TargetLowering.h revision 2c8cf4b404e549482f593f62f9e27e0bab4a8b3f
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/CodeGen/DAGCombine.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71//===----------------------------------------------------------------------===//
72/// TargetLowering - This class defines information used to lower LLVM code to
73/// legal SelectionDAG operators that the target instruction selector can accept
74/// natively.
75///
76/// This class also defines callbacks that targets must implement to lower
77/// target-specific constructs to SelectionDAG operators.
78///
79class TargetLowering {
80  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
81  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
82public:
83  /// LegalizeAction - This enum indicates whether operations are valid for a
84  /// target, and if not, what action should be used to make them valid.
85  enum LegalizeAction {
86    Legal,      // The target natively supports this operation.
87    Promote,    // This operation should be executed in a larger type.
88    Expand,     // Try to expand this to other ops, otherwise use a libcall.
89    Custom      // Use the LowerOperation hook to implement custom lowering.
90  };
91
92  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
93  /// target, and if not, what action should be used to make them valid.
94  enum LegalizeTypeAction {
95    TypeLegal,           // The target natively supports this type.
96    TypePromoteInteger,  // Replace this integer with a larger one.
97    TypeExpandInteger,   // Split this integer into two of half the size.
98    TypeSoftenFloat,     // Convert this float to a same size integer type.
99    TypeExpandFloat,     // Split this float into two of half the size.
100    TypeScalarizeVector, // Replace this one-element vector with its element.
101    TypeSplitVector,     // Split this vector into two of half the size.
102    TypeWidenVector      // This vector should be widened into a larger vector.
103  };
104
105  /// LegalizeKind holds the legalization kind that needs to happen to EVT
106  /// in order to type-legalize it.
107  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
108
109  enum BooleanContent { // How the target represents true/false values.
110    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
111    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
112    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
113  };
114
115  enum SelectSupportKind {
116    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
117    ScalarCondVectorVal,  // The target supports selects with a scalar condition
118                          // and vector values (ex: cmov).
119    VectorMaskSelect      // The target supports vector selects with a vector
120                          // mask (ex: x86 blends).
121  };
122
123  static ISD::NodeType getExtendForContent(BooleanContent Content) {
124    switch (Content) {
125    case UndefinedBooleanContent:
126      // Extend by adding rubbish bits.
127      return ISD::ANY_EXTEND;
128    case ZeroOrOneBooleanContent:
129      // Extend by adding zero bits.
130      return ISD::ZERO_EXTEND;
131    case ZeroOrNegativeOneBooleanContent:
132      // Extend by copying the sign bit.
133      return ISD::SIGN_EXTEND;
134    }
135    llvm_unreachable("Invalid content kind");
136  }
137
138  /// NOTE: The constructor takes ownership of TLOF.
139  explicit TargetLowering(const TargetMachine &TM,
140                          const TargetLoweringObjectFile *TLOF);
141  virtual ~TargetLowering();
142
143  const TargetMachine &getTargetMachine() const { return TM; }
144  const DataLayout *getDataLayout() const { return TD; }
145  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
146
147  bool isBigEndian() const { return !IsLittleEndian; }
148  bool isLittleEndian() const { return IsLittleEndian; }
149  // Return the pointer type for the given address space, defaults to
150  // the pointer type from the data layout.
151  // FIXME: The default needs to be removed once all the code is updated.
152  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
153  virtual MVT getShiftAmountTy(EVT LHSTy) const;
154
155  /// isSelectExpensive - Return true if the select operation is expensive for
156  /// this target.
157  bool isSelectExpensive() const { return SelectIsExpensive; }
158
159  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
160
161  /// shouldSplitVectorElementType - Return true if a vector of the given type
162  /// should be split (TypeSplitVector) instead of promoted
163  /// (TypePromoteInteger) during type legalization.
164  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
165
166  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
167  /// a sequence of several shifts, adds, and multiplies for this target.
168  bool isIntDivCheap() const { return IntDivIsCheap; }
169
170  /// isSlowDivBypassed - Returns true if target has indicated at least one
171  /// type should be bypassed.
172  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
173
174  /// getBypassSlowDivTypes - Returns map of slow types for division or
175  /// remainder with corresponding fast types
176  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
177    return BypassSlowDivWidths;
178  }
179
180  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
181  /// srl/add/sra.
182  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
183
184  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
185  /// that should be avoided.
186  bool isJumpExpensive() const { return JumpIsExpensive; }
187
188  /// isPredictableSelectExpensive - Return true if selects are only cheaper
189  /// than branches if the branch is unlikely to be predicted right.
190  bool isPredictableSelectExpensive() const {
191    return predictableSelectIsExpensive;
192  }
193
194  /// getSetCCResultType - Return the ValueType of the result of SETCC
195  /// operations.  Also used to obtain the target's preferred type for
196  /// the condition operand of SELECT and BRCOND nodes.  In the case of
197  /// BRCOND the argument passed is MVT::Other since there are no other
198  /// operands to get a type hint from.
199  virtual EVT getSetCCResultType(EVT VT) const;
200
201  /// getCmpLibcallReturnType - Return the ValueType for comparison
202  /// libcalls. Comparions libcalls include floating point comparion calls,
203  /// and Ordered/Unordered check calls on floating point numbers.
204  virtual
205  MVT::SimpleValueType getCmpLibcallReturnType() const;
206
207  /// getBooleanContents - For targets without i1 registers, this gives the
208  /// nature of the high-bits of boolean values held in types wider than i1.
209  /// "Boolean values" are special true/false values produced by nodes like
210  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
211  /// Not to be confused with general values promoted from i1.
212  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
213  /// parameter selects between the two kinds.  For example on X86 a scalar
214  /// boolean should be zero extended from i1, while the elements of a vector
215  /// of booleans should be sign extended from i1.
216  BooleanContent getBooleanContents(bool isVec) const {
217    return isVec ? BooleanVectorContents : BooleanContents;
218  }
219
220  /// getSchedulingPreference - Return target scheduling preference.
221  Sched::Preference getSchedulingPreference() const {
222    return SchedPreferenceInfo;
223  }
224
225  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
226  /// different scheduling heuristics for different nodes. This function returns
227  /// the preference (or none) for the given node.
228  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
229    return Sched::None;
230  }
231
232  /// getRegClassFor - Return the register class that should be used for the
233  /// specified value type.
234  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
235    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
236    assert(RC && "This value type is not natively supported!");
237    return RC;
238  }
239
240  /// getRepRegClassFor - Return the 'representative' register class for the
241  /// specified value type. The 'representative' register class is the largest
242  /// legal super-reg register class for the register class of the value type.
243  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
244  /// while the rep register class is GR64 on x86_64.
245  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
246    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
247    return RC;
248  }
249
250  /// getRepRegClassCostFor - Return the cost of the 'representative' register
251  /// class for the specified value type.
252  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
253    return RepRegClassCostForVT[VT.SimpleTy];
254  }
255
256  /// isTypeLegal - Return true if the target has native support for the
257  /// specified value type.  This means that it has a register that directly
258  /// holds it without promotions or expansions.
259  bool isTypeLegal(EVT VT) const {
260    assert(!VT.isSimple() ||
261           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
262    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
263  }
264
265  class ValueTypeActionImpl {
266    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
267    /// that indicates how instruction selection should deal with the type.
268    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
269
270  public:
271    ValueTypeActionImpl() {
272      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
273    }
274
275    LegalizeTypeAction getTypeAction(MVT VT) const {
276      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
277    }
278
279    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
280      unsigned I = VT.SimpleTy;
281      ValueTypeActions[I] = Action;
282    }
283  };
284
285  const ValueTypeActionImpl &getValueTypeActions() const {
286    return ValueTypeActions;
287  }
288
289  /// getTypeAction - Return how we should legalize values of this type, either
290  /// it is already legal (return 'Legal') or we need to promote it to a larger
291  /// type (return 'Promote'), or we need to expand it into multiple registers
292  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
293  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
294    return getTypeConversion(Context, VT).first;
295  }
296  LegalizeTypeAction getTypeAction(MVT VT) const {
297    return ValueTypeActions.getTypeAction(VT);
298  }
299
300  /// getTypeToTransformTo - For types supported by the target, this is an
301  /// identity function.  For types that must be promoted to larger types, this
302  /// returns the larger type to promote to.  For integer types that are larger
303  /// than the largest integer register, this contains one step in the expansion
304  /// to get to the smaller register. For illegal floating point types, this
305  /// returns the integer type to transform to.
306  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
307    return getTypeConversion(Context, VT).second;
308  }
309
310  /// getTypeToExpandTo - For types supported by the target, this is an
311  /// identity function.  For types that must be expanded (i.e. integer types
312  /// that are larger than the largest integer register or illegal floating
313  /// point types), this returns the largest legal type it will be expanded to.
314  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
315    assert(!VT.isVector());
316    while (true) {
317      switch (getTypeAction(Context, VT)) {
318      case TypeLegal:
319        return VT;
320      case TypeExpandInteger:
321        VT = getTypeToTransformTo(Context, VT);
322        break;
323      default:
324        llvm_unreachable("Type is not legal nor is it to be expanded!");
325      }
326    }
327  }
328
329  /// getVectorTypeBreakdown - Vector types are broken down into some number of
330  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
331  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
332  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
333  ///
334  /// This method returns the number of registers needed, and the VT for each
335  /// register.  It also returns the VT and quantity of the intermediate values
336  /// before they are promoted/expanded.
337  ///
338  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
339                                  EVT &IntermediateVT,
340                                  unsigned &NumIntermediates,
341                                  MVT &RegisterVT) const;
342
343  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
344  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
345  /// this is the case, it returns true and store the intrinsic
346  /// information into the IntrinsicInfo that was passed to the function.
347  struct IntrinsicInfo {
348    unsigned     opc;         // target opcode
349    EVT          memVT;       // memory VT
350    const Value* ptrVal;      // value representing memory location
351    int          offset;      // offset off of ptrVal
352    unsigned     align;       // alignment
353    bool         vol;         // is volatile?
354    bool         readMem;     // reads memory?
355    bool         writeMem;    // writes memory?
356  };
357
358  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
359                                  unsigned /*Intrinsic*/) const {
360    return false;
361  }
362
363  /// isFPImmLegal - Returns true if the target can instruction select the
364  /// specified FP immediate natively. If false, the legalizer will materialize
365  /// the FP immediate as a load from a constant pool.
366  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
367    return false;
368  }
369
370  /// isShuffleMaskLegal - Targets can use this to indicate that they only
371  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
372  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
373  /// are assumed to be legal.
374  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
375                                  EVT /*VT*/) const {
376    return true;
377  }
378
379  /// canOpTrap - Returns true if the operation can trap for the value type.
380  /// VT must be a legal type. By default, we optimistically assume most
381  /// operations don't trap except for divide and remainder.
382  virtual bool canOpTrap(unsigned Op, EVT VT) const;
383
384  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
385  /// used by Targets can use this to indicate if there is a suitable
386  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
387  /// pool entry.
388  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
389                                      EVT /*VT*/) const {
390    return false;
391  }
392
393  /// getOperationAction - Return how this operation should be treated: either
394  /// it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
398    if (VT.isExtended()) return Expand;
399    // If a target-specific SDNode requires legalization, require the target
400    // to provide custom legalization for it.
401    if (Op > array_lengthof(OpActions[0])) return Custom;
402    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
403    return (LegalizeAction)OpActions[I][Op];
404  }
405
406  /// isOperationLegalOrCustom - Return true if the specified operation is
407  /// legal on this target or can be made legal with custom lowering. This
408  /// is used to help guide high-level lowering decisions.
409  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
410    return (VT == MVT::Other || isTypeLegal(VT)) &&
411      (getOperationAction(Op, VT) == Legal ||
412       getOperationAction(Op, VT) == Custom);
413  }
414
415  /// isOperationLegalOrPromote - Return true if the specified operation is
416  /// legal on this target or can be made legal using promotion. This
417  /// is used to help guide high-level lowering decisions.
418  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
419    return (VT == MVT::Other || isTypeLegal(VT)) &&
420      (getOperationAction(Op, VT) == Legal ||
421       getOperationAction(Op, VT) == Promote);
422  }
423
424  /// isOperationExpand - Return true if the specified operation is illegal on
425  /// this target or unlikely to be made legal with custom lowering. This is
426  /// used to help guide high-level lowering decisions.
427  bool isOperationExpand(unsigned Op, EVT VT) const {
428    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
429  }
430
431  /// isOperationLegal - Return true if the specified operation is legal on this
432  /// target.
433  bool isOperationLegal(unsigned Op, EVT VT) const {
434    return (VT == MVT::Other || isTypeLegal(VT)) &&
435           getOperationAction(Op, VT) == Legal;
436  }
437
438  /// getLoadExtAction - Return how this load with extension should be treated:
439  /// either it is legal, needs to be promoted to a larger size, needs to be
440  /// expanded to some other code sequence, or the target has a custom expander
441  /// for it.
442  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
443    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
444           "Table isn't big enough!");
445    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
446  }
447
448  /// isLoadExtLegal - Return true if the specified load with extension is legal
449  /// on this target.
450  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
451    return VT.isSimple() &&
452      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
453  }
454
455  /// getTruncStoreAction - Return how this store with truncation should be
456  /// treated: either it is legal, needs to be promoted to a larger size, needs
457  /// to be expanded to some other code sequence, or the target has a custom
458  /// expander for it.
459  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
460    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
461           "Table isn't big enough!");
462    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
463                                            [MemVT.SimpleTy];
464  }
465
466  /// isTruncStoreLegal - Return true if the specified store with truncation is
467  /// legal on this target.
468  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
469    return isTypeLegal(ValVT) && MemVT.isSimple() &&
470      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
471  }
472
473  /// getIndexedLoadAction - Return how the indexed load should be treated:
474  /// either it is legal, needs to be promoted to a larger size, needs to be
475  /// expanded to some other code sequence, or the target has a custom expander
476  /// for it.
477  LegalizeAction
478  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
479    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
480           "Table isn't big enough!");
481    unsigned Ty = (unsigned)VT.SimpleTy;
482    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
483  }
484
485  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
486  /// on this target.
487  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
488    return VT.isSimple() &&
489      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
490       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
491  }
492
493  /// getIndexedStoreAction - Return how the indexed store should be treated:
494  /// either it is legal, needs to be promoted to a larger size, needs to be
495  /// expanded to some other code sequence, or the target has a custom expander
496  /// for it.
497  LegalizeAction
498  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
499    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
500           "Table isn't big enough!");
501    unsigned Ty = (unsigned)VT.SimpleTy;
502    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
503  }
504
505  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
506  /// on this target.
507  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
508    return VT.isSimple() &&
509      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
510       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
511  }
512
513  /// getCondCodeAction - Return how the condition code should be treated:
514  /// either it is legal, needs to be expanded to some other code sequence,
515  /// or the target has a custom expander for it.
516  LegalizeAction
517  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
518    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
519           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
520           "Table isn't big enough!");
521    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
522    /// value and the upper 27 bits index into the second dimension of the
523    /// array to select what 64bit value to use.
524    LegalizeAction Action = (LegalizeAction)
525      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
526    assert(Action != Promote && "Can't promote condition code!");
527    return Action;
528  }
529
530  /// isCondCodeLegal - Return true if the specified condition code is legal
531  /// on this target.
532  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
533    return
534      getCondCodeAction(CC, VT) == Legal ||
535      getCondCodeAction(CC, VT) == Custom;
536  }
537
538
539  /// getTypeToPromoteTo - If the action for this operation is to promote, this
540  /// method returns the ValueType to promote to.
541  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
542    assert(getOperationAction(Op, VT) == Promote &&
543           "This operation isn't promoted!");
544
545    // See if this has an explicit type specified.
546    std::map<std::pair<unsigned, MVT::SimpleValueType>,
547             MVT::SimpleValueType>::const_iterator PTTI =
548      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
549    if (PTTI != PromoteToType.end()) return PTTI->second;
550
551    assert((VT.isInteger() || VT.isFloatingPoint()) &&
552           "Cannot autopromote this type, add it with AddPromotedToType.");
553
554    MVT NVT = VT;
555    do {
556      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
557      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
558             "Didn't find type to promote to!");
559    } while (!isTypeLegal(NVT) ||
560              getOperationAction(Op, NVT) == Promote);
561    return NVT;
562  }
563
564  /// getValueType - Return the EVT corresponding to this LLVM type.
565  /// This is fixed by the LLVM operations except for the pointer size.  If
566  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
567  /// counterpart (e.g. structs), otherwise it will assert.
568  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
569    // Lower scalar pointers to native pointer types.
570    if (Ty->isPointerTy()) return PointerTy;
571
572    if (Ty->isVectorTy()) {
573      VectorType *VTy = cast<VectorType>(Ty);
574      Type *Elm = VTy->getElementType();
575      // Lower vectors of pointers to native pointer types.
576      if (Elm->isPointerTy())
577        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
578      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
579                       VTy->getNumElements());
580    }
581    return EVT::getEVT(Ty, AllowUnknown);
582  }
583
584  /// Return the MVT corresponding to this LLVM type. See getValueType.
585  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
586    return getValueType(Ty, AllowUnknown).getSimpleVT();
587  }
588
589  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
590  /// function arguments in the caller parameter area.  This is the actual
591  /// alignment, not its logarithm.
592  virtual unsigned getByValTypeAlignment(Type *Ty) const;
593
594  /// getRegisterType - Return the type of registers that this ValueType will
595  /// eventually require.
596  MVT getRegisterType(MVT VT) const {
597    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
598    return RegisterTypeForVT[VT.SimpleTy];
599  }
600
601  /// getRegisterType - Return the type of registers that this ValueType will
602  /// eventually require.
603  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
604    if (VT.isSimple()) {
605      assert((unsigned)VT.getSimpleVT().SimpleTy <
606                array_lengthof(RegisterTypeForVT));
607      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
608    }
609    if (VT.isVector()) {
610      EVT VT1;
611      MVT RegisterVT;
612      unsigned NumIntermediates;
613      (void)getVectorTypeBreakdown(Context, VT, VT1,
614                                   NumIntermediates, RegisterVT);
615      return RegisterVT;
616    }
617    if (VT.isInteger()) {
618      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
619    }
620    llvm_unreachable("Unsupported extended type!");
621  }
622
623  /// getNumRegisters - Return the number of registers that this ValueType will
624  /// eventually require.  This is one for any types promoted to live in larger
625  /// registers, but may be more than one for types (like i64) that are split
626  /// into pieces.  For types like i140, which are first promoted then expanded,
627  /// it is the number of registers needed to hold all the bits of the original
628  /// type.  For an i140 on a 32 bit machine this means 5 registers.
629  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
630    if (VT.isSimple()) {
631      assert((unsigned)VT.getSimpleVT().SimpleTy <
632                array_lengthof(NumRegistersForVT));
633      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
634    }
635    if (VT.isVector()) {
636      EVT VT1;
637      MVT VT2;
638      unsigned NumIntermediates;
639      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
640    }
641    if (VT.isInteger()) {
642      unsigned BitWidth = VT.getSizeInBits();
643      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
644      return (BitWidth + RegWidth - 1) / RegWidth;
645    }
646    llvm_unreachable("Unsupported extended type!");
647  }
648
649  /// ShouldShrinkFPConstant - If true, then instruction selection should
650  /// seek to shrink the FP constant of the specified type to a smaller type
651  /// in order to save space and / or reduce runtime.
652  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
653
654  /// hasTargetDAGCombine - If true, the target has custom DAG combine
655  /// transformations that it can perform for the specified node.
656  bool hasTargetDAGCombine(ISD::NodeType NT) const {
657    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
658    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
659  }
660
661  /// This function returns the maximum number of store operations permitted
662  /// to replace a call to llvm.memset. The value is set by the target at the
663  /// performance threshold for such a replacement. If OptSize is true,
664  /// return the limit for functions that have OptSize attribute.
665  /// @brief Get maximum # of store operations permitted for llvm.memset
666  unsigned getMaxStoresPerMemset(bool OptSize) const {
667    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
668  }
669
670  /// This function returns the maximum number of store operations permitted
671  /// to replace a call to llvm.memcpy. The value is set by the target at the
672  /// performance threshold for such a replacement. If OptSize is true,
673  /// return the limit for functions that have OptSize attribute.
674  /// @brief Get maximum # of store operations permitted for llvm.memcpy
675  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
676    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
677  }
678
679  /// This function returns the maximum number of store operations permitted
680  /// to replace a call to llvm.memmove. The value is set by the target at the
681  /// performance threshold for such a replacement. If OptSize is true,
682  /// return the limit for functions that have OptSize attribute.
683  /// @brief Get maximum # of store operations permitted for llvm.memmove
684  unsigned getMaxStoresPerMemmove(bool OptSize) const {
685    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
686  }
687
688  /// This function returns true if the target allows unaligned memory accesses.
689  /// of the specified type. If true, it also returns whether the unaligned
690  /// memory access is "fast" in the second argument by reference. This is used,
691  /// for example, in situations where an array copy/move/set is  converted to a
692  /// sequence of store operations. It's use helps to ensure that such
693  /// replacements don't generate code that causes an alignment error  (trap) on
694  /// the target machine.
695  /// @brief Determine if the target supports unaligned memory accesses.
696  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
697    return false;
698  }
699
700  /// This function returns true if the target would benefit from code placement
701  /// optimization.
702  /// @brief Determine if the target should perform code placement optimization.
703  bool shouldOptimizeCodePlacement() const {
704    return benefitFromCodePlacementOpt;
705  }
706
707  /// getOptimalMemOpType - Returns the target specific optimal type for load
708  /// and store operations as a result of memset, memcpy, and memmove
709  /// lowering. If DstAlign is zero that means it's safe to destination
710  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
711  /// means there isn't a need to check it against alignment requirement,
712  /// probably because the source does not need to be loaded. If 'IsMemset' is
713  /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
714  /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
715  /// source is constant so it does not need to be loaded.
716  /// It returns EVT::Other if the type should be determined using generic
717  /// target-independent logic.
718  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
719                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
720                                  bool /*IsMemset*/,
721                                  bool /*ZeroMemset*/,
722                                  bool /*MemcpyStrSrc*/,
723                                  MachineFunction &/*MF*/) const {
724    return MVT::Other;
725  }
726
727  /// isSafeMemOpType - Returns true if it's safe to use load / store of the
728  /// specified type to expand memcpy / memset inline. This is mostly true
729  /// for all types except for some special cases. For example, on X86
730  /// targets without SSE2 f64 load / store are done with fldl / fstpl which
731  /// also does type conversion. Note the specified type doesn't have to be
732  /// legal as the hook is used before type legalization.
733  virtual bool isSafeMemOpType(MVT VT) const {
734    return true;
735  }
736
737  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
738  /// to implement llvm.setjmp.
739  bool usesUnderscoreSetJmp() const {
740    return UseUnderscoreSetJmp;
741  }
742
743  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
744  /// to implement llvm.longjmp.
745  bool usesUnderscoreLongJmp() const {
746    return UseUnderscoreLongJmp;
747  }
748
749  /// supportJumpTables - return whether the target can generate code for
750  /// jump tables.
751  bool supportJumpTables() const {
752    return SupportJumpTables;
753  }
754
755  /// getMinimumJumpTableEntries - return integer threshold on number of
756  /// blocks to use jump tables rather than if sequence.
757  int getMinimumJumpTableEntries() const {
758    return MinimumJumpTableEntries;
759  }
760
761  /// getStackPointerRegisterToSaveRestore - If a physical register, this
762  /// specifies the register that llvm.savestack/llvm.restorestack should save
763  /// and restore.
764  unsigned getStackPointerRegisterToSaveRestore() const {
765    return StackPointerRegisterToSaveRestore;
766  }
767
768  /// getExceptionPointerRegister - If a physical register, this returns
769  /// the register that receives the exception address on entry to a landing
770  /// pad.
771  unsigned getExceptionPointerRegister() const {
772    return ExceptionPointerRegister;
773  }
774
775  /// getExceptionSelectorRegister - If a physical register, this returns
776  /// the register that receives the exception typeid on entry to a landing
777  /// pad.
778  unsigned getExceptionSelectorRegister() const {
779    return ExceptionSelectorRegister;
780  }
781
782  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
783  /// set, the default is 200)
784  unsigned getJumpBufSize() const {
785    return JumpBufSize;
786  }
787
788  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
789  /// (if never set, the default is 0)
790  unsigned getJumpBufAlignment() const {
791    return JumpBufAlignment;
792  }
793
794  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
795  /// argument.
796  unsigned getMinStackArgumentAlignment() const {
797    return MinStackArgumentAlignment;
798  }
799
800  /// getMinFunctionAlignment - return the minimum function alignment.
801  ///
802  unsigned getMinFunctionAlignment() const {
803    return MinFunctionAlignment;
804  }
805
806  /// getPrefFunctionAlignment - return the preferred function alignment.
807  ///
808  unsigned getPrefFunctionAlignment() const {
809    return PrefFunctionAlignment;
810  }
811
812  /// getPrefLoopAlignment - return the preferred loop alignment.
813  ///
814  unsigned getPrefLoopAlignment() const {
815    return PrefLoopAlignment;
816  }
817
818  /// getShouldFoldAtomicFences - return whether the combiner should fold
819  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
820  ///
821  bool getShouldFoldAtomicFences() const {
822    return ShouldFoldAtomicFences;
823  }
824
825  /// getInsertFencesFor - return whether the DAG builder should automatically
826  /// insert fences and reduce ordering for atomics.
827  ///
828  bool getInsertFencesForAtomic() const {
829    return InsertFencesForAtomic;
830  }
831
832  /// getPreIndexedAddressParts - returns true by value, base pointer and
833  /// offset pointer and addressing mode by reference if the node's address
834  /// can be legally represented as pre-indexed load / store address.
835  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
836                                         SDValue &/*Offset*/,
837                                         ISD::MemIndexedMode &/*AM*/,
838                                         SelectionDAG &/*DAG*/) const {
839    return false;
840  }
841
842  /// getPostIndexedAddressParts - returns true by value, base pointer and
843  /// offset pointer and addressing mode by reference if this node can be
844  /// combined with a load / store to form a post-indexed load / store.
845  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
846                                          SDValue &/*Base*/, SDValue &/*Offset*/,
847                                          ISD::MemIndexedMode &/*AM*/,
848                                          SelectionDAG &/*DAG*/) const {
849    return false;
850  }
851
852  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
853  /// current function.  The returned value is a member of the
854  /// MachineJumpTableInfo::JTEntryKind enum.
855  virtual unsigned getJumpTableEncoding() const;
856
857  virtual const MCExpr *
858  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
859                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
860                            MCContext &/*Ctx*/) const {
861    llvm_unreachable("Need to implement this hook if target has custom JTIs");
862  }
863
864  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
865  /// jumptable.
866  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
867                                           SelectionDAG &DAG) const;
868
869  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
870  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
871  /// MCExpr.
872  virtual const MCExpr *
873  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
874                               unsigned JTI, MCContext &Ctx) const;
875
876  /// isOffsetFoldingLegal - Return true if folding a constant offset
877  /// with the given GlobalAddress is legal.  It is frequently not legal in
878  /// PIC relocation models.
879  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
880
881  /// getStackCookieLocation - Return true if the target stores stack
882  /// protector cookies at a fixed offset in some non-standard address
883  /// space, and populates the address space and offset as
884  /// appropriate.
885  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
886                                      unsigned &/*Offset*/) const {
887    return false;
888  }
889
890  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
891  /// used for loads / stores from the global.
892  virtual unsigned getMaximalGlobalOffset() const {
893    return 0;
894  }
895
896  //===--------------------------------------------------------------------===//
897  /// \name Helpers for TargetTransformInfo implementations
898  /// @{
899
900  /// Get the ISD node that corresponds to the Instruction class opcode.
901  int InstructionOpcodeToISD(unsigned Opcode) const;
902
903  /// Estimate the cost of type-legalization and the legalized type.
904  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
905
906  /// @}
907
908  //===--------------------------------------------------------------------===//
909  // TargetLowering Optimization Methods
910  //
911
912  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
913  /// SDValues for returning information from TargetLowering to its clients
914  /// that want to combine
915  struct TargetLoweringOpt {
916    SelectionDAG &DAG;
917    bool LegalTys;
918    bool LegalOps;
919    SDValue Old;
920    SDValue New;
921
922    explicit TargetLoweringOpt(SelectionDAG &InDAG,
923                               bool LT, bool LO) :
924      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
925
926    bool LegalTypes() const { return LegalTys; }
927    bool LegalOperations() const { return LegalOps; }
928
929    bool CombineTo(SDValue O, SDValue N) {
930      Old = O;
931      New = N;
932      return true;
933    }
934
935    /// ShrinkDemandedConstant - Check to see if the specified operand of the
936    /// specified instruction is a constant integer.  If so, check to see if
937    /// there are any bits set in the constant that are not demanded.  If so,
938    /// shrink the constant and return true.
939    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
940
941    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
942    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
943    /// cast, but it could be generalized for targets with other types of
944    /// implicit widening casts.
945    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
946                          DebugLoc dl);
947  };
948
949  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
950  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
951  /// use this information to simplify Op, create a new simplified DAG node and
952  /// return true, returning the original and new nodes in Old and New.
953  /// Otherwise, analyze the expression and return a mask of KnownOne and
954  /// KnownZero bits for the expression (used to simplify the caller).
955  /// The KnownZero/One bits may only be accurate for those bits in the
956  /// DemandedMask.
957  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
958                            APInt &KnownZero, APInt &KnownOne,
959                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
960
961  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
962  /// Mask are known to be either zero or one and return them in the
963  /// KnownZero/KnownOne bitsets.
964  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
965                                              APInt &KnownZero,
966                                              APInt &KnownOne,
967                                              const SelectionDAG &DAG,
968                                              unsigned Depth = 0) const;
969
970  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
971  /// targets that want to expose additional information about sign bits to the
972  /// DAG Combiner.
973  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
974                                                   unsigned Depth = 0) const;
975
976  struct DAGCombinerInfo {
977    void *DC;  // The DAG Combiner object.
978    CombineLevel Level;
979    bool CalledByLegalizer;
980  public:
981    SelectionDAG &DAG;
982
983    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
984      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
985
986    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
987    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
988    bool isAfterLegalizeVectorOps() const {
989      return Level == AfterLegalizeDAG;
990    }
991    CombineLevel getDAGCombineLevel() { return Level; }
992    bool isCalledByLegalizer() const { return CalledByLegalizer; }
993
994    void AddToWorklist(SDNode *N);
995    void RemoveFromWorklist(SDNode *N);
996    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
997                      bool AddTo = true);
998    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
999    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1000
1001    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1002  };
1003
1004  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1005  /// and cc. If it is unable to simplify it, return a null SDValue.
1006  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1007                          ISD::CondCode Cond, bool foldBooleans,
1008                          DAGCombinerInfo &DCI, DebugLoc dl) const;
1009
1010  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1011  /// node is a GlobalAddress + offset.
1012  virtual bool
1013  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1014
1015  /// PerformDAGCombine - This method will be invoked for all target nodes and
1016  /// for any target-independent nodes that the target has registered with
1017  /// invoke it for.
1018  ///
1019  /// The semantics are as follows:
1020  /// Return Value:
1021  ///   SDValue.Val == 0   - No change was made
1022  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1023  ///   otherwise          - N should be replaced by the returned Operand.
1024  ///
1025  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1026  /// more complex transformations.
1027  ///
1028  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1029
1030  /// isTypeDesirableForOp - Return true if the target has native support for
1031  /// the specified value type and it is 'desirable' to use the type for the
1032  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1033  /// instruction encodings are longer and some i16 instructions are slow.
1034  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1035    // By default, assume all legal types are desirable.
1036    return isTypeLegal(VT);
1037  }
1038
1039  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1040  /// to transform a floating point op of specified opcode to a equivalent op of
1041  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1042  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1043                                                 EVT /*VT*/) const {
1044    return false;
1045  }
1046
1047  /// IsDesirableToPromoteOp - This method query the target whether it is
1048  /// beneficial for dag combiner to promote the specified node. If true, it
1049  /// should return the desired promotion type by reference.
1050  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1051    return false;
1052  }
1053
1054  //===--------------------------------------------------------------------===//
1055  // TargetLowering Configuration Methods - These methods should be invoked by
1056  // the derived class constructor to configure this object for the target.
1057  //
1058
1059protected:
1060  /// setBooleanContents - Specify how the target extends the result of a
1061  /// boolean value from i1 to a wider type.  See getBooleanContents.
1062  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1063  /// setBooleanVectorContents - Specify how the target extends the result
1064  /// of a vector boolean value from a vector of i1 to a wider type.  See
1065  /// getBooleanContents.
1066  void setBooleanVectorContents(BooleanContent Ty) {
1067    BooleanVectorContents = Ty;
1068  }
1069
1070  /// setSchedulingPreference - Specify the target scheduling preference.
1071  void setSchedulingPreference(Sched::Preference Pref) {
1072    SchedPreferenceInfo = Pref;
1073  }
1074
1075  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1076  /// use _setjmp to implement llvm.setjmp or the non _ version.
1077  /// Defaults to false.
1078  void setUseUnderscoreSetJmp(bool Val) {
1079    UseUnderscoreSetJmp = Val;
1080  }
1081
1082  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1083  /// use _longjmp to implement llvm.longjmp or the non _ version.
1084  /// Defaults to false.
1085  void setUseUnderscoreLongJmp(bool Val) {
1086    UseUnderscoreLongJmp = Val;
1087  }
1088
1089  /// setSupportJumpTables - Indicate whether the target can generate code for
1090  /// jump tables.
1091  void setSupportJumpTables(bool Val) {
1092    SupportJumpTables = Val;
1093  }
1094
1095  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1096  /// jump tables rather than if sequence.
1097  void setMinimumJumpTableEntries(int Val) {
1098    MinimumJumpTableEntries = Val;
1099  }
1100
1101  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1102  /// specifies the register that llvm.savestack/llvm.restorestack should save
1103  /// and restore.
1104  void setStackPointerRegisterToSaveRestore(unsigned R) {
1105    StackPointerRegisterToSaveRestore = R;
1106  }
1107
1108  /// setExceptionPointerRegister - If set to a physical register, this sets
1109  /// the register that receives the exception address on entry to a landing
1110  /// pad.
1111  void setExceptionPointerRegister(unsigned R) {
1112    ExceptionPointerRegister = R;
1113  }
1114
1115  /// setExceptionSelectorRegister - If set to a physical register, this sets
1116  /// the register that receives the exception typeid on entry to a landing
1117  /// pad.
1118  void setExceptionSelectorRegister(unsigned R) {
1119    ExceptionSelectorRegister = R;
1120  }
1121
1122  /// SelectIsExpensive - Tells the code generator not to expand operations
1123  /// into sequences that use the select operations if possible.
1124  void setSelectIsExpensive(bool isExpensive = true) {
1125    SelectIsExpensive = isExpensive;
1126  }
1127
1128  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1129  /// operations into a separate sequences that increases the amount of
1130  /// flow control.
1131  void setJumpIsExpensive(bool isExpensive = true) {
1132    JumpIsExpensive = isExpensive;
1133  }
1134
1135  /// setIntDivIsCheap - Tells the code generator that integer divide is
1136  /// expensive, and if possible, should be replaced by an alternate sequence
1137  /// of instructions not containing an integer divide.
1138  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1139
1140  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1141  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1142    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1143  }
1144
1145  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1146  /// srl/add/sra for a signed divide by power of two, and let the target handle
1147  /// it.
1148  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1149
1150  /// addRegisterClass - Add the specified register class as an available
1151  /// regclass for the specified value type.  This indicates the selector can
1152  /// handle values of that class natively.
1153  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1154    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1155    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1156    RegClassForVT[VT.SimpleTy] = RC;
1157  }
1158
1159  /// findRepresentativeClass - Return the largest legal super-reg register class
1160  /// of the register class for the specified type and its associated "cost".
1161  virtual std::pair<const TargetRegisterClass*, uint8_t>
1162  findRepresentativeClass(MVT VT) const;
1163
1164  /// computeRegisterProperties - Once all of the register classes are added,
1165  /// this allows us to compute derived properties we expose.
1166  void computeRegisterProperties();
1167
1168  /// setOperationAction - Indicate that the specified operation does not work
1169  /// with the specified type and indicate what to do about it.
1170  void setOperationAction(unsigned Op, MVT VT,
1171                          LegalizeAction Action) {
1172    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1173    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1174  }
1175
1176  /// setLoadExtAction - Indicate that the specified load with extension does
1177  /// not work with the specified type and indicate what to do about it.
1178  void setLoadExtAction(unsigned ExtType, MVT VT,
1179                        LegalizeAction Action) {
1180    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1181           "Table isn't big enough!");
1182    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1183  }
1184
1185  /// setTruncStoreAction - Indicate that the specified truncating store does
1186  /// not work with the specified type and indicate what to do about it.
1187  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1188                           LegalizeAction Action) {
1189    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1190           "Table isn't big enough!");
1191    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1192  }
1193
1194  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1195  /// does not work with the specified type and indicate what to do abort
1196  /// it. NOTE: All indexed mode loads are initialized to Expand in
1197  /// TargetLowering.cpp
1198  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1199                            LegalizeAction Action) {
1200    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1201           (unsigned)Action < 0xf && "Table isn't big enough!");
1202    // Load action are kept in the upper half.
1203    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1204    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1205  }
1206
1207  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1208  /// does not work with the specified type and indicate what to do about
1209  /// it. NOTE: All indexed mode stores are initialized to Expand in
1210  /// TargetLowering.cpp
1211  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1212                             LegalizeAction Action) {
1213    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1214           (unsigned)Action < 0xf && "Table isn't big enough!");
1215    // Store action are kept in the lower half.
1216    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1217    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1218  }
1219
1220  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1221  /// supported on the target and indicate what to do about it.
1222  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1223                         LegalizeAction Action) {
1224    assert(VT < MVT::LAST_VALUETYPE &&
1225           (unsigned)CC < array_lengthof(CondCodeActions) &&
1226           "Table isn't big enough!");
1227    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1228    /// value and the upper 27 bits index into the second dimension of the
1229    /// array to select what 64bit value to use.
1230    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1231      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1232    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1233      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1234  }
1235
1236  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1237  /// promotion code defaults to trying a larger integer/fp until it can find
1238  /// one that works.  If that default is insufficient, this method can be used
1239  /// by the target to override the default.
1240  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1241    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1242  }
1243
1244  /// setTargetDAGCombine - Targets should invoke this method for each target
1245  /// independent node that they want to provide a custom DAG combiner for by
1246  /// implementing the PerformDAGCombine virtual method.
1247  void setTargetDAGCombine(ISD::NodeType NT) {
1248    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1249    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1250  }
1251
1252  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1253  /// bytes); default is 200
1254  void setJumpBufSize(unsigned Size) {
1255    JumpBufSize = Size;
1256  }
1257
1258  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1259  /// alignment (in bytes); default is 0
1260  void setJumpBufAlignment(unsigned Align) {
1261    JumpBufAlignment = Align;
1262  }
1263
1264  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1265  /// log2(bytes))
1266  void setMinFunctionAlignment(unsigned Align) {
1267    MinFunctionAlignment = Align;
1268  }
1269
1270  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1271  /// This should be set if there is a performance benefit to
1272  /// higher-than-minimum alignment (in log2(bytes))
1273  void setPrefFunctionAlignment(unsigned Align) {
1274    PrefFunctionAlignment = Align;
1275  }
1276
1277  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1278  /// alignment is zero, it means the target does not care about loop alignment.
1279  /// The alignment is specified in log2(bytes).
1280  void setPrefLoopAlignment(unsigned Align) {
1281    PrefLoopAlignment = Align;
1282  }
1283
1284  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1285  /// argument (in log2(bytes)).
1286  void setMinStackArgumentAlignment(unsigned Align) {
1287    MinStackArgumentAlignment = Align;
1288  }
1289
1290  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1291  /// atomic operation intrinsics includes locking. Default is false.
1292  void setShouldFoldAtomicFences(bool fold) {
1293    ShouldFoldAtomicFences = fold;
1294  }
1295
1296  /// setInsertFencesForAtomic - Set if the DAG builder should
1297  /// automatically insert fences and reduce the order of atomic memory
1298  /// operations to Monotonic.
1299  void setInsertFencesForAtomic(bool fence) {
1300    InsertFencesForAtomic = fence;
1301  }
1302
1303public:
1304  //===--------------------------------------------------------------------===//
1305  // Lowering methods - These methods must be implemented by targets so that
1306  // the SelectionDAGBuilder code knows how to lower these.
1307  //
1308
1309  /// LowerFormalArguments - This hook must be implemented to lower the
1310  /// incoming (formal) arguments, described by the Ins array, into the
1311  /// specified DAG. The implementation should fill in the InVals array
1312  /// with legal-type argument values, and return the resulting token
1313  /// chain value.
1314  ///
1315  virtual SDValue
1316    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1317                         bool /*isVarArg*/,
1318                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1319                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1320                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1321    llvm_unreachable("Not Implemented");
1322  }
1323
1324  struct ArgListEntry {
1325    SDValue Node;
1326    Type* Ty;
1327    bool isSExt  : 1;
1328    bool isZExt  : 1;
1329    bool isInReg : 1;
1330    bool isSRet  : 1;
1331    bool isNest  : 1;
1332    bool isByVal : 1;
1333    uint16_t Alignment;
1334
1335    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1336      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1337  };
1338  typedef std::vector<ArgListEntry> ArgListTy;
1339
1340  /// CallLoweringInfo - This structure contains all information that is
1341  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1342  /// SelectionDAG builder needs to lower a call, and targets will see this
1343  /// struct in their LowerCall implementation.
1344  struct CallLoweringInfo {
1345    SDValue Chain;
1346    Type *RetTy;
1347    bool RetSExt           : 1;
1348    bool RetZExt           : 1;
1349    bool IsVarArg          : 1;
1350    bool IsInReg           : 1;
1351    bool DoesNotReturn     : 1;
1352    bool IsReturnValueUsed : 1;
1353
1354    // IsTailCall should be modified by implementations of
1355    // TargetLowering::LowerCall that perform tail call conversions.
1356    bool IsTailCall;
1357
1358    unsigned NumFixedArgs;
1359    CallingConv::ID CallConv;
1360    SDValue Callee;
1361    ArgListTy &Args;
1362    SelectionDAG &DAG;
1363    DebugLoc DL;
1364    ImmutableCallSite *CS;
1365    SmallVector<ISD::OutputArg, 32> Outs;
1366    SmallVector<SDValue, 32> OutVals;
1367    SmallVector<ISD::InputArg, 32> Ins;
1368
1369
1370    /// CallLoweringInfo - Constructs a call lowering context based on the
1371    /// ImmutableCallSite \p cs.
1372    CallLoweringInfo(SDValue chain, Type *retTy,
1373                     FunctionType *FTy, bool isTailCall, SDValue callee,
1374                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1375                     ImmutableCallSite &cs)
1376    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1377      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1378      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1379      DoesNotReturn(cs.doesNotReturn()),
1380      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1381      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1382      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1383      DL(dl), CS(&cs) {}
1384
1385    /// CallLoweringInfo - Constructs a call lowering context based on the
1386    /// provided call information.
1387    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1388                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1389                     CallingConv::ID callConv, bool isTailCall,
1390                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1391                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1392    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1393      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1394      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1395      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1396      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1397  };
1398
1399  /// LowerCallTo - This function lowers an abstract call to a function into an
1400  /// actual call.  This returns a pair of operands.  The first element is the
1401  /// return value for the function (if RetTy is not VoidTy).  The second
1402  /// element is the outgoing token chain. It calls LowerCall to do the actual
1403  /// lowering.
1404  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1405
1406  /// LowerCall - This hook must be implemented to lower calls into the
1407  /// the specified DAG. The outgoing arguments to the call are described
1408  /// by the Outs array, and the values to be returned by the call are
1409  /// described by the Ins array. The implementation should fill in the
1410  /// InVals array with legal-type return values from the call, and return
1411  /// the resulting token chain value.
1412  virtual SDValue
1413    LowerCall(CallLoweringInfo &/*CLI*/,
1414              SmallVectorImpl<SDValue> &/*InVals*/) const {
1415    llvm_unreachable("Not Implemented");
1416  }
1417
1418  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1419  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1420
1421  /// CanLowerReturn - This hook should be implemented to check whether the
1422  /// return values described by the Outs array can fit into the return
1423  /// registers.  If false is returned, an sret-demotion is performed.
1424  ///
1425  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1426                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1427               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1428               LLVMContext &/*Context*/) const
1429  {
1430    // Return true by default to get preexisting behavior.
1431    return true;
1432  }
1433
1434  /// LowerReturn - This hook must be implemented to lower outgoing
1435  /// return values, described by the Outs array, into the specified
1436  /// DAG. The implementation should return the resulting token chain
1437  /// value.
1438  ///
1439  virtual SDValue
1440    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1441                bool /*isVarArg*/,
1442                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1443                const SmallVectorImpl<SDValue> &/*OutVals*/,
1444                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1445    llvm_unreachable("Not Implemented");
1446  }
1447
1448  /// isUsedByReturnOnly - Return true if result of the specified node is used
1449  /// by a return node only. It also compute and return the input chain for the
1450  /// tail call.
1451  /// This is used to determine whether it is possible
1452  /// to codegen a libcall as tail call at legalization time.
1453  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1454    return false;
1455  }
1456
1457  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1458  /// call instruction as a tail call. This is used by optimization passes to
1459  /// determine if it's profitable to duplicate return instructions to enable
1460  /// tailcall optimization.
1461  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1462    return false;
1463  }
1464
1465  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1466  /// sign extend a zeroext/signext integer argument or return value.
1467  /// FIXME: Most C calling convention requires the return type to be promoted,
1468  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1469  /// necessary for non-C calling conventions. The frontend should handle this
1470  /// and include all of the necessary information.
1471  virtual MVT getTypeForExtArgOrReturn(MVT VT,
1472                                       ISD::NodeType /*ExtendKind*/) const {
1473    MVT MinVT = getRegisterType(MVT::i32);
1474    return VT.bitsLT(MinVT) ? MinVT : VT;
1475  }
1476
1477  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1478  /// to legalize nodes with an illegal operand type but legal result types.
1479  /// It replaces the LowerOperation callback in the type Legalizer.
1480  /// The reason we can not do away with LowerOperation entirely is that
1481  /// LegalizeDAG isn't yet ready to use this callback.
1482  /// TODO: Consider merging with ReplaceNodeResults.
1483
1484  /// The target places new result values for the node in Results (their number
1485  /// and types must exactly match those of the original return values of
1486  /// the node), or leaves Results empty, which indicates that the node is not
1487  /// to be custom lowered after all.
1488  /// The default implementation calls LowerOperation.
1489  virtual void LowerOperationWrapper(SDNode *N,
1490                                     SmallVectorImpl<SDValue> &Results,
1491                                     SelectionDAG &DAG) const;
1492
1493  /// LowerOperation - This callback is invoked for operations that are
1494  /// unsupported by the target, which are registered to use 'custom' lowering,
1495  /// and whose defined values are all legal.
1496  /// If the target has no operations that require custom lowering, it need not
1497  /// implement this.  The default implementation of this aborts.
1498  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1499
1500  /// ReplaceNodeResults - This callback is invoked when a node result type is
1501  /// illegal for the target, and the operation was registered to use 'custom'
1502  /// lowering for that result type.  The target places new result values for
1503  /// the node in Results (their number and types must exactly match those of
1504  /// the original return values of the node), or leaves Results empty, which
1505  /// indicates that the node is not to be custom lowered after all.
1506  ///
1507  /// If the target has no operations that require custom lowering, it need not
1508  /// implement this.  The default implementation aborts.
1509  virtual void ReplaceNodeResults(SDNode * /*N*/,
1510                                  SmallVectorImpl<SDValue> &/*Results*/,
1511                                  SelectionDAG &/*DAG*/) const {
1512    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1513  }
1514
1515  /// getTargetNodeName() - This method returns the name of a target specific
1516  /// DAG node.
1517  virtual const char *getTargetNodeName(unsigned Opcode) const;
1518
1519  /// createFastISel - This method returns a target specific FastISel object,
1520  /// or null if the target does not support "fast" ISel.
1521  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1522                                   const TargetLibraryInfo *) const {
1523    return 0;
1524  }
1525
1526  //===--------------------------------------------------------------------===//
1527  // Inline Asm Support hooks
1528  //
1529
1530  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1531  /// call to be explicit llvm code if it wants to.  This is useful for
1532  /// turning simple inline asms into LLVM intrinsics, which gives the
1533  /// compiler more information about the behavior of the code.
1534  virtual bool ExpandInlineAsm(CallInst *) const {
1535    return false;
1536  }
1537
1538  enum ConstraintType {
1539    C_Register,            // Constraint represents specific register(s).
1540    C_RegisterClass,       // Constraint represents any of register(s) in class.
1541    C_Memory,              // Memory constraint.
1542    C_Other,               // Something else.
1543    C_Unknown              // Unsupported constraint.
1544  };
1545
1546  enum ConstraintWeight {
1547    // Generic weights.
1548    CW_Invalid  = -1,     // No match.
1549    CW_Okay     = 0,      // Acceptable.
1550    CW_Good     = 1,      // Good weight.
1551    CW_Better   = 2,      // Better weight.
1552    CW_Best     = 3,      // Best weight.
1553
1554    // Well-known weights.
1555    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1556    CW_Register     = CW_Good,    // Register operands.
1557    CW_Memory       = CW_Better,  // Memory operands.
1558    CW_Constant     = CW_Best,    // Constant operand.
1559    CW_Default      = CW_Okay     // Default or don't know type.
1560  };
1561
1562  /// AsmOperandInfo - This contains information for each constraint that we are
1563  /// lowering.
1564  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1565    /// ConstraintCode - This contains the actual string for the code, like "m".
1566    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1567    /// most closely matches the operand.
1568    std::string ConstraintCode;
1569
1570    /// ConstraintType - Information about the constraint code, e.g. Register,
1571    /// RegisterClass, Memory, Other, Unknown.
1572    TargetLowering::ConstraintType ConstraintType;
1573
1574    /// CallOperandval - If this is the result output operand or a
1575    /// clobber, this is null, otherwise it is the incoming operand to the
1576    /// CallInst.  This gets modified as the asm is processed.
1577    Value *CallOperandVal;
1578
1579    /// ConstraintVT - The ValueType for the operand value.
1580    MVT ConstraintVT;
1581
1582    /// isMatchingInputConstraint - Return true of this is an input operand that
1583    /// is a matching constraint like "4".
1584    bool isMatchingInputConstraint() const;
1585
1586    /// getMatchedOperand - If this is an input matching constraint, this method
1587    /// returns the output operand it matches.
1588    unsigned getMatchedOperand() const;
1589
1590    /// Copy constructor for copying from an AsmOperandInfo.
1591    AsmOperandInfo(const AsmOperandInfo &info)
1592      : InlineAsm::ConstraintInfo(info),
1593        ConstraintCode(info.ConstraintCode),
1594        ConstraintType(info.ConstraintType),
1595        CallOperandVal(info.CallOperandVal),
1596        ConstraintVT(info.ConstraintVT) {
1597    }
1598
1599    /// Copy constructor for copying from a ConstraintInfo.
1600    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1601      : InlineAsm::ConstraintInfo(info),
1602        ConstraintType(TargetLowering::C_Unknown),
1603        CallOperandVal(0), ConstraintVT(MVT::Other) {
1604    }
1605  };
1606
1607  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1608
1609  /// ParseConstraints - Split up the constraint string from the inline
1610  /// assembly value into the specific constraints and their prefixes,
1611  /// and also tie in the associated operand values.
1612  /// If this returns an empty vector, and if the constraint string itself
1613  /// isn't empty, there was an error parsing.
1614  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1615
1616  /// Examine constraint type and operand type and determine a weight value.
1617  /// The operand object must already have been set up with the operand type.
1618  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1619      AsmOperandInfo &info, int maIndex) const;
1620
1621  /// Examine constraint string and operand type and determine a weight value.
1622  /// The operand object must already have been set up with the operand type.
1623  virtual ConstraintWeight getSingleConstraintMatchWeight(
1624      AsmOperandInfo &info, const char *constraint) const;
1625
1626  /// ComputeConstraintToUse - Determines the constraint code and constraint
1627  /// type to use for the specific AsmOperandInfo, setting
1628  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1629  /// being passed in is available, it can be passed in as Op, otherwise an
1630  /// empty SDValue can be passed.
1631  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1632                                      SDValue Op,
1633                                      SelectionDAG *DAG = 0) const;
1634
1635  /// getConstraintType - Given a constraint, return the type of constraint it
1636  /// is for this target.
1637  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1638
1639  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1640  /// {edx}), return the register number and the register class for the
1641  /// register.
1642  ///
1643  /// Given a register class constraint, like 'r', if this corresponds directly
1644  /// to an LLVM register class, return a register of 0 and the register class
1645  /// pointer.
1646  ///
1647  /// This should only be used for C_Register constraints.  On error,
1648  /// this returns a register number of 0 and a null register class pointer..
1649  virtual std::pair<unsigned, const TargetRegisterClass*>
1650    getRegForInlineAsmConstraint(const std::string &Constraint,
1651                                 EVT VT) const;
1652
1653  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1654  /// with another that has more specific requirements based on the type of the
1655  /// corresponding operand.  This returns null if there is no replacement to
1656  /// make.
1657  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1658
1659  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1660  /// vector.  If it is invalid, don't add anything to Ops.
1661  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1662                                            std::vector<SDValue> &Ops,
1663                                            SelectionDAG &DAG) const;
1664
1665  //===--------------------------------------------------------------------===//
1666  // Instruction Emitting Hooks
1667  //
1668
1669  // EmitInstrWithCustomInserter - This method should be implemented by targets
1670  // that mark instructions with the 'usesCustomInserter' flag.  These
1671  // instructions are special in various ways, which require special support to
1672  // insert.  The specified MachineInstr is created but not inserted into any
1673  // basic blocks, and this method is called to expand it into a sequence of
1674  // instructions, potentially also creating new basic blocks and control flow.
1675  virtual MachineBasicBlock *
1676    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1677
1678  /// AdjustInstrPostInstrSelection - This method should be implemented by
1679  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1680  /// instructions must be adjusted after instruction selection by target hooks.
1681  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1682  virtual void
1683  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1684
1685  //===--------------------------------------------------------------------===//
1686  // Addressing mode description hooks (used by LSR etc).
1687  //
1688
1689  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1690  /// same BB as Load/Store instructions reading the address.  This allows as
1691  /// much computation as possible to be done in the address mode for that
1692  /// operand.  This hook lets targets also pass back when this should be done
1693  /// on intrinsics which load/store.
1694  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1695                                    SmallVectorImpl<Value*> &Ops,
1696                                    Type *&AccessTy) const {
1697    return false;
1698  }
1699
1700  /// AddrMode - This represents an addressing mode of:
1701  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1702  /// If BaseGV is null,  there is no BaseGV.
1703  /// If BaseOffs is zero, there is no base offset.
1704  /// If HasBaseReg is false, there is no base register.
1705  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1706  /// no scale.
1707  ///
1708  struct AddrMode {
1709    GlobalValue *BaseGV;
1710    int64_t      BaseOffs;
1711    bool         HasBaseReg;
1712    int64_t      Scale;
1713    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1714  };
1715
1716  /// isLegalAddressingMode - Return true if the addressing mode represented by
1717  /// AM is legal for this target, for a load/store of the specified type.
1718  /// The type may be VoidTy, in which case only return true if the addressing
1719  /// mode is legal for a load/store of any legal type.
1720  /// TODO: Handle pre/postinc as well.
1721  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1722
1723  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1724  /// icmp immediate, that is the target has icmp instructions which can compare
1725  /// a register against the immediate without having to materialize the
1726  /// immediate into a register.
1727  virtual bool isLegalICmpImmediate(int64_t) const {
1728    return true;
1729  }
1730
1731  /// isLegalAddImmediate - Return true if the specified immediate is legal
1732  /// add immediate, that is the target has add instructions which can add
1733  /// a register with the immediate without having to materialize the
1734  /// immediate into a register.
1735  virtual bool isLegalAddImmediate(int64_t) const {
1736    return true;
1737  }
1738
1739  /// isTruncateFree - Return true if it's free to truncate a value of
1740  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1741  /// register EAX to i16 by referencing its sub-register AX.
1742  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1743    return false;
1744  }
1745
1746  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1747    return false;
1748  }
1749
1750  /// isZExtFree - Return true if any actual instruction that defines a
1751  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1752  /// register. This does not necessarily include registers defined in
1753  /// unknown ways, such as incoming arguments, or copies from unknown
1754  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1755  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1756  /// all instructions that define 32-bit values implicit zero-extend the
1757  /// result out to 64 bits.
1758  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1759    return false;
1760  }
1761
1762  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1763    return false;
1764  }
1765
1766  /// isZExtFree - Return true if zero-extending the specific node Val to type
1767  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1768  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1769  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1770    return isZExtFree(Val.getValueType(), VT2);
1771  }
1772
1773  /// isFNegFree - Return true if an fneg operation is free to the point where
1774  /// it is never worthwhile to replace it with a bitwise operation.
1775  virtual bool isFNegFree(EVT) const {
1776    return false;
1777  }
1778
1779  /// isFAbsFree - Return true if an fneg operation is free to the point where
1780  /// it is never worthwhile to replace it with a bitwise operation.
1781  virtual bool isFAbsFree(EVT) const {
1782    return false;
1783  }
1784
1785  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1786  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1787  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1788  /// is expanded to mul + add.
1789  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1790    return false;
1791  }
1792
1793  /// isNarrowingProfitable - Return true if it's profitable to narrow
1794  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1795  /// from i32 to i8 but not from i32 to i16.
1796  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1797    return false;
1798  }
1799
1800  //===--------------------------------------------------------------------===//
1801  // Div utility functions
1802  //
1803  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1804                         SelectionDAG &DAG) const;
1805  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1806                      std::vector<SDNode*> *Created) const;
1807  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1808                      std::vector<SDNode*> *Created) const;
1809
1810
1811  //===--------------------------------------------------------------------===//
1812  // Runtime Library hooks
1813  //
1814
1815  /// setLibcallName - Rename the default libcall routine name for the specified
1816  /// libcall.
1817  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1818    LibcallRoutineNames[Call] = Name;
1819  }
1820
1821  /// getLibcallName - Get the libcall routine name for the specified libcall.
1822  ///
1823  const char *getLibcallName(RTLIB::Libcall Call) const {
1824    return LibcallRoutineNames[Call];
1825  }
1826
1827  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1828  /// result of the comparison libcall against zero.
1829  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1830    CmpLibcallCCs[Call] = CC;
1831  }
1832
1833  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1834  /// the comparison libcall against zero.
1835  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1836    return CmpLibcallCCs[Call];
1837  }
1838
1839  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1840  /// specified libcall.
1841  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1842    LibcallCallingConvs[Call] = CC;
1843  }
1844
1845  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1846  /// specified libcall.
1847  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1848    return LibcallCallingConvs[Call];
1849  }
1850
1851  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1852                            SDValue &Chain) const;
1853
1854  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1855                           SDValue &NewLHS, SDValue &NewRHS,
1856                           ISD::CondCode &CCCode, DebugLoc DL) const;
1857
1858  SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
1859                      const SDValue *Ops, unsigned NumOps,
1860                      bool isSigned, DebugLoc dl) const;
1861
1862private:
1863  const TargetMachine &TM;
1864  const DataLayout *TD;
1865  const TargetLoweringObjectFile &TLOF;
1866
1867  /// PointerTy - The type to use for pointers for the default address space,
1868  /// usually i32 or i64.
1869  ///
1870  MVT PointerTy;
1871
1872  /// IsLittleEndian - True if this is a little endian target.
1873  ///
1874  bool IsLittleEndian;
1875
1876  /// SelectIsExpensive - Tells the code generator not to expand operations
1877  /// into sequences that use the select operations if possible.
1878  bool SelectIsExpensive;
1879
1880  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1881  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1882  /// a real cost model is in place.  If we ever optimize for size, this will be
1883  /// set to true unconditionally.
1884  bool IntDivIsCheap;
1885
1886  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1887  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1888  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1889  /// integer div/rem when the operands are positive and less than 256.
1890  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1891
1892  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1893  /// srl/add/sra for a signed divide by power of two, and let the target handle
1894  /// it.
1895  bool Pow2DivIsCheap;
1896
1897  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1898  /// extra flow control instructions and should attempt to combine flow
1899  /// control instructions via predication.
1900  bool JumpIsExpensive;
1901
1902  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1903  /// llvm.setjmp.  Defaults to false.
1904  bool UseUnderscoreSetJmp;
1905
1906  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1907  /// llvm.longjmp.  Defaults to false.
1908  bool UseUnderscoreLongJmp;
1909
1910  /// SupportJumpTables - Whether the target can generate code for jumptables.
1911  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1912  bool SupportJumpTables;
1913
1914  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1915  int MinimumJumpTableEntries;
1916
1917  /// BooleanContents - Information about the contents of the high-bits in
1918  /// boolean values held in a type wider than i1.  See getBooleanContents.
1919  BooleanContent BooleanContents;
1920  /// BooleanVectorContents - Information about the contents of the high-bits
1921  /// in boolean vector values when the element type is wider than i1.  See
1922  /// getBooleanContents.
1923  BooleanContent BooleanVectorContents;
1924
1925  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1926  /// total cycles or lowest register usage.
1927  Sched::Preference SchedPreferenceInfo;
1928
1929  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1930  unsigned JumpBufSize;
1931
1932  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1933  /// buffers
1934  unsigned JumpBufAlignment;
1935
1936  /// MinStackArgumentAlignment - The minimum alignment that any argument
1937  /// on the stack needs to have.
1938  ///
1939  unsigned MinStackArgumentAlignment;
1940
1941  /// MinFunctionAlignment - The minimum function alignment (used when
1942  /// optimizing for size, and to prevent explicitly provided alignment
1943  /// from leading to incorrect code).
1944  ///
1945  unsigned MinFunctionAlignment;
1946
1947  /// PrefFunctionAlignment - The preferred function alignment (used when
1948  /// alignment unspecified and optimizing for speed).
1949  ///
1950  unsigned PrefFunctionAlignment;
1951
1952  /// PrefLoopAlignment - The preferred loop alignment.
1953  ///
1954  unsigned PrefLoopAlignment;
1955
1956  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1957  /// be folded into the enclosed atomic intrinsic instruction by the
1958  /// combiner.
1959  bool ShouldFoldAtomicFences;
1960
1961  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1962  /// insert fences and reduce ordering for atomics.  (This will be set for
1963  /// for most architectures with weak memory ordering.)
1964  bool InsertFencesForAtomic;
1965
1966  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1967  /// specifies the register that llvm.savestack/llvm.restorestack should save
1968  /// and restore.
1969  unsigned StackPointerRegisterToSaveRestore;
1970
1971  /// ExceptionPointerRegister - If set to a physical register, this specifies
1972  /// the register that receives the exception address on entry to a landing
1973  /// pad.
1974  unsigned ExceptionPointerRegister;
1975
1976  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1977  /// the register that receives the exception typeid on entry to a landing
1978  /// pad.
1979  unsigned ExceptionSelectorRegister;
1980
1981  /// RegClassForVT - This indicates the default register class to use for
1982  /// each ValueType the target supports natively.
1983  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1984  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1985  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1986
1987  /// RepRegClassForVT - This indicates the "representative" register class to
1988  /// use for each ValueType the target supports natively. This information is
1989  /// used by the scheduler to track register pressure. By default, the
1990  /// representative register class is the largest legal super-reg register
1991  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1992  /// and i32's representative class would be GR32.
1993  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1994
1995  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1996  /// register class for each ValueType. The cost is used by the scheduler to
1997  /// approximate register pressure.
1998  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1999
2000  /// TransformToType - For any value types we are promoting or expanding, this
2001  /// contains the value type that we are changing to.  For Expanded types, this
2002  /// contains one step of the expand (e.g. i64 -> i32), even if there are
2003  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
2004  /// by the system, this holds the same type (e.g. i32 -> i32).
2005  MVT TransformToType[MVT::LAST_VALUETYPE];
2006
2007  /// OpActions - For each operation and each value type, keep a LegalizeAction
2008  /// that indicates how instruction selection should deal with the operation.
2009  /// Most operations are Legal (aka, supported natively by the target), but
2010  /// operations that are not should be described.  Note that operations on
2011  /// non-legal value types are not described here.
2012  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2013
2014  /// LoadExtActions - For each load extension type and each value type,
2015  /// keep a LegalizeAction that indicates how instruction selection should deal
2016  /// with a load of a specific value type and extension type.
2017  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
2018
2019  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
2020  /// indicates whether a truncating store of a specific value type and
2021  /// truncating type is legal.
2022  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2023
2024  /// IndexedModeActions - For each indexed mode and each value type,
2025  /// keep a pair of LegalizeAction that indicates how instruction
2026  /// selection should deal with the load / store.  The first dimension is the
2027  /// value_type for the reference. The second dimension represents the various
2028  /// modes for load store.
2029  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2030
2031  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
2032  /// LegalizeAction that indicates how instruction selection should
2033  /// deal with the condition code.
2034  /// Because each CC action takes up 2 bits, we need to have the array size
2035  /// be large enough to fit all of the value types. This can be done by
2036  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
2037  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
2038
2039  ValueTypeActionImpl ValueTypeActions;
2040
2041public:
2042  LegalizeKind
2043  getTypeConversion(LLVMContext &Context, EVT VT) const {
2044    // If this is a simple type, use the ComputeRegisterProp mechanism.
2045    if (VT.isSimple()) {
2046      MVT SVT = VT.getSimpleVT();
2047      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
2048      MVT NVT = TransformToType[SVT.SimpleTy];
2049      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
2050
2051      assert(
2052        (LA == TypeLegal ||
2053         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
2054         && "Promote may not follow Expand or Promote");
2055
2056      if (LA == TypeSplitVector)
2057        return LegalizeKind(LA, EVT::getVectorVT(Context,
2058                                                 SVT.getVectorElementType(),
2059                                                 SVT.getVectorNumElements()/2));
2060      if (LA == TypeScalarizeVector)
2061        return LegalizeKind(LA, SVT.getVectorElementType());
2062      return LegalizeKind(LA, NVT);
2063    }
2064
2065    // Handle Extended Scalar Types.
2066    if (!VT.isVector()) {
2067      assert(VT.isInteger() && "Float types must be simple");
2068      unsigned BitSize = VT.getSizeInBits();
2069      // First promote to a power-of-two size, then expand if necessary.
2070      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
2071        EVT NVT = VT.getRoundIntegerType(Context);
2072        assert(NVT != VT && "Unable to round integer VT");
2073        LegalizeKind NextStep = getTypeConversion(Context, NVT);
2074        // Avoid multi-step promotion.
2075        if (NextStep.first == TypePromoteInteger) return NextStep;
2076        // Return rounded integer type.
2077        return LegalizeKind(TypePromoteInteger, NVT);
2078      }
2079
2080      return LegalizeKind(TypeExpandInteger,
2081                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2082    }
2083
2084    // Handle vector types.
2085    unsigned NumElts = VT.getVectorNumElements();
2086    EVT EltVT = VT.getVectorElementType();
2087
2088    // Vectors with only one element are always scalarized.
2089    if (NumElts == 1)
2090      return LegalizeKind(TypeScalarizeVector, EltVT);
2091
2092    // Try to widen vector elements until a legal type is found.
2093    if (EltVT.isInteger()) {
2094      // Vectors with a number of elements that is not a power of two are always
2095      // widened, for example <3 x float> -> <4 x float>.
2096      if (!VT.isPow2VectorType()) {
2097        NumElts = (unsigned)NextPowerOf2(NumElts);
2098        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2099        return LegalizeKind(TypeWidenVector, NVT);
2100      }
2101
2102      // Examine the element type.
2103      LegalizeKind LK = getTypeConversion(Context, EltVT);
2104
2105      // If type is to be expanded, split the vector.
2106      //  <4 x i140> -> <2 x i140>
2107      if (LK.first == TypeExpandInteger)
2108        return LegalizeKind(TypeSplitVector,
2109                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2110
2111      // Promote the integer element types until a legal vector type is found
2112      // or until the element integer type is too big. If a legal type was not
2113      // found, fallback to the usual mechanism of widening/splitting the
2114      // vector.
2115      while (1) {
2116        // Increase the bitwidth of the element to the next pow-of-two
2117        // (which is greater than 8 bits).
2118        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2119                                 ).getRoundIntegerType(Context);
2120
2121        // Stop trying when getting a non-simple element type.
2122        // Note that vector elements may be greater than legal vector element
2123        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2124        if (!EltVT.isSimple()) break;
2125
2126        // Build a new vector type and check if it is legal.
2127        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2128        // Found a legal promoted vector type.
2129        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2130          return LegalizeKind(TypePromoteInteger,
2131                              EVT::getVectorVT(Context, EltVT, NumElts));
2132      }
2133    }
2134
2135    // Try to widen the vector until a legal type is found.
2136    // If there is no wider legal type, split the vector.
2137    while (1) {
2138      // Round up to the next power of 2.
2139      NumElts = (unsigned)NextPowerOf2(NumElts);
2140
2141      // If there is no simple vector type with this many elements then there
2142      // cannot be a larger legal vector type.  Note that this assumes that
2143      // there are no skipped intermediate vector types in the simple types.
2144      if (!EltVT.isSimple()) break;
2145      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2146      if (LargerVector == MVT()) break;
2147
2148      // If this type is legal then widen the vector.
2149      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2150        return LegalizeKind(TypeWidenVector, LargerVector);
2151    }
2152
2153    // Widen odd vectors to next power of two.
2154    if (!VT.isPow2VectorType()) {
2155      EVT NVT = VT.getPow2VectorType(Context);
2156      return LegalizeKind(TypeWidenVector, NVT);
2157    }
2158
2159    // Vectors with illegal element types are expanded.
2160    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2161    return LegalizeKind(TypeSplitVector, NVT);
2162  }
2163
2164private:
2165  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
2166
2167  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2168  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2169  /// which sets a bit in this array.
2170  unsigned char
2171  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2172
2173  /// PromoteToType - For operations that must be promoted to a specific type,
2174  /// this holds the destination type.  This map should be sparse, so don't hold
2175  /// it as an array.
2176  ///
2177  /// Targets add entries to this map with AddPromotedToType(..), clients access
2178  /// this with getTypeToPromoteTo(..).
2179  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2180    PromoteToType;
2181
2182  /// LibcallRoutineNames - Stores the name each libcall.
2183  ///
2184  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2185
2186  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2187  /// of each of the comparison libcall against zero.
2188  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2189
2190  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2191  /// libcall.
2192  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2193
2194protected:
2195  /// When lowering \@llvm.memset this field specifies the maximum number of
2196  /// store operations that may be substituted for the call to memset. Targets
2197  /// must set this value based on the cost threshold for that target. Targets
2198  /// should assume that the memset will be done using as many of the largest
2199  /// store operations first, followed by smaller ones, if necessary, per
2200  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2201  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2202  /// store.  This only applies to setting a constant array of a constant size.
2203  /// @brief Specify maximum number of store instructions per memset call.
2204  unsigned maxStoresPerMemset;
2205
2206  /// Maximum number of stores operations that may be substituted for the call
2207  /// to memset, used for functions with OptSize attribute.
2208  unsigned maxStoresPerMemsetOptSize;
2209
2210  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2211  /// store operations that may be substituted for a call to memcpy. Targets
2212  /// must set this value based on the cost threshold for that target. Targets
2213  /// should assume that the memcpy will be done using as many of the largest
2214  /// store operations first, followed by smaller ones, if necessary, per
2215  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2216  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2217  /// and one 1-byte store. This only applies to copying a constant array of
2218  /// constant size.
2219  /// @brief Specify maximum bytes of store instructions per memcpy call.
2220  unsigned maxStoresPerMemcpy;
2221
2222  /// Maximum number of store operations that may be substituted for a call
2223  /// to memcpy, used for functions with OptSize attribute.
2224  unsigned maxStoresPerMemcpyOptSize;
2225
2226  /// When lowering \@llvm.memmove this field specifies the maximum number of
2227  /// store instructions that may be substituted for a call to memmove. Targets
2228  /// must set this value based on the cost threshold for that target. Targets
2229  /// should assume that the memmove will be done using as many of the largest
2230  /// store operations first, followed by smaller ones, if necessary, per
2231  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2232  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2233  /// applies to copying a constant array of constant size.
2234  /// @brief Specify maximum bytes of store instructions per memmove call.
2235  unsigned maxStoresPerMemmove;
2236
2237  /// Maximum number of store instructions that may be substituted for a call
2238  /// to memmove, used for functions with OpSize attribute.
2239  unsigned maxStoresPerMemmoveOptSize;
2240
2241  /// This field specifies whether the target can benefit from code placement
2242  /// optimization.
2243  bool benefitFromCodePlacementOpt;
2244
2245  /// predictableSelectIsExpensive - Tells the code generator that select is
2246  /// more expensive than a branch if the branch is usually predicted right.
2247  bool predictableSelectIsExpensive;
2248
2249private:
2250  /// isLegalRC - Return true if the value types that can be represented by the
2251  /// specified register class are all legal.
2252  bool isLegalRC(const TargetRegisterClass *RC) const;
2253};
2254
2255/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2256/// compute the return value EVTs and flags, and optionally also
2257/// the offsets, if the return value is being lowered to memory.
2258void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2259                   SmallVectorImpl<ISD::OutputArg> &Outs,
2260                   const TargetLowering &TLI);
2261
2262} // end llvm namespace
2263
2264#endif
2265