *BaseGV;
1112    int64_t      BaseOffs;
1113    bool         HasBaseReg;
1114    int64_t      Scale;
1115    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1116  };
1117
1118  /// Return true if the addressing mode represented by AM is legal for this
1119  /// target, for a load/store of the specified type.
1120  ///
1121  /// The type may be VoidTy, in which case only return true if the addressing
1122  /// mode is legal for a load/store of any legal type.  TODO: Handle
1123  /// pre/postinc as well.
1124  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1125
1126  /// \brief Return the cost of the scaling factor used in the addressing mode
1127  /// represented by AM for this target, for a load/store of the specified type.
1128  ///
1129  /// If the AM is supported, the return value must be >= 0.
1130  /// If the AM is not supported, it returns a negative value.
1131  /// TODO: Handle pre/postinc as well.
1132  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1133    // Default: assume that any scaling factor used in a legal AM is free.
1134    if (isLegalAddressingMode(AM, Ty)) return 0;
1135    return -1;
1136  }
1137
1138  /// Return true if the specified immediate is legal icmp immediate, that is
1139  /// the target has icmp instructions which can compare a register against the
1140  /// immediate without having to materialize the immediate into a register.
1141  virtual bool isLegalICmpImmediate(int64_t) const {
1142    return true;
1143  }
1144
1145  /// Return true if the specified immediate is legal add immediate, that is the
1146  /// target has add instructions which can add a register with the immediate
1147  /// without having to materialize the immediate into a register.
1148  virtual bool isLegalAddImmediate(int64_t) const {
1149    return true;
1150  }
1151
1152  /// Return true if it's free to truncate a value of type Ty1 to type
1153  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1154  /// by referencing its sub-register AX.
1155  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1156    return false;
1157  }
1158
1159  /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
1160  /// whether a call is in tail position. Typically this means that both results
1161  /// would be assigned to the same register or stack slot, but it could mean
1162  /// the target performs adequate checks of its own before proceeding with the
1163  /// tail call.
1164  virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
1165    return false;
1166  }
1167
1168  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1169    return false;
1170  }
1171
1172  /// Return true if any actual instruction that defines a value of type Ty1
1173  /// implicitly zero-extends the value to Ty2 in the result register.
1174  ///
1175  /// This does not necessarily include registers defined in unknown ways, such
1176  /// as incoming arguments, or copies from unknown virtual registers. Also, if
1177  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1178  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1179  /// values implicit zero-extend the result out to 64 bits.
1180  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1181    return false;
1182  }
1183
1184  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1185    return false;
1186  }
1187
1188  /// Return true if the target supplies and combines to a paired load
1189  /// two loaded values of type LoadedType next to each other in memory.
1190  /// RequiredAlignment gives the minimal alignment constraints that must be met
1191  /// to be able to select this paired load.
1192  ///
1193  /// This information is *not* used to generate actual paired loads, but it is
1194  /// used to generate a sequence of loads that is easier to combine into a
1195  /// paired load.
1196  /// For instance, something like this:
1197  /// a = load i64* addr
1198  /// b = trunc i64 a to i32
1199  /// c = lshr i64 a, 32
1200  /// d = trunc i64 c to i32
1201  /// will be optimized into:
1202  /// b = load i32* addr1
1203  /// d = load i32* addr2
1204  /// Where addr1 = addr2 +/- sizeof(i32).
1205  ///
1206  /// In other words, unless the target performs a post-isel load combining,
1207  /// this information should not be provided because it will generate more
1208  /// loads.
1209  virtual bool hasPairedLoad(Type * /*LoadedType*/,
1210                             unsigned & /*RequiredAligment*/) const {
1211    return false;
1212  }
1213
1214  virtual bool hasPairedLoad(EVT /*LoadedType*/,
1215                             unsigned & /*RequiredAligment*/) const {
1216    return false;
1217  }
1218
1219  /// Return true if zero-extending the specific node Val to type VT2 is free
1220  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1221  /// because it's folded such as X86 zero-extending loads).
1222  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1223    return isZExtFree(Val.getValueType(), VT2);
1224  }
1225
1226  /// Return true if an fneg operation is free to the point where it is never
1227  /// worthwhile to replace it with a bitwise operation.
1228  virtual bool isFNegFree(EVT VT) const {
1229    assert(VT.isFloatingPoint());
1230    return false;
1231  }
1232
1233  /// Return true if an fabs operation is free to the point where it is never
1234  /// worthwhile to replace it with a bitwise operation.
1235  virtual bool isFAbsFree(EVT VT) const {
1236    assert(VT.isFloatingPoint());
1237    return false;
1238  }
1239
1240  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1241  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1242  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1243  ///
1244  /// NOTE: This may be called before legalization on types for which FMAs are
1245  /// not legal, but should return true if those types will eventually legalize
1246  /// to types that support FMAs. After legalization, it will only be called on
1247  /// types that support FMAs (via Legal or Custom actions)
1248  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1249    return false;
1250  }
1251
1252  /// Return true if it's profitable to narrow operations of type VT1 to
1253  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1254  /// i32 to i16.
1255  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1256    return false;
1257  }
1258
1259  //===--------------------------------------------------------------------===//
1260  // Runtime Library hooks
1261  //
1262
1263  /// Rename the default libcall routine name for the specified libcall.
1264  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1265    LibcallRoutineNames[Call] = Name;
1266  }
1267
1268  /// Get the libcall routine name for the specified libcall.
1269  const char *getLibcallName(RTLIB::Libcall Call) const {
1270    return LibcallRoutineNames[Call];
1271  }
1272
1273  /// Override the default CondCode to be used to test the result of the
1274  /// comparison libcall against zero.
1275  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1276    CmpLibcallCCs[Call] = CC;
1277  }
1278
1279  /// Get the CondCode that's to be used to test the result of the comparison
1280  /// libcall against zero.
1281  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1282    return CmpLibcallCCs[Call];
1283  }
1284
1285  /// Set the CallingConv that should be used for the specified libcall.
1286  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1287    LibcallCallingConvs[Call] = CC;
1288  }
1289
1290  /// Get the CallingConv that should be used for the specified libcall.
1291  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1292    return LibcallCallingConvs[Call];
1293  }
1294
1295private:
1296  const TargetMachine &TM;
1297  const DataLayout *TD;
1298  const TargetLoweringObjectFile &TLOF;
1299
1300  /// True if this is a little endian target.
1301  bool IsLittleEndian;
1302
1303  /// Tells the code generator not to expand operations into sequences that use
1304  /// the select operations if possible.
1305  bool SelectIsExpensive;
1306
1307  /// Tells the code generator not to expand integer divides by constants into a
1308  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1309  /// model is in place.  If we ever optimize for size, this will be set to true
1310  /// unconditionally.
1311  bool IntDivIsCheap;
1312
1313  /// Tells the code generator to bypass slow divide or remainder
1314  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1315  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1316  /// div/rem when the operands are positive and less than 256.
1317  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1318
1319  /// Tells the code generator that it shouldn't generate srl/add/sra for a
1320  /// signed divide by power of two, and let the target handle it.
1321  bool Pow2DivIsCheap;
1322
1323  /// Tells the code generator that it shouldn't generate extra flow control
1324  /// instructions and should attempt to combine flow control instructions via
1325  /// predication.
1326  bool JumpIsExpensive;
1327
1328  /// This target prefers to use _setjmp to implement llvm.setjmp.
1329  ///
1330  /// Defaults to false.
1331  bool UseUnderscoreSetJmp;
1332
1333  /// This target prefers to use _longjmp to implement llvm.longjmp.
1334  ///
1335  /// Defaults to false.
1336  bool UseUnderscoreLongJmp;
1337
1338  /// Whether the target can generate code for jumptables.  If it's not true,
1339  /// then each jumptable must be lowered into if-then-else's.
1340  bool SupportJumpTables;
1341
1342  /// Number of blocks threshold to use jump tables.
1343  int MinimumJumpTableEntries;
1344
1345  /// Information about the contents of the high-bits in boolean values held in
1346  /// a type wider than i1. See getBooleanContents.
1347  BooleanContent BooleanContents;
1348
1349  /// Information about the contents of the high-bits in boolean vector values
1350  /// when the element type is wider than i1. See getBooleanContents.
1351  BooleanContent BooleanVectorContents;
1352
1353  /// The target scheduling preference: shortest possible total cycles or lowest
1354  /// register usage.
1355  Sched::Preference SchedPreferenceInfo;
1356
1357  /// The size, in bytes, of the target's jmp_buf buffers
1358  unsigned JumpBufSize;
1359
1360  /// The alignment, in bytes, of the target's jmp_buf buffers
1361  unsigned JumpBufAlignment;
1362
1363  /// The minimum alignment that any argument on the stack needs to have.
1364  unsigned MinStackArgumentAlignment;
1365
1366  /// The minimum function alignment (used when optimizing for size, and to
1367  /// prevent explicitly provided alignment from leading to incorrect code).
1368  unsigned MinFunctionAlignment;
1369
1370  /// The preferred function alignment (used when alignment unspecified and
1371  /// optimizing for speed).
1372  unsigned PrefFunctionAlignment;
1373
1374  /// The preferred loop alignment.
1375  unsigned PrefLoopAlignment;
1376
1377  /// Whether the DAG builder should automatically insert fences and reduce
1378  /// ordering for atomics.  (This will be set for for most architectures with
1379  /// weak memory ordering.)
1380  bool InsertFencesForAtomic;
1381
1382  /// If set to a physical register, this specifies the register that
1383  /// llvm.savestack/llvm.restorestack should save and restore.
1384  unsigned StackPointerRegisterToSaveRestore;
1385
1386  /// If set to a physical register, this specifies the register that receives
1387  /// the exception address on entry to a landing pad.
1388  unsigned ExceptionPointerRegister;
1389
1390  /// If set to a physical register, this specifies the register that receives
1391  /// the exception typeid on entry to a landing pad.
1392  unsigned ExceptionSelectorRegister;
1393
1394  /// This indicates the default register class to use for each ValueType the
1395  /// target supports natively.
1396  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1397  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1398  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1399
1400  /// This indicates the "representative" register class to use for each
1401  /// ValueType the target supports natively. This information is used by the
1402  /// scheduler to track register pressure. By default, the representative
1403  /// register class is the largest legal super-reg register class of the
1404  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1405  /// representative class would be GR32.
1406  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1407
1408  /// This indicates the "cost" of the "representative" register class for each
1409  /// ValueType. The cost is used by the scheduler to approximate register
1410  /// pressure.
1411  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1412
1413  /// For any value types we are promoting or expanding, this contains the value
1414  /// type that we are changing to.  For Expanded types, this contains one step
1415  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1416  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1417  /// the same type (e.g. i32 -> i32).
1418  MVT TransformToType[MVT::LAST_VALUETYPE];
1419
1420  /// For each operation and each value type, keep a LegalizeAction that
1421  /// indicates how instruction selection should deal with the operation.  Most
1422  /// operations are Legal (aka, supported natively by the target), but
1423  /// operations that are not should be described.  Note that operations on
1424  /// non-legal value types are not described here.
1425  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1426
1427  /// For each load extension type and each value type, keep a LegalizeAction
1428  /// that indicates how instruction selection should deal with a load of a
1429  /// specific value type and extension type.
1430  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1431
1432  /// For each value type pair keep a LegalizeAction that indicates whether a
1433  /// truncating store of a specific value type and truncating type is legal.
1434  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1435
1436  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1437  /// that indicates how instruction selection should deal with the load /
1438  /// store.
1439  ///
1440  /// The first dimension is the value_type for the reference. The second
1441  /// dimension represents the various modes for load store.
1442  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1443
1444  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1445  /// indicates how instruction selection should deal with the condition code.
1446  ///
1447  /// Because each CC action takes up 2 bits, we need to have the array size be
1448  /// large enough to fit all of the value types. This can be done by dividing
1449  /// the MVT::LAST_VALUETYPE by 16 and adding one.
1450  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1451
1452  ValueTypeActionImpl ValueTypeActions;
1453
1454public:
1455  LegalizeKind
1456  getTypeConversion(LLVMContext &Context, EVT VT) const {
1457    // If this is a simple type, use the ComputeRegisterProp mechanism.
1458    if (VT.isSimple()) {
1459      MVT SVT = VT.getSimpleVT();
1460      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1461      MVT NVT = TransformToType[SVT.SimpleTy];
1462      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1463
1464      assert(
1465        (LA == TypeLegal ||
1466         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1467         && "Promote may not follow Expand or Promote");
1468
1469      if (LA == TypeSplitVector)
1470        return LegalizeKind(LA, EVT::getVectorVT(Context,
1471                                                 SVT.getVectorElementType(),
1472                                                 SVT.getVectorNumElements()/2));
1473      if (LA == TypeScalarizeVector)
1474        return LegalizeKind(LA, SVT.getVectorElementType());
1475      return LegalizeKind(LA, NVT);
1476    }
1477
1478    // Handle Extended Scalar Types.
1479    if (!VT.isVector()) {
1480      assert(VT.isInteger() && "Float types must be simple");
1481      unsigned BitSize = VT.getSizeInBits();
1482      // First promote to a power-of-two size, then expand if necessary.
1483      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1484        EVT NVT = VT.getRoundIntegerType(Context);
1485        assert(NVT != VT && "Unable to round integer VT");
1486        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1487        // Avoid multi-step promotion.
1488        if (NextStep.first == TypePromoteInteger) return NextStep;
1489        // Return rounded integer type.
1490        return LegalizeKind(TypePromoteInteger, NVT);
1491      }
1492
1493      return LegalizeKind(TypeExpandInteger,
1494                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1495    }
1496
1497    // Handle vector types.
1498    unsigned NumElts = VT.getVectorNumElements();
1499    EVT EltVT = VT.getVectorElementType();
1500
1501    // Vectors with only one element are always scalarized.
1502    if (NumElts == 1)
1503      return LegalizeKind(TypeScalarizeVector, EltVT);
1504
1505    // Try to widen vector elements until the element type is a power of two and
1506    // promote it to a legal type later on, for example:
1507    // <3 x i8> -> <4 x i8> -> <4 x i32>
1508    if (EltVT.isInteger()) {
1509      // Vectors with a number of elements that is not a power of two are always
1510      // widened, for example <3 x i8> -> <4 x i8>.
1511      if (!VT.isPow2VectorType()) {
1512        NumElts = (unsigned)NextPowerOf2(NumElts);
1513        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1514        return LegalizeKind(TypeWidenVector, NVT);
1515      }
1516
1517      // Examine the element type.
1518      LegalizeKind LK = getTypeConversion(Context, EltVT);
1519
1520      // If type is to be expanded, split the vector.
1521      //  <4 x i140> -> <2 x i140>
1522      if (LK.first == TypeExpandInteger)
1523        return LegalizeKind(TypeSplitVector,
1524                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1525
1526      // Promote the integer element types until a legal vector type is found
1527      // or until the element integer type is too big. If a legal type was not
1528      // found, fallback to the usual mechanism of widening/splitting the
1529      // vector.
1530      EVT OldEltVT = EltVT;
1531      while (1) {
1532        // Increase the bitwidth of the element to the next pow-of-two
1533        // (which is greater than 8 bits).
1534        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1535                                 ).getRoundIntegerType(Context);
1536
1537        // Stop trying when getting a non-simple element type.
1538        // Note that vector elements may be greater than legal vector element
1539        // types. Example: X86 XMM registers hold 64bit element on 32bit
1540        // systems.
1541        if (!EltVT.isSimple()) break;
1542
1543        // Build a new vector type and check if it is legal.
1544        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1545        // Found a legal promoted vector type.
1546        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1547          return LegalizeKind(TypePromoteInteger,
1548                              EVT::getVectorVT(Context, EltVT, NumElts));
1549      }
1550
1551      // Reset the type to the unexpanded type if we did not find a legal vector
1552      // type with a promoted vector element type.
1553      EltVT = OldEltVT;
1554    }
1555
1556    // Try to widen the vector until a legal type is found.
1557    // If there is no wider legal type, split the vector.
1558    while (1) {
1559      // Round up to the next power of 2.
1560      NumElts = (unsigned)NextPowerOf2(NumElts);
1561
1562      // If there is no simple vector type with this many elements then there
1563      // cannot be a larger legal vector type.  Note that this assumes that
1564      // there are no skipped intermediate vector types in the simple types.
1565      if (!EltVT.isSimple()) break;
1566      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1567      if (LargerVector == MVT()) break;
1568
1569      // If this type is legal then widen the vector.
1570      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1571        return LegalizeKind(TypeWidenVector, LargerVector);
1572    }
1573
1574    // Widen odd vectors to next power of two.
1575    if (!VT.isPow2VectorType()) {
1576      EVT NVT = VT.getPow2VectorType(Context);
1577      return LegalizeKind(TypeWidenVector, NVT);
1578    }
1579
1580    // Vectors with illegal element types are expanded.
1581    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1582    return LegalizeKind(TypeSplitVector, NVT);
1583  }
1584
1585private:
1586  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1587
1588  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1589  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1590  /// array.
1591  unsigned char
1592  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1593
1594  /// For operations that must be promoted to a specific type, this holds the
1595  /// destination type.  This map should be sparse, so don't hold it as an
1596  /// array.
1597  ///
1598  /// Targets add entries to this map with AddPromotedToType(..), clients access
1599  /// this with getTypeToPromoteTo(..).
1600  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1601    PromoteToType;
1602
1603  /// Stores the name each libcall.
1604  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1605
1606  /// The ISD::CondCode that should be used to test the result of each of the
1607  /// comparison libcall against zero.
1608  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1609
1610  /// Stores the CallingConv that should be used for each libcall.
1611  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1612
1613protected:
1614  /// \brief Specify maximum number of store instructions per memset call.
1615  ///
1616  /// When lowering \@llvm.memset this field specifies the maximum number of
1617  /// store operations that may be substituted for the call to memset. Targets
1618  /// must set this value based on the cost threshold for that target. Targets
1619  /// should assume that the memset will be done using as many of the largest
1620  /// store operations first, followed by smaller ones, if necessary, per
1621  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1622  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1623  /// store.  This only applies to setting a constant array of a constant size.
1624  unsigned MaxStoresPerMemset;
1625
1626  /// Maximum number of stores operations that may be substituted for the call
1627  /// to memset, used for functions with OptSize attribute.
1628  unsigned MaxStoresPerMemsetOptSize;
1629
1630  /// \brief Specify maximum bytes of store instructions per memcpy call.
1631  ///
1632  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1633  /// store operations that may be substituted for a call to memcpy. Targets
1634  /// must set this value based on the cost threshold for that target. Targets
1635  /// should assume that the memcpy will be done using as many of the largest
1636  /// store operations first, followed by smaller ones, if necessary, per
1637  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1638  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1639  /// and one 1-byte store. This only applies to copying a constant array of
1640  /// constant size.
1641  unsigned MaxStoresPerMemcpy;
1642
1643  /// Maximum number of store operations that may be substituted for a call to
1644  /// memcpy, used for functions with OptSize attribute.
1645  unsigned MaxStoresPerMemcpyOptSize;
1646
1647  /// \brief Specify maximum bytes of store instructions per memmove call.
1648  ///
1649  /// When lowering \@llvm.memmove this field specifies the maximum number of
1650  /// store instructions that may be substituted for a call to memmove. Targets
1651  /// must set this value based on the cost threshold for that target. Targets
1652  /// should assume that the memmove will be done using as many of the largest
1653  /// store operations first, followed by smaller ones, if necessary, per
1654  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1655  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1656  /// applies to copying a constant array of constant size.
1657  unsigned MaxStoresPerMemmove;
1658
1659  /// Maximum number of store instructions that may be substituted for a call to
1660  /// memmove, used for functions with OpSize attribute.
1661  unsigned MaxStoresPerMemmoveOptSize;
1662
1663  /// Tells the code generator that select is more expensive than a branch if
1664  /// the branch is usually predicted right.
1665  bool PredictableSelectIsExpensive;
1666
1667protected:
1668  /// Return true if the value types that can be represented by the specified
1669  /// register class are all legal.
1670  bool isLegalRC(const TargetRegisterClass *RC) const;
1671};
1672
1673/// This class defines information used to lower LLVM code to legal SelectionDAG
1674/// operators that the target instruction selector can accept natively.
1675///
1676/// This class also defines callbacks that targets must implement to lower
1677/// target-specific constructs to SelectionDAG operators.
1678class TargetLowering : public TargetLoweringBase {
1679  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1680  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1681
1682public:
1683  /// NOTE: The constructor takes ownership of TLOF.
1684  explicit TargetLowering(const TargetMachine &TM,
1685                          const TargetLoweringObjectFile *TLOF);
1686
1687  /// Returns true by value, base pointer and offset pointer and addressing mode
1688  /// by reference if the node's address can be legally represented as
1689  /// pre-indexed load / store address.
1690  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1691                                         SDValue &/*Offset*/,
1692                                         ISD::MemIndexedMode &/*AM*/,
1693                                         SelectionDAG &/*DAG*/) const {
1694    return false;
1695  }
1696
1697  /// Returns true by value, base pointer and offset pointer and addressing mode
1698  /// by reference if this node can be combined with a load / store to form a
1699  /// post-indexed load / store.
1700  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1701                                          SDValue &/*Base*/,
1702                                          SDValue &/*Offset*/,
1703                                          ISD::MemIndexedMode &/*AM*/,
1704                                          SelectionDAG &/*DAG*/) const {
1705    return false;
1706  }
1707
1708  /// Return the entry encoding for a jump table in the current function.  The
1709  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
1710  virtual unsigned getJumpTableEncoding() const;
1711
1712  virtual const MCExpr *
1713  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1714                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1715                            MCContext &/*Ctx*/) const {
1716    llvm_unreachable("Need to implement this hook if target has custom JTIs");
1717  }
1718
1719  /// Returns relocation base for the given PIC jumptable.
1720  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1721                                           SelectionDAG &DAG) const;
1722
1723  /// This returns the relocation base for the given PIC jumptable, the same as
1724  /// getPICJumpTableRelocBase, but as an MCExpr.
1725  virtual const MCExpr *
1726  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1727                               unsigned JTI, MCContext &Ctx) const;
1728
1729  /// Return true if folding a constant offset with the given GlobalAddress is
1730  /// legal.  It is frequently not legal in PIC relocation models.
1731  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1732
1733  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1734                            SDValue &Chain) const;
1735
1736  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1737                           SDValue &NewLHS, SDValue &NewRHS,
1738                           ISD::CondCode &CCCode, SDLoc DL) const;
1739
1740  /// Returns a pair of (return value, chain).
1741  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
1742                                          EVT RetVT, const SDValue *Ops,
1743                                          unsigned NumOps, bool isSigned,
1744                                          SDLoc dl, bool doesNotReturn = false,
1745                                          bool isReturnValueUsed = true) const;
1746
1747  //===--------------------------------------------------------------------===//
1748  // TargetLowering Optimization Methods
1749  //
1750
1751  /// A convenience struct that encapsulates a DAG, and two SDValues for
1752  /// returning information from TargetLowering to its clients that want to
1753  /// combine.
1754  struct TargetLoweringOpt {
1755    SelectionDAG &DAG;
1756    bool LegalTys;
1757    bool LegalOps;
1758    SDValue Old;
1759    SDValue New;
1760
1761    explicit TargetLoweringOpt(SelectionDAG &InDAG,
1762                               bool LT, bool LO) :
1763      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1764
1765    bool LegalTypes() const { return LegalTys; }
1766    bool LegalOperations() const { return LegalOps; }
1767
1768    bool CombineTo(SDValue O, SDValue N) {
1769      Old = O;
1770      New = N;
1771      return true;
1772    }
1773
1774    /// Check to see if the specified operand of the specified instruction is a
1775    /// constant integer.  If so, check to see if there are any bits set in the
1776    /// constant that are not demanded.  If so, shrink the constant and return
1777    /// true.
1778    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1779
1780    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
1781    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
1782    /// generalized for targets with other types of implicit widening casts.
1783    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1784                          SDLoc dl);
1785  };
1786
1787  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
1788  /// result of Op are ever used downstream.  If we can use this information to
1789  /// simplify Op, create a new simplified DAG node and return true, returning
1790  /// the original and new nodes in Old and New.  Otherwise, analyze the
1791  /// expression and return a mask of KnownOne and KnownZero bits for the
1792  /// expression (used to simplify the caller).  The KnownZero/One bits may only
1793  /// be accurate for those bits in the DemandedMask.
1794  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1795                            APInt &KnownZero, APInt &KnownOne,
1796                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1797
1798  /// Determine which of the bits specified in Mask are known to be either zero
1799  /// or one and return them in the KnownZero/KnownOne bitsets.
1800  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
1801                                              APInt &KnownZero,
1802                                              APInt &KnownOne,
1803                                              const SelectionDAG &DAG,
1804                                              unsigned Depth = 0) const;
1805
1806  /// This method can be implemented by targets that want to expose additional
1807  /// information about sign bits to the DAG Combiner.
1808  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1809                                                   unsigned Depth = 0) const;
1810
1811  struct DAGCombinerInfo {
1812    void *DC;  // The DAG Combiner object.
1813    CombineLevel Level;
1814    bool CalledByLegalizer;
1815  public:
1816    SelectionDAG &DAG;
1817
1818    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
1819      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
1820
1821    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
1822    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
1823    bool isAfterLegalizeVectorOps() const {
1824      return Level == AfterLegalizeDAG;
1825    }
1826    CombineLevel getDAGCombineLevel() { return Level; }
1827    bool isCalledByLegalizer() const { return CalledByLegalizer; }
1828
1829    void AddToWorklist(SDNode *N);
1830    void RemoveFromWorklist(SDNode *N);
1831    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
1832                      bool AddTo = true);
1833    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
1834    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1835
1836    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1837  };
1838
1839  /// Try to simplify a setcc built with the specified operands and cc. If it is
1840  /// unable to simplify it, return a null SDValue.
1841  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1842                          ISD::CondCode Cond, bool foldBooleans,
1843                          DAGCombinerInfo &DCI, SDLoc dl) const;
1844
1845  /// Returns true (and the GlobalValue and the offset) if the node is a
1846  /// GlobalAddress + offset.
1847  virtual bool
1848  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1849
1850  /// This method will be invoked for all target nodes and for any
1851  /// target-independent nodes that the target has registered with invoke it
1852  /// for.
1853  ///
1854  /// The semantics are as follows:
1855  /// Return Value:
1856  ///   SDValue.Val == 0   - No change was made
1857  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1858  ///   otherwise          - N should be replaced by the returned Operand.
1859  ///
1860  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1861  /// more complex transformations.
1862  ///
1863  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1864
1865  /// Return true if the target has native support for the specified value type
1866  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
1867  /// i16 is legal, but undesirable since i16 instruction encodings are longer
1868  /// and some i16 instructions are slow.
1869  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1870    // By default, assume all legal types are desirable.
1871    return isTypeLegal(VT);
1872  }
1873
1874  /// Return true if it is profitable for dag combiner to transform a floating
1875  /// point op of specified opcode to a equivalent op of an integer
1876  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
1877  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1878                                                 EVT /*VT*/) const {
1879    return false;
1880  }
1881
1882  /// This method query the target whether it is beneficial for dag combiner to
1883  /// promote the specified node. If true, it should return the desired
1884  /// promotion type by reference.
1885  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1886    return false;
1887  }
1888
1889  //===--------------------------------------------------------------------===//
1890  // Lowering methods - These methods must be implemented by targets so that
1891  // the SelectionDAGBuilder code knows how to lower these.
1892  //
1893
1894  /// This hook must be implemented to lower the incoming (formal) arguments,
1895  /// described by the Ins array, into the specified DAG. The implementation
1896  /// should fill in the InVals array with legal-type argument values, and
1897  /// return the resulting token chain value.
1898  ///
1899  virtual SDValue
1900    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1901                         bool /*isVarArg*/,
1902                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1903                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
1904                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1905    llvm_unreachable("Not Implemented");
1906  }
1907
1908  struct ArgListEntry {
1909    SDValue Node;
1910    Type* Ty;
1911    bool isSExt     : 1;
1912    bool isZExt     : 1;
1913    bool isInReg    : 1;
1914    bool isSRet     : 1;
1915    bool isNest     : 1;
1916    bool isByVal    : 1;
1917    bool isReturned : 1;
1918    uint16_t Alignment;
1919
1920    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1921      isSRet(false), isNest(false), isByVal(false), isReturned(false),
1922      Alignment(0) { }
1923  };
1924  typedef std::vector<ArgListEntry> ArgListTy;
1925
1926  /// This structure contains all information that is necessary for lowering
1927  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
1928  /// needs to lower a call, and targets will see this struct in their LowerCall
1929  /// implementation.
1930  struct CallLoweringInfo {
1931    SDValue Chain;
1932    Type *RetTy;
1933    bool RetSExt           : 1;
1934    bool RetZExt           : 1;
1935    bool IsVarArg          : 1;
1936    bool IsInReg           : 1;
1937    bool DoesNotReturn     : 1;
1938    bool IsReturnValueUsed : 1;
1939
1940    // IsTailCall should be modified by implementations of
1941    // TargetLowering::LowerCall that perform tail call conversions.
1942    bool IsTailCall;
1943
1944    unsigned NumFixedArgs;
1945    CallingConv::ID CallConv;
1946    SDValue Callee;
1947    ArgListTy &Args;
1948    SelectionDAG &DAG;
1949    SDLoc DL;
1950    ImmutableCallSite *CS;
1951    SmallVector<ISD::OutputArg, 32> Outs;
1952    SmallVector<SDValue, 32> OutVals;
1953    SmallVector<ISD::InputArg, 32> Ins;
1954
1955
1956    /// Constructs a call lowering context based on the ImmutableCallSite \p cs.
1957    CallLoweringInfo(SDValue chain, Type *retTy,
1958                     FunctionType *FTy, bool isTailCall, SDValue callee,
1959                     ArgListTy &args, SelectionDAG &dag, SDLoc dl,
1960                     ImmutableCallSite &cs)
1961    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1962      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1963      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1964      DoesNotReturn(cs.doesNotReturn()),
1965      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1966      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1967      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1968      DL(dl), CS(&cs) {}
1969
1970    /// Constructs a call lowering context based on the provided call
1971    /// information.
1972    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1973                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1974                     CallingConv::ID callConv, bool isTailCall,
1975                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1976                     ArgListTy &args, SelectionDAG &dag, SDLoc dl)
1977    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1978      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1979      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1980      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1981      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1982  };
1983
1984  /// This function lowers an abstract call to a function into an actual call.
1985  /// This returns a pair of operands.  The first element is the return value
1986  /// for the function (if RetTy is not VoidTy).  The second element is the
1987  /// outgoing token chain. It calls LowerCall to do the actual lowering.
1988  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1989
1990  /// This hook must be implemented to lower calls into the the specified
1991  /// DAG. The outgoing arguments to the call are described by the Outs array,
1992  /// and the values to be returned by the call are described by the Ins
1993  /// array. The implementation should fill in the InVals array with legal-type
1994  /// return values from the call, and return the resulting token chain value.
1995  virtual SDValue
1996    LowerCall(CallLoweringInfo &/*CLI*/,
1997              SmallVectorImpl<SDValue> &/*InVals*/) const {
1998    llvm_unreachable("Not Implemented");
1999  }
2000
2001  /// Target-specific cleanup for formal ByVal parameters.
2002  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2003
2004  /// This hook should be implemented to check whether the return values
2005  /// described by the Outs array can fit into the return registers.  If false
2006  /// is returned, an sret-demotion is performed.
2007  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2008                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2009               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2010               LLVMContext &/*Context*/) const
2011  {
2012    // Return true by default to get preexisting behavior.
2013    return true;
2014  }
2015
2016  /// This hook must be implemented to lower outgoing return values, described
2017  /// by the Outs array, into the specified DAG. The implementation should
2018  /// return the resulting token chain value.
2019  virtual SDValue
2020    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2021                bool /*isVarArg*/,
2022                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2023                const SmallVectorImpl<SDValue> &/*OutVals*/,
2024                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2025    llvm_unreachable("Not Implemented");
2026  }
2027
2028  /// Return true if result of the specified node is used by a return node
2029  /// only. It also compute and return the input chain for the tail call.
2030  ///
2031  /// This is used to determine whether it is possible to codegen a libcall as
2032  /// tail call at legalization time.
2033  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2034    return false;
2035  }
2036
2037  /// Return true if the target may be able emit the call instruction as a tail
2038  /// call. This is used by optimization passes to determine if it's profitable
2039  /// to duplicate return instructions to enable tailcall optimization.
2040  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2041    return false;
2042  }
2043
2044  /// Return the type that should be used to zero or sign extend a
2045  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2046  /// convention requires the return type to be promoted, but this is not true
2047  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2048  /// calling conventions. The frontend should handle this and include all of
2049  /// the necessary information.
2050  virtual MVT getTypeForExtArgOrReturn(MVT VT,
2051                                       ISD::NodeType /*ExtendKind*/) const {
2052    MVT MinVT = getRegisterType(MVT::i32);
2053    return VT.bitsLT(MinVT) ? MinVT : VT;
2054  }
2055
2056  /// This callback is invoked by the type legalizer to legalize nodes with an
2057  /// illegal operand type but legal result types.  It replaces the
2058  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2059  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2060  /// use this callback.
2061  ///
2062  /// TODO: Consider merging with ReplaceNodeResults.
2063  ///
2064  /// The target places new result values for the node in Results (their number
2065  /// and types must exactly match those of the original return values of
2066  /// the node), or leaves Results empty, which indicates that the node is not
2067  /// to be custom lowered after all.
2068  /// The default implementation calls LowerOperation.
2069  virtual void LowerOperationWrapper(SDNode *N,
2070                                     SmallVectorImpl<SDValue> &Results,
2071                                     SelectionDAG &DAG) const;
2072
2073  /// This callback is invoked for operations that are unsupported by the
2074  /// target, which are registered to use 'custom' lowering, and whose defined
2075  /// values are all legal.  If the target has no operations that require custom
2076  /// lowering, it need not implement this.  The default implementation of this
2077  /// aborts.
2078  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2079
2080  /// This callback is invoked when a node result type is illegal for the
2081  /// target, and the operation was registered to use 'custom' lowering for that
2082  /// result type.  The target places new result values for the node in Results
2083  /// (their number and types must exactly match those of the original return
2084  /// values of the node), or leaves Results empty, which indicates that the
2085  /// node is not to be custom lowered after all.
2086  ///
2087  /// If the target has no operations that require custom lowering, it need not
2088  /// implement this.  The default implementation aborts.
2089  virtual void ReplaceNodeResults(SDNode * /*N*/,
2090                                  SmallVectorImpl<SDValue> &/*Results*/,
2091                                  SelectionDAG &/*DAG*/) const {
2092    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2093  }
2094
2095  /// This method returns the name of a target specific DAG node.
2096  virtual const char *getTargetNodeName(unsigned Opcode) const;
2097
2098  /// This method returns a target specific FastISel object, or null if the
2099  /// target does not support "fast" ISel.
2100  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2101                                   const TargetLibraryInfo *) const {
2102    return 0;
2103  }
2104
2105  //===--------------------------------------------------------------------===//
2106  // Inline Asm Support hooks
2107  //
2108
2109  /// This hook allows the target to expand an inline asm call to be explicit
2110  /// llvm code if it wants to.  This is useful for turning simple inline asms
2111  /// into LLVM intrinsics, which gives the compiler more information about the
2112  /// behavior of the code.
2113  virtual bool ExpandInlineAsm(CallInst *) const {
2114    return false;
2115  }
2116
2117  enum ConstraintType {
2118    C_Register,            // Constraint represents specific register(s).
2119    C_RegisterClass,       // Constraint represents any of register(s) in class.
2120    C_Memory,              // Memory constraint.
2121    C_Other,               // Something else.
2122    C_Unknown              // Unsupported constraint.
2123  };
2124
2125  enum ConstraintWeight {
2126    // Generic weights.
2127    CW_Invalid  = -1,     // No match.
2128    CW_Okay     = 0,      // Acceptable.
2129    CW_Good     = 1,      // Good weight.
2130    CW_Better   = 2,      // Better weight.
2131    CW_Best     = 3,      // Best weight.
2132
2133    // Well-known weights.
2134    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2135    CW_Register     = CW_Good,    // Register operands.
2136    CW_Memory       = CW_Better,  // Memory operands.
2137    CW_Constant     = CW_Best,    // Constant operand.
2138    CW_Default      = CW_Okay     // Default or don't know type.
2139  };
2140
2141  /// This contains information for each constraint that we are lowering.
2142  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2143    /// This contains the actual string for the code, like "m".  TargetLowering
2144    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2145    /// matches the operand.
2146    std::string ConstraintCode;
2147
2148    /// Information about the constraint code, e.g. Register, RegisterClass,
2149    /// Memory, Other, Unknown.
2150    TargetLowering::ConstraintType ConstraintType;
2151
2152    /// If this is the result output operand or a clobber, this is null,
2153    /// otherwise it is the incoming operand to the CallInst.  This gets
2154    /// modified as the asm is processed.
2155    Value *CallOperandVal;
2156
2157    /// The ValueType for the operand value.
2158    MVT ConstraintVT;
2159
2160    /// Return true of this is an input operand that is a matching constraint
2161    /// like "4".
2162    bool isMatchingInputConstraint() const;
2163
2164    /// If this is an input matching constraint, this method returns the output
2165    /// operand it matches.
2166    unsigned getMatchedOperand() const;
2167
2168    /// Copy constructor for copying from an AsmOperandInfo.
2169    AsmOperandInfo(const AsmOperandInfo &info)
2170      : InlineAsm::ConstraintInfo(info),
2171        ConstraintCode(info.ConstraintCode),
2172        ConstraintType(info.ConstraintType),
2173        CallOperandVal(info.CallOperandVal),
2174        ConstraintVT(info.ConstraintVT) {
2175    }
2176
2177    /// Copy constructor for copying from a ConstraintInfo.
2178    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2179      : InlineAsm::ConstraintInfo(info),
2180        ConstraintType(TargetLowering::C_Unknown),
2181        CallOperandVal(0), ConstraintVT(MVT::Other) {
2182    }
2183  };
2184
2185  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2186
2187  /// Split up the constraint string from the inline assembly value into the
2188  /// specific constraints and their prefixes, and also tie in the associated
2189  /// operand values.  If this returns an empty vector, and if the constraint
2190  /// string itself isn't empty, there was an error parsing.
2191  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2192
2193  /// Examine constraint type and operand type and determine a weight value.
2194  /// The operand object must already have been set up with the operand type.
2195  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2196      AsmOperandInfo &info, int maIndex) const;
2197
2198  /// Examine constraint string and operand type and determine a weight value.
2199  /// The operand object must already have been set up with the operand type.
2200  virtual ConstraintWeight getSingleConstraintMatchWeight(
2201      AsmOperandInfo &info, const char *constraint) const;
2202
2203  /// Determines the constraint code and constraint type to use for the specific
2204  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2205  /// If the actual operand being passed in is available, it can be passed in as
2206  /// Op, otherwise an empty SDValue can be passed.
2207  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2208                                      SDValue Op,
2209                                      SelectionDAG *DAG = 0) const;
2210
2211  /// Given a constraint, return the type of constraint it is for this target.
2212  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2213
2214  /// Given a physical register constraint (e.g.  {edx}), return the register
2215  /// number and the register class for the register.
2216  ///
2217  /// Given a register class constraint, like 'r', if this corresponds directly
2218  /// to an LLVM register class, return a register of 0 and the register class
2219  /// pointer.
2220  ///
2221  /// This should only be used for C_Register constraints.  On error, this
2222  /// returns a register number of 0 and a null register class pointer..
2223  virtual std::pair<unsigned, const TargetRegisterClass*>
2224    getRegForInlineAsmConstraint(const std::string &Constraint,
2225                                 MVT VT) const;
2226
2227  /// Try to replace an X constraint, which matches anything, with another that
2228  /// has more specific requirements based on the type of the corresponding
2229  /// operand.  This returns null if there is no replacement to make.
2230  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2231
2232  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2233  /// add anything to Ops.
2234  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2235                                            std::vector<SDValue> &Ops,
2236                                            SelectionDAG &DAG) const;
2237
2238  //===--------------------------------------------------------------------===//
2239  // Div utility functions
2240  //
2241  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2242                         SelectionDAG &DAG) const;
2243  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2244                      std::vector<SDNode*> *Created) const;
2245  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2246                      std::vector<SDNode*> *Created) const;
2247
2248  //===--------------------------------------------------------------------===//
2249  // Instruction Emitting Hooks
2250  //
2251
2252  // This method should be implemented by targets that mark instructions with
2253  // the 'usesCustomInserter' flag.  These instructions are special in various
2254  // ways, which require special support to insert.  The specified MachineInstr
2255  // is created but not inserted into any basic blocks, and this method is
2256  // called to expand it into a sequence of instructions, potentially also
2257  // creating new basic blocks and control flow.
2258  virtual MachineBasicBlock *
2259    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2260
2261  /// This method should be implemented by targets that mark instructions with
2262  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2263  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2264  /// ARM 's' setting instructions.
2265  virtual void
2266  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2267};
2268
2269/// Given an LLVM IR type and return type attributes, compute the return value
2270/// EVTs and flags, and optionally also the offsets, if the return value is
2271/// being lowered to memory.
2272void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2273                   SmallVectorImpl<ISD::OutputArg> &Outs,
2274                   const TargetLowering &TLI);
2275
2276} // end llvm namespace
2277
2278#endif
2279