TargetLowering.h revision 2bd335470f8939782f3df7f6180282d3825d4f09
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class CallInst;
40  class CCState;
41  class FastISel;
42  class FunctionLoweringInfo;
43  class ImmutableCallSite;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineInstr;
47  class MachineJumpTableInfo;
48  class MCContext;
49  class MCExpr;
50  template<typename T> class SmallVectorImpl;
51  class TargetData;
52  class TargetRegisterClass;
53  class TargetLoweringObjectFile;
54  class Value;
55
56  // FIXME: should this be here?
57  namespace TLSModel {
58    enum Model {
59      GeneralDynamic,
60      LocalDynamic,
61      InitialExec,
62      LocalExec
63    };
64  }
65  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
66
67
68//===----------------------------------------------------------------------===//
69/// TargetLowering - This class defines information used to lower LLVM code to
70/// legal SelectionDAG operators that the target instruction selector can accept
71/// natively.
72///
73/// This class also defines callbacks that targets must implement to lower
74/// target-specific constructs to SelectionDAG operators.
75///
76class TargetLowering {
77  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
78  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
79public:
80  /// LegalizeAction - This enum indicates whether operations are valid for a
81  /// target, and if not, what action should be used to make them valid.
82  enum LegalizeAction {
83    Legal,      // The target natively supports this operation.
84    Promote,    // This operation should be executed in a larger type.
85    Expand,     // Try to expand this to other ops, otherwise use a libcall.
86    Custom      // Use the LowerOperation hook to implement custom lowering.
87  };
88
89  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
90  /// target, and if not, what action should be used to make them valid.
91  enum LegalizeTypeAction {
92    TypeLegal,           // The target natively supports this type.
93    TypePromoteInteger,  // Replace this integer with a larger one.
94    TypeExpandInteger,   // Split this integer into two of half the size.
95    TypeSoftenFloat,     // Convert this float to a same size integer type.
96    TypeExpandFloat,     // Split this float into two of half the size.
97    TypeScalarizeVector, // Replace this one-element vector with its element.
98    TypeSplitVector,     // Split this vector into two of half the size.
99    TypeWidenVector      // This vector should be widened into a larger vector.
100  };
101
102  enum BooleanContent { // How the target represents true/false values.
103    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
104    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
105    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
106  };
107
108  static ISD::NodeType getExtendForContent(BooleanContent Content) {
109    switch (Content) {
110    case UndefinedBooleanContent:
111      // Extend by adding rubbish bits.
112      return ISD::ANY_EXTEND;
113    case ZeroOrOneBooleanContent:
114      // Extend by adding zero bits.
115      return ISD::ZERO_EXTEND;
116    case ZeroOrNegativeOneBooleanContent:
117      // Extend by copying the sign bit.
118      return ISD::SIGN_EXTEND;
119    }
120  }
121
122  /// NOTE: The constructor takes ownership of TLOF.
123  explicit TargetLowering(const TargetMachine &TM,
124                          const TargetLoweringObjectFile *TLOF);
125  virtual ~TargetLowering();
126
127  const TargetMachine &getTargetMachine() const { return TM; }
128  const TargetData *getTargetData() const { return TD; }
129  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
130
131  bool isBigEndian() const { return !IsLittleEndian; }
132  bool isLittleEndian() const { return IsLittleEndian; }
133  MVT getPointerTy() const { return PointerTy; }
134  virtual MVT getShiftAmountTy(EVT LHSTy) const;
135
136  /// isSelectExpensive - Return true if the select operation is expensive for
137  /// this target.
138  bool isSelectExpensive() const { return SelectIsExpensive; }
139
140  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
141  /// a sequence of several shifts, adds, and multiplies for this target.
142  bool isIntDivCheap() const { return IntDivIsCheap; }
143
144  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
145  /// srl/add/sra.
146  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
147
148  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
149  /// that should be avoided.
150  bool isJumpExpensive() const { return JumpIsExpensive; }
151
152  /// getSetCCResultType - Return the ValueType of the result of SETCC
153  /// operations.  Also used to obtain the target's preferred type for
154  /// the condition operand of SELECT and BRCOND nodes.  In the case of
155  /// BRCOND the argument passed is MVT::Other since there are no other
156  /// operands to get a type hint from.
157  virtual EVT getSetCCResultType(EVT VT) const;
158
159  /// getCmpLibcallReturnType - Return the ValueType for comparison
160  /// libcalls. Comparions libcalls include floating point comparion calls,
161  /// and Ordered/Unordered check calls on floating point numbers.
162  virtual
163  MVT::SimpleValueType getCmpLibcallReturnType() const;
164
165  /// getBooleanContents - For targets without i1 registers, this gives the
166  /// nature of the high-bits of boolean values held in types wider than i1.
167  /// "Boolean values" are special true/false values produced by nodes like
168  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
169  /// Not to be confused with general values promoted from i1.
170  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
171  /// parameter selects between the two kinds.  For example on X86 a scalar
172  /// boolean should be zero extended from i1, while the elements of a vector
173  /// of booleans should be sign extended from i1.
174  BooleanContent getBooleanContents(bool isVec) const {
175    return isVec ? BooleanVectorContents : BooleanContents;
176  }
177
178  /// getSchedulingPreference - Return target scheduling preference.
179  Sched::Preference getSchedulingPreference() const {
180    return SchedPreferenceInfo;
181  }
182
183  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
184  /// different scheduling heuristics for different nodes. This function returns
185  /// the preference (or none) for the given node.
186  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
187    return Sched::None;
188  }
189
190  /// getRegClassFor - Return the register class that should be used for the
191  /// specified value type.
192  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
193    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
194    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
195    assert(RC && "This value type is not natively supported!");
196    return RC;
197  }
198
199  /// getRepRegClassFor - Return the 'representative' register class for the
200  /// specified value type. The 'representative' register class is the largest
201  /// legal super-reg register class for the register class of the value type.
202  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
203  /// while the rep register class is GR64 on x86_64.
204  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
205    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
206    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
207    return RC;
208  }
209
210  /// getRepRegClassCostFor - Return the cost of the 'representative' register
211  /// class for the specified value type.
212  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
213    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
214    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
215  }
216
217  /// isTypeLegal - Return true if the target has native support for the
218  /// specified value type.  This means that it has a register that directly
219  /// holds it without promotions or expansions.
220  bool isTypeLegal(EVT VT) const {
221    assert(!VT.isSimple() ||
222           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
223    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
224  }
225
226  class ValueTypeActionImpl {
227    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
228    /// that indicates how instruction selection should deal with the type.
229    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
230
231  public:
232    ValueTypeActionImpl() {
233      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
234    }
235
236    LegalizeTypeAction getTypeAction(MVT VT) const {
237      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
238    }
239
240    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
241      unsigned I = VT.getSimpleVT().SimpleTy;
242      ValueTypeActions[I] = Action;
243    }
244  };
245
246  const ValueTypeActionImpl &getValueTypeActions() const {
247    return ValueTypeActions;
248  }
249
250  /// getTypeAction - Return how we should legalize values of this type, either
251  /// it is already legal (return 'Legal') or we need to promote it to a larger
252  /// type (return 'Promote'), or we need to expand it into multiple registers
253  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
254  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
255    return getTypeConversion(Context, VT).first;
256  }
257  LegalizeTypeAction getTypeAction(MVT VT) const {
258    return ValueTypeActions.getTypeAction(VT);
259  }
260
261  /// getTypeToTransformTo - For types supported by the target, this is an
262  /// identity function.  For types that must be promoted to larger types, this
263  /// returns the larger type to promote to.  For integer types that are larger
264  /// than the largest integer register, this contains one step in the expansion
265  /// to get to the smaller register. For illegal floating point types, this
266  /// returns the integer type to transform to.
267  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
268    return getTypeConversion(Context, VT).second;
269  }
270
271  /// getTypeToExpandTo - For types supported by the target, this is an
272  /// identity function.  For types that must be expanded (i.e. integer types
273  /// that are larger than the largest integer register or illegal floating
274  /// point types), this returns the largest legal type it will be expanded to.
275  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
276    assert(!VT.isVector());
277    while (true) {
278      switch (getTypeAction(Context, VT)) {
279      case TypeLegal:
280        return VT;
281      case TypeExpandInteger:
282        VT = getTypeToTransformTo(Context, VT);
283        break;
284      default:
285        assert(false && "Type is not legal nor is it to be expanded!");
286        return VT;
287      }
288    }
289    return VT;
290  }
291
292  /// getVectorTypeBreakdown - Vector types are broken down into some number of
293  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
294  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
295  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
296  ///
297  /// This method returns the number of registers needed, and the VT for each
298  /// register.  It also returns the VT and quantity of the intermediate values
299  /// before they are promoted/expanded.
300  ///
301  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
302                                  EVT &IntermediateVT,
303                                  unsigned &NumIntermediates,
304                                  EVT &RegisterVT) const;
305
306  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
307  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
308  /// this is the case, it returns true and store the intrinsic
309  /// information into the IntrinsicInfo that was passed to the function.
310  struct IntrinsicInfo {
311    unsigned     opc;         // target opcode
312    EVT          memVT;       // memory VT
313    const Value* ptrVal;      // value representing memory location
314    int          offset;      // offset off of ptrVal
315    unsigned     align;       // alignment
316    bool         vol;         // is volatile?
317    bool         readMem;     // reads memory?
318    bool         writeMem;    // writes memory?
319  };
320
321  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
322                                  unsigned /*Intrinsic*/) const {
323    return false;
324  }
325
326  /// isFPImmLegal - Returns true if the target can instruction select the
327  /// specified FP immediate natively. If false, the legalizer will materialize
328  /// the FP immediate as a load from a constant pool.
329  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
330    return false;
331  }
332
333  /// isShuffleMaskLegal - Targets can use this to indicate that they only
334  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
335  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
336  /// are assumed to be legal.
337  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
338                                  EVT /*VT*/) const {
339    return true;
340  }
341
342  /// canOpTrap - Returns true if the operation can trap for the value type.
343  /// VT must be a legal type. By default, we optimistically assume most
344  /// operations don't trap except for divide and remainder.
345  virtual bool canOpTrap(unsigned Op, EVT VT) const;
346
347  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
348  /// used by Targets can use this to indicate if there is a suitable
349  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
350  /// pool entry.
351  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
352                                      EVT /*VT*/) const {
353    return false;
354  }
355
356  /// getOperationAction - Return how this operation should be treated: either
357  /// it is legal, needs to be promoted to a larger size, needs to be
358  /// expanded to some other code sequence, or the target has a custom expander
359  /// for it.
360  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
361    if (VT.isExtended()) return Expand;
362    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
363    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
364    return (LegalizeAction)OpActions[I][Op];
365  }
366
367  /// isOperationLegalOrCustom - Return true if the specified operation is
368  /// legal on this target or can be made legal with custom lowering. This
369  /// is used to help guide high-level lowering decisions.
370  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
371    return (VT == MVT::Other || isTypeLegal(VT)) &&
372      (getOperationAction(Op, VT) == Legal ||
373       getOperationAction(Op, VT) == Custom);
374  }
375
376  /// isOperationLegal - Return true if the specified operation is legal on this
377  /// target.
378  bool isOperationLegal(unsigned Op, EVT VT) const {
379    return (VT == MVT::Other || isTypeLegal(VT)) &&
380           getOperationAction(Op, VT) == Legal;
381  }
382
383  /// getLoadExtAction - Return how this load with extension should be treated:
384  /// either it is legal, needs to be promoted to a larger size, needs to be
385  /// expanded to some other code sequence, or the target has a custom expander
386  /// for it.
387  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
388    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
389           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
390           "Table isn't big enough!");
391    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
392  }
393
394  /// isLoadExtLegal - Return true if the specified load with extension is legal
395  /// on this target.
396  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
397    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
398  }
399
400  /// getTruncStoreAction - Return how this store with truncation should be
401  /// treated: either it is legal, needs to be promoted to a larger size, needs
402  /// to be expanded to some other code sequence, or the target has a custom
403  /// expander for it.
404  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
405    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
406           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
407           "Table isn't big enough!");
408    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
409                                            [MemVT.getSimpleVT().SimpleTy];
410  }
411
412  /// isTruncStoreLegal - Return true if the specified store with truncation is
413  /// legal on this target.
414  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
415    return isTypeLegal(ValVT) && MemVT.isSimple() &&
416           getTruncStoreAction(ValVT, MemVT) == Legal;
417  }
418
419  /// getIndexedLoadAction - Return how the indexed load should be treated:
420  /// either it is legal, needs to be promoted to a larger size, needs to be
421  /// expanded to some other code sequence, or the target has a custom expander
422  /// for it.
423  LegalizeAction
424  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
425    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
426           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
427           "Table isn't big enough!");
428    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
429    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
430  }
431
432  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
433  /// on this target.
434  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
435    return VT.isSimple() &&
436      (getIndexedLoadAction(IdxMode, VT) == Legal ||
437       getIndexedLoadAction(IdxMode, VT) == Custom);
438  }
439
440  /// getIndexedStoreAction - Return how the indexed store should be treated:
441  /// either it is legal, needs to be promoted to a larger size, needs to be
442  /// expanded to some other code sequence, or the target has a custom expander
443  /// for it.
444  LegalizeAction
445  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
446    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
447           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
448           "Table isn't big enough!");
449    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
450    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
451  }
452
453  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
454  /// on this target.
455  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
456    return VT.isSimple() &&
457      (getIndexedStoreAction(IdxMode, VT) == Legal ||
458       getIndexedStoreAction(IdxMode, VT) == Custom);
459  }
460
461  /// getCondCodeAction - Return how the condition code should be treated:
462  /// either it is legal, needs to be expanded to some other code sequence,
463  /// or the target has a custom expander for it.
464  LegalizeAction
465  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
466    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
467           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
468           "Table isn't big enough!");
469    LegalizeAction Action = (LegalizeAction)
470      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
471    assert(Action != Promote && "Can't promote condition code!");
472    return Action;
473  }
474
475  /// isCondCodeLegal - Return true if the specified condition code is legal
476  /// on this target.
477  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
478    return getCondCodeAction(CC, VT) == Legal ||
479           getCondCodeAction(CC, VT) == Custom;
480  }
481
482
483  /// getTypeToPromoteTo - If the action for this operation is to promote, this
484  /// method returns the ValueType to promote to.
485  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
486    assert(getOperationAction(Op, VT) == Promote &&
487           "This operation isn't promoted!");
488
489    // See if this has an explicit type specified.
490    std::map<std::pair<unsigned, MVT::SimpleValueType>,
491             MVT::SimpleValueType>::const_iterator PTTI =
492      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
493    if (PTTI != PromoteToType.end()) return PTTI->second;
494
495    assert((VT.isInteger() || VT.isFloatingPoint()) &&
496           "Cannot autopromote this type, add it with AddPromotedToType.");
497
498    EVT NVT = VT;
499    do {
500      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
501      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
502             "Didn't find type to promote to!");
503    } while (!isTypeLegal(NVT) ||
504              getOperationAction(Op, NVT) == Promote);
505    return NVT;
506  }
507
508  /// getValueType - Return the EVT corresponding to this LLVM type.
509  /// This is fixed by the LLVM operations except for the pointer size.  If
510  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
511  /// counterpart (e.g. structs), otherwise it will assert.
512  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
513    // Lower scalar pointers to native pointer types.
514    if (Ty->isPointerTy()) return PointerTy;
515
516    if (Ty->isVectorTy()) {
517      VectorType *VTy = cast<VectorType>(Ty);
518      Type *Elm = VTy->getElementType();
519      // Lower vectors of pointers to native pointer types.
520      if (Elm->isPointerTy())
521        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
522      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
523                       VTy->getNumElements());
524    }
525    return EVT::getEVT(Ty, AllowUnknown);
526  }
527
528  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
529  /// function arguments in the caller parameter area.  This is the actual
530  /// alignment, not its logarithm.
531  virtual unsigned getByValTypeAlignment(Type *Ty) const;
532
533  /// getRegisterType - Return the type of registers that this ValueType will
534  /// eventually require.
535  EVT getRegisterType(MVT VT) const {
536    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
537    return RegisterTypeForVT[VT.SimpleTy];
538  }
539
540  /// getRegisterType - Return the type of registers that this ValueType will
541  /// eventually require.
542  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
543    if (VT.isSimple()) {
544      assert((unsigned)VT.getSimpleVT().SimpleTy <
545                array_lengthof(RegisterTypeForVT));
546      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
547    }
548    if (VT.isVector()) {
549      EVT VT1, RegisterVT;
550      unsigned NumIntermediates;
551      (void)getVectorTypeBreakdown(Context, VT, VT1,
552                                   NumIntermediates, RegisterVT);
553      return RegisterVT;
554    }
555    if (VT.isInteger()) {
556      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
557    }
558    assert(0 && "Unsupported extended type!");
559    return EVT(MVT::Other); // Not reached
560  }
561
562  /// getNumRegisters - Return the number of registers that this ValueType will
563  /// eventually require.  This is one for any types promoted to live in larger
564  /// registers, but may be more than one for types (like i64) that are split
565  /// into pieces.  For types like i140, which are first promoted then expanded,
566  /// it is the number of registers needed to hold all the bits of the original
567  /// type.  For an i140 on a 32 bit machine this means 5 registers.
568  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
569    if (VT.isSimple()) {
570      assert((unsigned)VT.getSimpleVT().SimpleTy <
571                array_lengthof(NumRegistersForVT));
572      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
573    }
574    if (VT.isVector()) {
575      EVT VT1, VT2;
576      unsigned NumIntermediates;
577      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
578    }
579    if (VT.isInteger()) {
580      unsigned BitWidth = VT.getSizeInBits();
581      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
582      return (BitWidth + RegWidth - 1) / RegWidth;
583    }
584    assert(0 && "Unsupported extended type!");
585    return 0; // Not reached
586  }
587
588  /// ShouldShrinkFPConstant - If true, then instruction selection should
589  /// seek to shrink the FP constant of the specified type to a smaller type
590  /// in order to save space and / or reduce runtime.
591  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
592
593  /// hasTargetDAGCombine - If true, the target has custom DAG combine
594  /// transformations that it can perform for the specified node.
595  bool hasTargetDAGCombine(ISD::NodeType NT) const {
596    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
597    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
598  }
599
600  /// This function returns the maximum number of store operations permitted
601  /// to replace a call to llvm.memset. The value is set by the target at the
602  /// performance threshold for such a replacement. If OptSize is true,
603  /// return the limit for functions that have OptSize attribute.
604  /// @brief Get maximum # of store operations permitted for llvm.memset
605  unsigned getMaxStoresPerMemset(bool OptSize) const {
606    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
607  }
608
609  /// This function returns the maximum number of store operations permitted
610  /// to replace a call to llvm.memcpy. The value is set by the target at the
611  /// performance threshold for such a replacement. If OptSize is true,
612  /// return the limit for functions that have OptSize attribute.
613  /// @brief Get maximum # of store operations permitted for llvm.memcpy
614  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
615    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
616  }
617
618  /// This function returns the maximum number of store operations permitted
619  /// to replace a call to llvm.memmove. The value is set by the target at the
620  /// performance threshold for such a replacement. If OptSize is true,
621  /// return the limit for functions that have OptSize attribute.
622  /// @brief Get maximum # of store operations permitted for llvm.memmove
623  unsigned getMaxStoresPerMemmove(bool OptSize) const {
624    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
625  }
626
627  /// This function returns true if the target allows unaligned memory accesses.
628  /// of the specified type. This is used, for example, in situations where an
629  /// array copy/move/set is  converted to a sequence of store operations. It's
630  /// use helps to ensure that such replacements don't generate code that causes
631  /// an alignment error  (trap) on the target machine.
632  /// @brief Determine if the target supports unaligned memory accesses.
633  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
634    return false;
635  }
636
637  /// This function returns true if the target would benefit from code placement
638  /// optimization.
639  /// @brief Determine if the target should perform code placement optimization.
640  bool shouldOptimizeCodePlacement() const {
641    return benefitFromCodePlacementOpt;
642  }
643
644  /// getOptimalMemOpType - Returns the target specific optimal type for load
645  /// and store operations as a result of memset, memcpy, and memmove
646  /// lowering. If DstAlign is zero that means it's safe to destination
647  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
648  /// means there isn't a need to check it against alignment requirement,
649  /// probably because the source does not need to be loaded. If
650  /// 'IsZeroVal' is true, that means it's safe to return a
651  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
652  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
653  /// constant so it does not need to be loaded.
654  /// It returns EVT::Other if the type should be determined using generic
655  /// target-independent logic.
656  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
657                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
658                                  bool /*IsZeroVal*/,
659                                  bool /*MemcpyStrSrc*/,
660                                  MachineFunction &/*MF*/) const {
661    return MVT::Other;
662  }
663
664  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
665  /// to implement llvm.setjmp.
666  bool usesUnderscoreSetJmp() const {
667    return UseUnderscoreSetJmp;
668  }
669
670  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
671  /// to implement llvm.longjmp.
672  bool usesUnderscoreLongJmp() const {
673    return UseUnderscoreLongJmp;
674  }
675
676  /// getStackPointerRegisterToSaveRestore - If a physical register, this
677  /// specifies the register that llvm.savestack/llvm.restorestack should save
678  /// and restore.
679  unsigned getStackPointerRegisterToSaveRestore() const {
680    return StackPointerRegisterToSaveRestore;
681  }
682
683  /// getExceptionAddressRegister - If a physical register, this returns
684  /// the register that receives the exception address on entry to a landing
685  /// pad.
686  unsigned getExceptionAddressRegister() const {
687    return ExceptionPointerRegister;
688  }
689
690  /// getExceptionSelectorRegister - If a physical register, this returns
691  /// the register that receives the exception typeid on entry to a landing
692  /// pad.
693  unsigned getExceptionSelectorRegister() const {
694    return ExceptionSelectorRegister;
695  }
696
697  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
698  /// set, the default is 200)
699  unsigned getJumpBufSize() const {
700    return JumpBufSize;
701  }
702
703  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
704  /// (if never set, the default is 0)
705  unsigned getJumpBufAlignment() const {
706    return JumpBufAlignment;
707  }
708
709  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
710  /// argument.
711  unsigned getMinStackArgumentAlignment() const {
712    return MinStackArgumentAlignment;
713  }
714
715  /// getMinFunctionAlignment - return the minimum function alignment.
716  ///
717  unsigned getMinFunctionAlignment() const {
718    return MinFunctionAlignment;
719  }
720
721  /// getPrefFunctionAlignment - return the preferred function alignment.
722  ///
723  unsigned getPrefFunctionAlignment() const {
724    return PrefFunctionAlignment;
725  }
726
727  /// getPrefLoopAlignment - return the preferred loop alignment.
728  ///
729  unsigned getPrefLoopAlignment() const {
730    return PrefLoopAlignment;
731  }
732
733  /// getShouldFoldAtomicFences - return whether the combiner should fold
734  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
735  ///
736  bool getShouldFoldAtomicFences() const {
737    return ShouldFoldAtomicFences;
738  }
739
740  /// getInsertFencesFor - return whether the DAG builder should automatically
741  /// insert fences and reduce ordering for atomics.
742  ///
743  bool getInsertFencesForAtomic() const {
744    return InsertFencesForAtomic;
745  }
746
747  /// getPreIndexedAddressParts - returns true by value, base pointer and
748  /// offset pointer and addressing mode by reference if the node's address
749  /// can be legally represented as pre-indexed load / store address.
750  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
751                                         SDValue &/*Offset*/,
752                                         ISD::MemIndexedMode &/*AM*/,
753                                         SelectionDAG &/*DAG*/) const {
754    return false;
755  }
756
757  /// getPostIndexedAddressParts - returns true by value, base pointer and
758  /// offset pointer and addressing mode by reference if this node can be
759  /// combined with a load / store to form a post-indexed load / store.
760  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
761                                          SDValue &/*Base*/, SDValue &/*Offset*/,
762                                          ISD::MemIndexedMode &/*AM*/,
763                                          SelectionDAG &/*DAG*/) const {
764    return false;
765  }
766
767  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
768  /// current function.  The returned value is a member of the
769  /// MachineJumpTableInfo::JTEntryKind enum.
770  virtual unsigned getJumpTableEncoding() const;
771
772  virtual const MCExpr *
773  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
774                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
775                            MCContext &/*Ctx*/) const {
776    assert(0 && "Need to implement this hook if target has custom JTIs");
777    return 0;
778  }
779
780  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
781  /// jumptable.
782  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
783                                           SelectionDAG &DAG) const;
784
785  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
786  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
787  /// MCExpr.
788  virtual const MCExpr *
789  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
790                               unsigned JTI, MCContext &Ctx) const;
791
792  /// isOffsetFoldingLegal - Return true if folding a constant offset
793  /// with the given GlobalAddress is legal.  It is frequently not legal in
794  /// PIC relocation models.
795  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
796
797  /// getStackCookieLocation - Return true if the target stores stack
798  /// protector cookies at a fixed offset in some non-standard address
799  /// space, and populates the address space and offset as
800  /// appropriate.
801  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
802                                      unsigned &/*Offset*/) const {
803    return false;
804  }
805
806  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
807  /// used for loads / stores from the global.
808  virtual unsigned getMaximalGlobalOffset() const {
809    return 0;
810  }
811
812  //===--------------------------------------------------------------------===//
813  // TargetLowering Optimization Methods
814  //
815
816  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
817  /// SDValues for returning information from TargetLowering to its clients
818  /// that want to combine
819  struct TargetLoweringOpt {
820    SelectionDAG &DAG;
821    bool LegalTys;
822    bool LegalOps;
823    SDValue Old;
824    SDValue New;
825
826    explicit TargetLoweringOpt(SelectionDAG &InDAG,
827                               bool LT, bool LO) :
828      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
829
830    bool LegalTypes() const { return LegalTys; }
831    bool LegalOperations() const { return LegalOps; }
832
833    bool CombineTo(SDValue O, SDValue N) {
834      Old = O;
835      New = N;
836      return true;
837    }
838
839    /// ShrinkDemandedConstant - Check to see if the specified operand of the
840    /// specified instruction is a constant integer.  If so, check to see if
841    /// there are any bits set in the constant that are not demanded.  If so,
842    /// shrink the constant and return true.
843    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
844
845    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
846    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
847    /// cast, but it could be generalized for targets with other types of
848    /// implicit widening casts.
849    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
850                          DebugLoc dl);
851  };
852
853  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
854  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
855  /// use this information to simplify Op, create a new simplified DAG node and
856  /// return true, returning the original and new nodes in Old and New.
857  /// Otherwise, analyze the expression and return a mask of KnownOne and
858  /// KnownZero bits for the expression (used to simplify the caller).
859  /// The KnownZero/One bits may only be accurate for those bits in the
860  /// DemandedMask.
861  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
862                            APInt &KnownZero, APInt &KnownOne,
863                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
864
865  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
866  /// Mask are known to be either zero or one and return them in the
867  /// KnownZero/KnownOne bitsets.
868  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
869                                              const APInt &Mask,
870                                              APInt &KnownZero,
871                                              APInt &KnownOne,
872                                              const SelectionDAG &DAG,
873                                              unsigned Depth = 0) const;
874
875  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
876  /// targets that want to expose additional information about sign bits to the
877  /// DAG Combiner.
878  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
879                                                   unsigned Depth = 0) const;
880
881  struct DAGCombinerInfo {
882    void *DC;  // The DAG Combiner object.
883    bool BeforeLegalize;
884    bool BeforeLegalizeOps;
885    bool CalledByLegalizer;
886  public:
887    SelectionDAG &DAG;
888
889    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
890      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
891        CalledByLegalizer(cl), DAG(dag) {}
892
893    bool isBeforeLegalize() const { return BeforeLegalize; }
894    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
895    bool isCalledByLegalizer() const { return CalledByLegalizer; }
896
897    void AddToWorklist(SDNode *N);
898    void RemoveFromWorklist(SDNode *N);
899    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
900                      bool AddTo = true);
901    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
902    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
903
904    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
905  };
906
907  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
908  /// and cc. If it is unable to simplify it, return a null SDValue.
909  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
910                          ISD::CondCode Cond, bool foldBooleans,
911                          DAGCombinerInfo &DCI, DebugLoc dl) const;
912
913  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
914  /// node is a GlobalAddress + offset.
915  virtual bool
916  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
917
918  /// PerformDAGCombine - This method will be invoked for all target nodes and
919  /// for any target-independent nodes that the target has registered with
920  /// invoke it for.
921  ///
922  /// The semantics are as follows:
923  /// Return Value:
924  ///   SDValue.Val == 0   - No change was made
925  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
926  ///   otherwise          - N should be replaced by the returned Operand.
927  ///
928  /// In addition, methods provided by DAGCombinerInfo may be used to perform
929  /// more complex transformations.
930  ///
931  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
932
933  /// isTypeDesirableForOp - Return true if the target has native support for
934  /// the specified value type and it is 'desirable' to use the type for the
935  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
936  /// instruction encodings are longer and some i16 instructions are slow.
937  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
938    // By default, assume all legal types are desirable.
939    return isTypeLegal(VT);
940  }
941
942  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
943  /// to transform a floating point op of specified opcode to a equivalent op of
944  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
945  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
946                                                 EVT /*VT*/) const {
947    return false;
948  }
949
950  /// IsDesirableToPromoteOp - This method query the target whether it is
951  /// beneficial for dag combiner to promote the specified node. If true, it
952  /// should return the desired promotion type by reference.
953  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
954    return false;
955  }
956
957  //===--------------------------------------------------------------------===//
958  // TargetLowering Configuration Methods - These methods should be invoked by
959  // the derived class constructor to configure this object for the target.
960  //
961
962protected:
963  /// setBooleanContents - Specify how the target extends the result of a
964  /// boolean value from i1 to a wider type.  See getBooleanContents.
965  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
966  /// setBooleanVectorContents - Specify how the target extends the result
967  /// of a vector boolean value from a vector of i1 to a wider type.  See
968  /// getBooleanContents.
969  void setBooleanVectorContents(BooleanContent Ty) {
970    BooleanVectorContents = Ty;
971  }
972
973  /// setSchedulingPreference - Specify the target scheduling preference.
974  void setSchedulingPreference(Sched::Preference Pref) {
975    SchedPreferenceInfo = Pref;
976  }
977
978  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
979  /// use _setjmp to implement llvm.setjmp or the non _ version.
980  /// Defaults to false.
981  void setUseUnderscoreSetJmp(bool Val) {
982    UseUnderscoreSetJmp = Val;
983  }
984
985  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
986  /// use _longjmp to implement llvm.longjmp or the non _ version.
987  /// Defaults to false.
988  void setUseUnderscoreLongJmp(bool Val) {
989    UseUnderscoreLongJmp = Val;
990  }
991
992  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
993  /// specifies the register that llvm.savestack/llvm.restorestack should save
994  /// and restore.
995  void setStackPointerRegisterToSaveRestore(unsigned R) {
996    StackPointerRegisterToSaveRestore = R;
997  }
998
999  /// setExceptionPointerRegister - If set to a physical register, this sets
1000  /// the register that receives the exception address on entry to a landing
1001  /// pad.
1002  void setExceptionPointerRegister(unsigned R) {
1003    ExceptionPointerRegister = R;
1004  }
1005
1006  /// setExceptionSelectorRegister - If set to a physical register, this sets
1007  /// the register that receives the exception typeid on entry to a landing
1008  /// pad.
1009  void setExceptionSelectorRegister(unsigned R) {
1010    ExceptionSelectorRegister = R;
1011  }
1012
1013  /// SelectIsExpensive - Tells the code generator not to expand operations
1014  /// into sequences that use the select operations if possible.
1015  void setSelectIsExpensive(bool isExpensive = true) {
1016    SelectIsExpensive = isExpensive;
1017  }
1018
1019  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1020  /// operations into a separate sequences that increases the amount of
1021  /// flow control.
1022  void setJumpIsExpensive(bool isExpensive = true) {
1023    JumpIsExpensive = isExpensive;
1024  }
1025
1026  /// setIntDivIsCheap - Tells the code generator that integer divide is
1027  /// expensive, and if possible, should be replaced by an alternate sequence
1028  /// of instructions not containing an integer divide.
1029  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1030
1031  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1032  /// srl/add/sra for a signed divide by power of two, and let the target handle
1033  /// it.
1034  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1035
1036  /// addRegisterClass - Add the specified register class as an available
1037  /// regclass for the specified value type.  This indicates the selector can
1038  /// handle values of that class natively.
1039  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1040    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1041    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1042    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1043  }
1044
1045  /// findRepresentativeClass - Return the largest legal super-reg register class
1046  /// of the register class for the specified type and its associated "cost".
1047  virtual std::pair<const TargetRegisterClass*, uint8_t>
1048  findRepresentativeClass(EVT VT) const;
1049
1050  /// computeRegisterProperties - Once all of the register classes are added,
1051  /// this allows us to compute derived properties we expose.
1052  void computeRegisterProperties();
1053
1054  /// setOperationAction - Indicate that the specified operation does not work
1055  /// with the specified type and indicate what to do about it.
1056  void setOperationAction(unsigned Op, MVT VT,
1057                          LegalizeAction Action) {
1058    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1059    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1060  }
1061
1062  /// setLoadExtAction - Indicate that the specified load with extension does
1063  /// not work with the specified type and indicate what to do about it.
1064  void setLoadExtAction(unsigned ExtType, MVT VT,
1065                        LegalizeAction Action) {
1066    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1067           "Table isn't big enough!");
1068    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1069  }
1070
1071  /// setTruncStoreAction - Indicate that the specified truncating store does
1072  /// not work with the specified type and indicate what to do about it.
1073  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1074                           LegalizeAction Action) {
1075    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1076           "Table isn't big enough!");
1077    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1078  }
1079
1080  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1081  /// does not work with the specified type and indicate what to do abort
1082  /// it. NOTE: All indexed mode loads are initialized to Expand in
1083  /// TargetLowering.cpp
1084  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1085                            LegalizeAction Action) {
1086    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1087           (unsigned)Action < 0xf && "Table isn't big enough!");
1088    // Load action are kept in the upper half.
1089    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1090    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1091  }
1092
1093  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1094  /// does not work with the specified type and indicate what to do about
1095  /// it. NOTE: All indexed mode stores are initialized to Expand in
1096  /// TargetLowering.cpp
1097  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1098                             LegalizeAction Action) {
1099    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1100           (unsigned)Action < 0xf && "Table isn't big enough!");
1101    // Store action are kept in the lower half.
1102    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1103    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1104  }
1105
1106  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1107  /// supported on the target and indicate what to do about it.
1108  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1109                         LegalizeAction Action) {
1110    assert(VT < MVT::LAST_VALUETYPE &&
1111           (unsigned)CC < array_lengthof(CondCodeActions) &&
1112           "Table isn't big enough!");
1113    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1114    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1115  }
1116
1117  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1118  /// promotion code defaults to trying a larger integer/fp until it can find
1119  /// one that works.  If that default is insufficient, this method can be used
1120  /// by the target to override the default.
1121  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1122    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1123  }
1124
1125  /// setTargetDAGCombine - Targets should invoke this method for each target
1126  /// independent node that they want to provide a custom DAG combiner for by
1127  /// implementing the PerformDAGCombine virtual method.
1128  void setTargetDAGCombine(ISD::NodeType NT) {
1129    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1130    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1131  }
1132
1133  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1134  /// bytes); default is 200
1135  void setJumpBufSize(unsigned Size) {
1136    JumpBufSize = Size;
1137  }
1138
1139  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1140  /// alignment (in bytes); default is 0
1141  void setJumpBufAlignment(unsigned Align) {
1142    JumpBufAlignment = Align;
1143  }
1144
1145  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1146  /// log2(bytes))
1147  void setMinFunctionAlignment(unsigned Align) {
1148    MinFunctionAlignment = Align;
1149  }
1150
1151  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1152  /// This should be set if there is a performance benefit to
1153  /// higher-than-minimum alignment (in log2(bytes))
1154  void setPrefFunctionAlignment(unsigned Align) {
1155    PrefFunctionAlignment = Align;
1156  }
1157
1158  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1159  /// alignment is zero, it means the target does not care about loop alignment.
1160  /// The alignment is specified in log2(bytes).
1161  void setPrefLoopAlignment(unsigned Align) {
1162    PrefLoopAlignment = Align;
1163  }
1164
1165  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1166  /// argument (in log2(bytes)).
1167  void setMinStackArgumentAlignment(unsigned Align) {
1168    MinStackArgumentAlignment = Align;
1169  }
1170
1171  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1172  /// atomic operation intrinsics includes locking. Default is false.
1173  void setShouldFoldAtomicFences(bool fold) {
1174    ShouldFoldAtomicFences = fold;
1175  }
1176
1177  /// setInsertFencesForAtomic - Set if the the DAG builder should
1178  /// automatically insert fences and reduce the order of atomic memory
1179  /// operations to Monotonic.
1180  void setInsertFencesForAtomic(bool fence) {
1181    InsertFencesForAtomic = fence;
1182  }
1183
1184public:
1185  //===--------------------------------------------------------------------===//
1186  // Lowering methods - These methods must be implemented by targets so that
1187  // the SelectionDAGLowering code knows how to lower these.
1188  //
1189
1190  /// LowerFormalArguments - This hook must be implemented to lower the
1191  /// incoming (formal) arguments, described by the Ins array, into the
1192  /// specified DAG. The implementation should fill in the InVals array
1193  /// with legal-type argument values, and return the resulting token
1194  /// chain value.
1195  ///
1196  virtual SDValue
1197    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1198                         bool /*isVarArg*/,
1199                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1200                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1201                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1202    assert(0 && "Not Implemented");
1203    return SDValue();    // this is here to silence compiler errors
1204  }
1205
1206  /// LowerCallTo - This function lowers an abstract call to a function into an
1207  /// actual call.  This returns a pair of operands.  The first element is the
1208  /// return value for the function (if RetTy is not VoidTy).  The second
1209  /// element is the outgoing token chain. It calls LowerCall to do the actual
1210  /// lowering.
1211  struct ArgListEntry {
1212    SDValue Node;
1213    Type* Ty;
1214    bool isSExt  : 1;
1215    bool isZExt  : 1;
1216    bool isInReg : 1;
1217    bool isSRet  : 1;
1218    bool isNest  : 1;
1219    bool isByVal : 1;
1220    uint16_t Alignment;
1221
1222    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1223      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1224  };
1225  typedef std::vector<ArgListEntry> ArgListTy;
1226  std::pair<SDValue, SDValue>
1227  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1228              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1229              CallingConv::ID CallConv, bool isTailCall,
1230              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1231              SelectionDAG &DAG, DebugLoc dl) const;
1232
1233  /// LowerCall - This hook must be implemented to lower calls into the
1234  /// the specified DAG. The outgoing arguments to the call are described
1235  /// by the Outs array, and the values to be returned by the call are
1236  /// described by the Ins array. The implementation should fill in the
1237  /// InVals array with legal-type return values from the call, and return
1238  /// the resulting token chain value.
1239  virtual SDValue
1240    LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
1241              CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
1242              bool &/*isTailCall*/,
1243              const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1244              const SmallVectorImpl<SDValue> &/*OutVals*/,
1245              const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1246              DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1247              SmallVectorImpl<SDValue> &/*InVals*/) const {
1248    assert(0 && "Not Implemented");
1249    return SDValue();    // this is here to silence compiler errors
1250  }
1251
1252  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1253  virtual void HandleByVal(CCState *, unsigned &) const {}
1254
1255  /// CanLowerReturn - This hook should be implemented to check whether the
1256  /// return values described by the Outs array can fit into the return
1257  /// registers.  If false is returned, an sret-demotion is performed.
1258  ///
1259  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1260			      MachineFunction &/*MF*/, bool /*isVarArg*/,
1261               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1262               LLVMContext &/*Context*/) const
1263  {
1264    // Return true by default to get preexisting behavior.
1265    return true;
1266  }
1267
1268  /// LowerReturn - This hook must be implemented to lower outgoing
1269  /// return values, described by the Outs array, into the specified
1270  /// DAG. The implementation should return the resulting token chain
1271  /// value.
1272  ///
1273  virtual SDValue
1274    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1275                bool /*isVarArg*/,
1276                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1277                const SmallVectorImpl<SDValue> &/*OutVals*/,
1278                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1279    assert(0 && "Not Implemented");
1280    return SDValue();    // this is here to silence compiler errors
1281  }
1282
1283  /// isUsedByReturnOnly - Return true if result of the specified node is used
1284  /// by a return node only. This is used to determine whether it is possible
1285  /// to codegen a libcall as tail call at legalization time.
1286  virtual bool isUsedByReturnOnly(SDNode *) const {
1287    return false;
1288  }
1289
1290  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1291  /// call instruction as a tail call. This is used by optimization passes to
1292  /// determine if it's profitable to duplicate return instructions to enable
1293  /// tailcall optimization.
1294  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1295    return false;
1296  }
1297
1298  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1299  /// sign extend a zeroext/signext integer argument or return value.
1300  /// FIXME: Most C calling convention requires the return type to be promoted,
1301  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1302  /// necessary for non-C calling conventions. The frontend should handle this
1303  /// and include all of the necessary information.
1304  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1305                                       ISD::NodeType /*ExtendKind*/) const {
1306    EVT MinVT = getRegisterType(Context, MVT::i32);
1307    return VT.bitsLT(MinVT) ? MinVT : VT;
1308  }
1309
1310  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1311  /// to legalize nodes with an illegal operand type but legal result types.
1312  /// It replaces the LowerOperation callback in the type Legalizer.
1313  /// The reason we can not do away with LowerOperation entirely is that
1314  /// LegalizeDAG isn't yet ready to use this callback.
1315  /// TODO: Consider merging with ReplaceNodeResults.
1316
1317  /// The target places new result values for the node in Results (their number
1318  /// and types must exactly match those of the original return values of
1319  /// the node), or leaves Results empty, which indicates that the node is not
1320  /// to be custom lowered after all.
1321  /// The default implementation calls LowerOperation.
1322  virtual void LowerOperationWrapper(SDNode *N,
1323                                     SmallVectorImpl<SDValue> &Results,
1324                                     SelectionDAG &DAG) const;
1325
1326  /// LowerOperation - This callback is invoked for operations that are
1327  /// unsupported by the target, which are registered to use 'custom' lowering,
1328  /// and whose defined values are all legal.
1329  /// If the target has no operations that require custom lowering, it need not
1330  /// implement this.  The default implementation of this aborts.
1331  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1332
1333  /// ReplaceNodeResults - This callback is invoked when a node result type is
1334  /// illegal for the target, and the operation was registered to use 'custom'
1335  /// lowering for that result type.  The target places new result values for
1336  /// the node in Results (their number and types must exactly match those of
1337  /// the original return values of the node), or leaves Results empty, which
1338  /// indicates that the node is not to be custom lowered after all.
1339  ///
1340  /// If the target has no operations that require custom lowering, it need not
1341  /// implement this.  The default implementation aborts.
1342  virtual void ReplaceNodeResults(SDNode * /*N*/,
1343                                  SmallVectorImpl<SDValue> &/*Results*/,
1344                                  SelectionDAG &/*DAG*/) const {
1345    assert(0 && "ReplaceNodeResults not implemented for this target!");
1346  }
1347
1348  /// getTargetNodeName() - This method returns the name of a target specific
1349  /// DAG node.
1350  virtual const char *getTargetNodeName(unsigned Opcode) const;
1351
1352  /// createFastISel - This method returns a target specific FastISel object,
1353  /// or null if the target does not support "fast" ISel.
1354  virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
1355    return 0;
1356  }
1357
1358  //===--------------------------------------------------------------------===//
1359  // Inline Asm Support hooks
1360  //
1361
1362  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1363  /// call to be explicit llvm code if it wants to.  This is useful for
1364  /// turning simple inline asms into LLVM intrinsics, which gives the
1365  /// compiler more information about the behavior of the code.
1366  virtual bool ExpandInlineAsm(CallInst *) const {
1367    return false;
1368  }
1369
1370  enum ConstraintType {
1371    C_Register,            // Constraint represents specific register(s).
1372    C_RegisterClass,       // Constraint represents any of register(s) in class.
1373    C_Memory,              // Memory constraint.
1374    C_Other,               // Something else.
1375    C_Unknown              // Unsupported constraint.
1376  };
1377
1378  enum ConstraintWeight {
1379    // Generic weights.
1380    CW_Invalid  = -1,     // No match.
1381    CW_Okay     = 0,      // Acceptable.
1382    CW_Good     = 1,      // Good weight.
1383    CW_Better   = 2,      // Better weight.
1384    CW_Best     = 3,      // Best weight.
1385
1386    // Well-known weights.
1387    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1388    CW_Register     = CW_Good,    // Register operands.
1389    CW_Memory       = CW_Better,  // Memory operands.
1390    CW_Constant     = CW_Best,    // Constant operand.
1391    CW_Default      = CW_Okay     // Default or don't know type.
1392  };
1393
1394  /// AsmOperandInfo - This contains information for each constraint that we are
1395  /// lowering.
1396  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1397    /// ConstraintCode - This contains the actual string for the code, like "m".
1398    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1399    /// most closely matches the operand.
1400    std::string ConstraintCode;
1401
1402    /// ConstraintType - Information about the constraint code, e.g. Register,
1403    /// RegisterClass, Memory, Other, Unknown.
1404    TargetLowering::ConstraintType ConstraintType;
1405
1406    /// CallOperandval - If this is the result output operand or a
1407    /// clobber, this is null, otherwise it is the incoming operand to the
1408    /// CallInst.  This gets modified as the asm is processed.
1409    Value *CallOperandVal;
1410
1411    /// ConstraintVT - The ValueType for the operand value.
1412    EVT ConstraintVT;
1413
1414    /// isMatchingInputConstraint - Return true of this is an input operand that
1415    /// is a matching constraint like "4".
1416    bool isMatchingInputConstraint() const;
1417
1418    /// getMatchedOperand - If this is an input matching constraint, this method
1419    /// returns the output operand it matches.
1420    unsigned getMatchedOperand() const;
1421
1422    /// Copy constructor for copying from an AsmOperandInfo.
1423    AsmOperandInfo(const AsmOperandInfo &info)
1424      : InlineAsm::ConstraintInfo(info),
1425        ConstraintCode(info.ConstraintCode),
1426        ConstraintType(info.ConstraintType),
1427        CallOperandVal(info.CallOperandVal),
1428        ConstraintVT(info.ConstraintVT) {
1429    }
1430
1431    /// Copy constructor for copying from a ConstraintInfo.
1432    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1433      : InlineAsm::ConstraintInfo(info),
1434        ConstraintType(TargetLowering::C_Unknown),
1435        CallOperandVal(0), ConstraintVT(MVT::Other) {
1436    }
1437  };
1438
1439  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1440
1441  /// ParseConstraints - Split up the constraint string from the inline
1442  /// assembly value into the specific constraints and their prefixes,
1443  /// and also tie in the associated operand values.
1444  /// If this returns an empty vector, and if the constraint string itself
1445  /// isn't empty, there was an error parsing.
1446  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1447
1448  /// Examine constraint type and operand type and determine a weight value.
1449  /// The operand object must already have been set up with the operand type.
1450  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1451      AsmOperandInfo &info, int maIndex) const;
1452
1453  /// Examine constraint string and operand type and determine a weight value.
1454  /// The operand object must already have been set up with the operand type.
1455  virtual ConstraintWeight getSingleConstraintMatchWeight(
1456      AsmOperandInfo &info, const char *constraint) const;
1457
1458  /// ComputeConstraintToUse - Determines the constraint code and constraint
1459  /// type to use for the specific AsmOperandInfo, setting
1460  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1461  /// being passed in is available, it can be passed in as Op, otherwise an
1462  /// empty SDValue can be passed.
1463  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1464                                      SDValue Op,
1465                                      SelectionDAG *DAG = 0) const;
1466
1467  /// getConstraintType - Given a constraint, return the type of constraint it
1468  /// is for this target.
1469  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1470
1471  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1472  /// {edx}), return the register number and the register class for the
1473  /// register.
1474  ///
1475  /// Given a register class constraint, like 'r', if this corresponds directly
1476  /// to an LLVM register class, return a register of 0 and the register class
1477  /// pointer.
1478  ///
1479  /// This should only be used for C_Register constraints.  On error,
1480  /// this returns a register number of 0 and a null register class pointer..
1481  virtual std::pair<unsigned, const TargetRegisterClass*>
1482    getRegForInlineAsmConstraint(const std::string &Constraint,
1483                                 EVT VT) const;
1484
1485  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1486  /// with another that has more specific requirements based on the type of the
1487  /// corresponding operand.  This returns null if there is no replacement to
1488  /// make.
1489  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1490
1491  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1492  /// vector.  If it is invalid, don't add anything to Ops.
1493  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1494                                            std::vector<SDValue> &Ops,
1495                                            SelectionDAG &DAG) const;
1496
1497  //===--------------------------------------------------------------------===//
1498  // Instruction Emitting Hooks
1499  //
1500
1501  // EmitInstrWithCustomInserter - This method should be implemented by targets
1502  // that mark instructions with the 'usesCustomInserter' flag.  These
1503  // instructions are special in various ways, which require special support to
1504  // insert.  The specified MachineInstr is created but not inserted into any
1505  // basic blocks, and this method is called to expand it into a sequence of
1506  // instructions, potentially also creating new basic blocks and control flow.
1507  virtual MachineBasicBlock *
1508    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1509
1510  /// AdjustInstrPostInstrSelection - This method should be implemented by
1511  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1512  /// instructions must be adjusted after instruction selection by target hooks.
1513  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1514  virtual void
1515  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1516
1517  //===--------------------------------------------------------------------===//
1518  // Addressing mode description hooks (used by LSR etc).
1519  //
1520
1521  /// AddrMode - This represents an addressing mode of:
1522  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1523  /// If BaseGV is null,  there is no BaseGV.
1524  /// If BaseOffs is zero, there is no base offset.
1525  /// If HasBaseReg is false, there is no base register.
1526  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1527  /// no scale.
1528  ///
1529  struct AddrMode {
1530    GlobalValue *BaseGV;
1531    int64_t      BaseOffs;
1532    bool         HasBaseReg;
1533    int64_t      Scale;
1534    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1535  };
1536
1537  /// isLegalAddressingMode - Return true if the addressing mode represented by
1538  /// AM is legal for this target, for a load/store of the specified type.
1539  /// The type may be VoidTy, in which case only return true if the addressing
1540  /// mode is legal for a load/store of any legal type.
1541  /// TODO: Handle pre/postinc as well.
1542  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1543
1544  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1545  /// icmp immediate, that is the target has icmp instructions which can compare
1546  /// a register against the immediate without having to materialize the
1547  /// immediate into a register.
1548  virtual bool isLegalICmpImmediate(int64_t) const {
1549    return true;
1550  }
1551
1552  /// isLegalAddImmediate - Return true if the specified immediate is legal
1553  /// add immediate, that is the target has add instructions which can add
1554  /// a register with the immediate without having to materialize the
1555  /// immediate into a register.
1556  virtual bool isLegalAddImmediate(int64_t) const {
1557    return true;
1558  }
1559
1560  /// isTruncateFree - Return true if it's free to truncate a value of
1561  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1562  /// register EAX to i16 by referencing its sub-register AX.
1563  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1564    return false;
1565  }
1566
1567  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1568    return false;
1569  }
1570
1571  /// isZExtFree - Return true if any actual instruction that defines a
1572  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1573  /// register. This does not necessarily include registers defined in
1574  /// unknown ways, such as incoming arguments, or copies from unknown
1575  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1576  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1577  /// all instructions that define 32-bit values implicit zero-extend the
1578  /// result out to 64 bits.
1579  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1580    return false;
1581  }
1582
1583  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1584    return false;
1585  }
1586
1587  /// isNarrowingProfitable - Return true if it's profitable to narrow
1588  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1589  /// from i32 to i8 but not from i32 to i16.
1590  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1591    return false;
1592  }
1593
1594  //===--------------------------------------------------------------------===//
1595  // Div utility functions
1596  //
1597  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1598                         SelectionDAG &DAG) const;
1599  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1600                      std::vector<SDNode*>* Created) const;
1601  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1602                      std::vector<SDNode*>* Created) const;
1603
1604
1605  //===--------------------------------------------------------------------===//
1606  // Runtime Library hooks
1607  //
1608
1609  /// setLibcallName - Rename the default libcall routine name for the specified
1610  /// libcall.
1611  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1612    LibcallRoutineNames[Call] = Name;
1613  }
1614
1615  /// getLibcallName - Get the libcall routine name for the specified libcall.
1616  ///
1617  const char *getLibcallName(RTLIB::Libcall Call) const {
1618    return LibcallRoutineNames[Call];
1619  }
1620
1621  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1622  /// result of the comparison libcall against zero.
1623  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1624    CmpLibcallCCs[Call] = CC;
1625  }
1626
1627  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1628  /// the comparison libcall against zero.
1629  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1630    return CmpLibcallCCs[Call];
1631  }
1632
1633  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1634  /// specified libcall.
1635  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1636    LibcallCallingConvs[Call] = CC;
1637  }
1638
1639  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1640  /// specified libcall.
1641  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1642    return LibcallCallingConvs[Call];
1643  }
1644
1645private:
1646  const TargetMachine &TM;
1647  const TargetData *TD;
1648  const TargetLoweringObjectFile &TLOF;
1649
1650  /// We are in the process of implementing a new TypeLegalization action
1651  /// which is the promotion of vector elements. This feature is under
1652  /// development. Until this feature is complete, it is only enabled using a
1653  /// flag. We pass this flag using a member because of circular dep issues.
1654  /// This member will be removed with the flag once we complete the transition.
1655  bool mayPromoteElements;
1656
1657  /// PointerTy - The type to use for pointers, usually i32 or i64.
1658  ///
1659  MVT PointerTy;
1660
1661  /// IsLittleEndian - True if this is a little endian target.
1662  ///
1663  bool IsLittleEndian;
1664
1665  /// SelectIsExpensive - Tells the code generator not to expand operations
1666  /// into sequences that use the select operations if possible.
1667  bool SelectIsExpensive;
1668
1669  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1670  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1671  /// a real cost model is in place.  If we ever optimize for size, this will be
1672  /// set to true unconditionally.
1673  bool IntDivIsCheap;
1674
1675  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1676  /// srl/add/sra for a signed divide by power of two, and let the target handle
1677  /// it.
1678  bool Pow2DivIsCheap;
1679
1680  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1681  /// extra flow control instructions and should attempt to combine flow
1682  /// control instructions via predication.
1683  bool JumpIsExpensive;
1684
1685  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1686  /// llvm.setjmp.  Defaults to false.
1687  bool UseUnderscoreSetJmp;
1688
1689  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1690  /// llvm.longjmp.  Defaults to false.
1691  bool UseUnderscoreLongJmp;
1692
1693  /// BooleanContents - Information about the contents of the high-bits in
1694  /// boolean values held in a type wider than i1.  See getBooleanContents.
1695  BooleanContent BooleanContents;
1696  /// BooleanVectorContents - Information about the contents of the high-bits
1697  /// in boolean vector values when the element type is wider than i1.  See
1698  /// getBooleanContents.
1699  BooleanContent BooleanVectorContents;
1700
1701  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1702  /// total cycles or lowest register usage.
1703  Sched::Preference SchedPreferenceInfo;
1704
1705  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1706  unsigned JumpBufSize;
1707
1708  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1709  /// buffers
1710  unsigned JumpBufAlignment;
1711
1712  /// MinStackArgumentAlignment - The minimum alignment that any argument
1713  /// on the stack needs to have.
1714  ///
1715  unsigned MinStackArgumentAlignment;
1716
1717  /// MinFunctionAlignment - The minimum function alignment (used when
1718  /// optimizing for size, and to prevent explicitly provided alignment
1719  /// from leading to incorrect code).
1720  ///
1721  unsigned MinFunctionAlignment;
1722
1723  /// PrefFunctionAlignment - The preferred function alignment (used when
1724  /// alignment unspecified and optimizing for speed).
1725  ///
1726  unsigned PrefFunctionAlignment;
1727
1728  /// PrefLoopAlignment - The preferred loop alignment.
1729  ///
1730  unsigned PrefLoopAlignment;
1731
1732  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1733  /// be folded into the enclosed atomic intrinsic instruction by the
1734  /// combiner.
1735  bool ShouldFoldAtomicFences;
1736
1737  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1738  /// insert fences and reduce ordering for atomics.  (This will be set for
1739  /// for most architectures with weak memory ordering.)
1740  bool InsertFencesForAtomic;
1741
1742  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1743  /// specifies the register that llvm.savestack/llvm.restorestack should save
1744  /// and restore.
1745  unsigned StackPointerRegisterToSaveRestore;
1746
1747  /// ExceptionPointerRegister - If set to a physical register, this specifies
1748  /// the register that receives the exception address on entry to a landing
1749  /// pad.
1750  unsigned ExceptionPointerRegister;
1751
1752  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1753  /// the register that receives the exception typeid on entry to a landing
1754  /// pad.
1755  unsigned ExceptionSelectorRegister;
1756
1757  /// RegClassForVT - This indicates the default register class to use for
1758  /// each ValueType the target supports natively.
1759  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1760  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1761  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1762
1763  /// RepRegClassForVT - This indicates the "representative" register class to
1764  /// use for each ValueType the target supports natively. This information is
1765  /// used by the scheduler to track register pressure. By default, the
1766  /// representative register class is the largest legal super-reg register
1767  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1768  /// and i32's representative class would be GR32.
1769  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1770
1771  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1772  /// register class for each ValueType. The cost is used by the scheduler to
1773  /// approximate register pressure.
1774  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1775
1776  /// TransformToType - For any value types we are promoting or expanding, this
1777  /// contains the value type that we are changing to.  For Expanded types, this
1778  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1779  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1780  /// by the system, this holds the same type (e.g. i32 -> i32).
1781  EVT TransformToType[MVT::LAST_VALUETYPE];
1782
1783  /// OpActions - For each operation and each value type, keep a LegalizeAction
1784  /// that indicates how instruction selection should deal with the operation.
1785  /// Most operations are Legal (aka, supported natively by the target), but
1786  /// operations that are not should be described.  Note that operations on
1787  /// non-legal value types are not described here.
1788  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1789
1790  /// LoadExtActions - For each load extension type and each value type,
1791  /// keep a LegalizeAction that indicates how instruction selection should deal
1792  /// with a load of a specific value type and extension type.
1793  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1794
1795  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1796  /// indicates whether a truncating store of a specific value type and
1797  /// truncating type is legal.
1798  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1799
1800  /// IndexedModeActions - For each indexed mode and each value type,
1801  /// keep a pair of LegalizeAction that indicates how instruction
1802  /// selection should deal with the load / store.  The first dimension is the
1803  /// value_type for the reference. The second dimension represents the various
1804  /// modes for load store.
1805  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1806
1807  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1808  /// LegalizeAction that indicates how instruction selection should
1809  /// deal with the condition code.
1810  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1811
1812  ValueTypeActionImpl ValueTypeActions;
1813
1814  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1815
1816  LegalizeKind
1817  getTypeConversion(LLVMContext &Context, EVT VT) const {
1818    // If this is a simple type, use the ComputeRegisterProp mechanism.
1819    if (VT.isSimple()) {
1820      assert((unsigned)VT.getSimpleVT().SimpleTy <
1821             array_lengthof(TransformToType));
1822      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1823      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1824
1825      assert(
1826        (!(NVT.isSimple() && LA != TypeLegal) ||
1827         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1828         && "Promote may not follow Expand or Promote");
1829
1830      return LegalizeKind(LA, NVT);
1831    }
1832
1833    // Handle Extended Scalar Types.
1834    if (!VT.isVector()) {
1835      assert(VT.isInteger() && "Float types must be simple");
1836      unsigned BitSize = VT.getSizeInBits();
1837      // First promote to a power-of-two size, then expand if necessary.
1838      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1839        EVT NVT = VT.getRoundIntegerType(Context);
1840        assert(NVT != VT && "Unable to round integer VT");
1841        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1842        // Avoid multi-step promotion.
1843        if (NextStep.first == TypePromoteInteger) return NextStep;
1844        // Return rounded integer type.
1845        return LegalizeKind(TypePromoteInteger, NVT);
1846      }
1847
1848      return LegalizeKind(TypeExpandInteger,
1849                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1850    }
1851
1852    // Handle vector types.
1853    unsigned NumElts = VT.getVectorNumElements();
1854    EVT EltVT = VT.getVectorElementType();
1855
1856    // Vectors with only one element are always scalarized.
1857    if (NumElts == 1)
1858      return LegalizeKind(TypeScalarizeVector, EltVT);
1859
1860    // If we allow the promotion of vector elements using a flag,
1861    // then try to widen vector elements until a legal type is found.
1862    if (mayPromoteElements && EltVT.isInteger()) {
1863      // Vectors with a number of elements that is not a power of two are always
1864      // widened, for example <3 x float> -> <4 x float>.
1865      if (!VT.isPow2VectorType()) {
1866        NumElts = (unsigned)NextPowerOf2(NumElts);
1867        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1868        return LegalizeKind(TypeWidenVector, NVT);
1869      }
1870
1871      // Examine the element type.
1872      LegalizeKind LK = getTypeConversion(Context, EltVT);
1873
1874      // If type is to be expanded, split the vector.
1875      //  <4 x i140> -> <2 x i140>
1876      if (LK.first == TypeExpandInteger)
1877        return LegalizeKind(TypeSplitVector,
1878                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1879
1880      // Promote the integer element types until a legal vector type is found
1881      // or until the element integer type is too big. If a legal type was not
1882      // found, fallback to the usual mechanism of widening/splitting the
1883      // vector.
1884      while (1) {
1885        // Increase the bitwidth of the element to the next pow-of-two
1886        // (which is greater than 8 bits).
1887        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1888                                 ).getRoundIntegerType(Context);
1889
1890        // Stop trying when getting a non-simple element type.
1891        // Note that vector elements may be greater than legal vector element
1892        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1893        if (!EltVT.isSimple()) break;
1894
1895        // Build a new vector type and check if it is legal.
1896        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1897        // Found a legal promoted vector type.
1898        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1899          return LegalizeKind(TypePromoteInteger,
1900                              EVT::getVectorVT(Context, EltVT, NumElts));
1901      }
1902    }
1903
1904    // Try to widen the vector until a legal type is found.
1905    // If there is no wider legal type, split the vector.
1906    while (1) {
1907      // Round up to the next power of 2.
1908      NumElts = (unsigned)NextPowerOf2(NumElts);
1909
1910      // If there is no simple vector type with this many elements then there
1911      // cannot be a larger legal vector type.  Note that this assumes that
1912      // there are no skipped intermediate vector types in the simple types.
1913      if (!EltVT.isSimple()) break;
1914      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1915      if (LargerVector == MVT()) break;
1916
1917      // If this type is legal then widen the vector.
1918      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1919        return LegalizeKind(TypeWidenVector, LargerVector);
1920    }
1921
1922    // Widen odd vectors to next power of two.
1923    if (!VT.isPow2VectorType()) {
1924      EVT NVT = VT.getPow2VectorType(Context);
1925      return LegalizeKind(TypeWidenVector, NVT);
1926    }
1927
1928    // Vectors with illegal element types are expanded.
1929    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1930    return LegalizeKind(TypeSplitVector, NVT);
1931
1932    assert(false && "Unable to handle this kind of vector type");
1933    return LegalizeKind(TypeLegal, VT);
1934  }
1935
1936  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1937
1938  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1939  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1940  /// which sets a bit in this array.
1941  unsigned char
1942  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1943
1944  /// PromoteToType - For operations that must be promoted to a specific type,
1945  /// this holds the destination type.  This map should be sparse, so don't hold
1946  /// it as an array.
1947  ///
1948  /// Targets add entries to this map with AddPromotedToType(..), clients access
1949  /// this with getTypeToPromoteTo(..).
1950  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1951    PromoteToType;
1952
1953  /// LibcallRoutineNames - Stores the name each libcall.
1954  ///
1955  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1956
1957  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1958  /// of each of the comparison libcall against zero.
1959  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1960
1961  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1962  /// libcall.
1963  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1964
1965protected:
1966  /// When lowering \@llvm.memset this field specifies the maximum number of
1967  /// store operations that may be substituted for the call to memset. Targets
1968  /// must set this value based on the cost threshold for that target. Targets
1969  /// should assume that the memset will be done using as many of the largest
1970  /// store operations first, followed by smaller ones, if necessary, per
1971  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1972  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1973  /// store.  This only applies to setting a constant array of a constant size.
1974  /// @brief Specify maximum number of store instructions per memset call.
1975  unsigned maxStoresPerMemset;
1976
1977  /// Maximum number of stores operations that may be substituted for the call
1978  /// to memset, used for functions with OptSize attribute.
1979  unsigned maxStoresPerMemsetOptSize;
1980
1981  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1982  /// store operations that may be substituted for a call to memcpy. Targets
1983  /// must set this value based on the cost threshold for that target. Targets
1984  /// should assume that the memcpy will be done using as many of the largest
1985  /// store operations first, followed by smaller ones, if necessary, per
1986  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1987  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1988  /// and one 1-byte store. This only applies to copying a constant array of
1989  /// constant size.
1990  /// @brief Specify maximum bytes of store instructions per memcpy call.
1991  unsigned maxStoresPerMemcpy;
1992
1993  /// Maximum number of store operations that may be substituted for a call
1994  /// to memcpy, used for functions with OptSize attribute.
1995  unsigned maxStoresPerMemcpyOptSize;
1996
1997  /// When lowering \@llvm.memmove this field specifies the maximum number of
1998  /// store instructions that may be substituted for a call to memmove. Targets
1999  /// must set this value based on the cost threshold for that target. Targets
2000  /// should assume that the memmove will be done using as many of the largest
2001  /// store operations first, followed by smaller ones, if necessary, per
2002  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2003  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2004  /// applies to copying a constant array of constant size.
2005  /// @brief Specify maximum bytes of store instructions per memmove call.
2006  unsigned maxStoresPerMemmove;
2007
2008  /// Maximum number of store instructions that may be substituted for a call
2009  /// to memmove, used for functions with OpSize attribute.
2010  unsigned maxStoresPerMemmoveOptSize;
2011
2012  /// This field specifies whether the target can benefit from code placement
2013  /// optimization.
2014  bool benefitFromCodePlacementOpt;
2015
2016private:
2017  /// isLegalRC - Return true if the value types that can be represented by the
2018  /// specified register class are all legal.
2019  bool isLegalRC(const TargetRegisterClass *RC) const;
2020
2021  /// hasLegalSuperRegRegClasses - Return true if the specified register class
2022  /// has one or more super-reg register classes that are legal.
2023  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2024};
2025
2026/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2027/// compute the return value EVTs and flags, and optionally also
2028/// the offsets, if the return value is being lowered to memory.
2029void GetReturnInfo(Type* ReturnType, Attributes attr,
2030                   SmallVectorImpl<ISD::OutputArg> &Outs,
2031                   const TargetLowering &TLI,
2032                   SmallVectorImpl<uint64_t> *Offsets = 0);
2033
2034} // end llvm namespace
2035
2036#endif
2037