TargetLowering.h revision 30b37b5f29991874648d839d018aa2921b39355f
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/Support/DataTypes.h"
29#include <vector>
30
31namespace llvm {
32  class Value;
33  class Function;
34  class TargetMachine;
35  class TargetData;
36  class TargetRegisterClass;
37  class SDNode;
38  class SDOperand;
39  class SelectionDAG;
40  class MachineBasicBlock;
41  class MachineInstr;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData &getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// isSetCCExpensive - Return true if the setcc operation is expensive for
91  /// this target.
92  bool isSetCCExpensive() const { return SetCCIsExpensive; }
93
94  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
95  /// a sequence of several shifts, adds, and multiplies for this target.
96  bool isIntDivCheap() const { return IntDivIsCheap; }
97
98  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
99  /// srl/add/sra.
100  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
101
102  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
103  ///
104  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
105
106  /// getSetCCResultContents - For targets without boolean registers, this flag
107  /// returns information about the contents of the high-bits in the setcc
108  /// result register.
109  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
110
111  /// getSchedulingPreference - Return target scheduling preference.
112  SchedPreference getSchedulingPreference() const {
113    return SchedPreferenceInfo;
114  }
115
116  /// getRegClassFor - Return the register class that should be used for the
117  /// specified value type.  This may only be called on legal types.
118  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
119    TargetRegisterClass *RC = RegClassForVT[VT];
120    assert(RC && "This value type is not natively supported!");
121    return RC;
122  }
123
124  /// isTypeLegal - Return true if the target has native support for the
125  /// specified value type.  This means that it has a register that directly
126  /// holds it without promotions or expansions.
127  bool isTypeLegal(MVT::ValueType VT) const {
128    return RegClassForVT[VT] != 0;
129  }
130
131  class ValueTypeActionImpl {
132    /// ValueTypeActions - This is a bitvector that contains two bits for each
133    /// value type, where the two bits correspond to the LegalizeAction enum.
134    /// This can be queried with "getTypeAction(VT)".
135    uint32_t ValueTypeActions[2];
136  public:
137    ValueTypeActionImpl() {
138      ValueTypeActions[0] = ValueTypeActions[1] = 0;
139    }
140    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
141      ValueTypeActions[0] = RHS.ValueTypeActions[0];
142      ValueTypeActions[1] = RHS.ValueTypeActions[1];
143    }
144
145    LegalizeAction getTypeAction(MVT::ValueType VT) const {
146      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
147    }
148    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
149      assert(unsigned(VT >> 4) <
150             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
151      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
152    }
153  };
154
155  const ValueTypeActionImpl &getValueTypeActions() const {
156    return ValueTypeActions;
157  }
158
159  /// getTypeAction - Return how we should legalize values of this type, either
160  /// it is already legal (return 'Legal') or we need to promote it to a larger
161  /// type (return 'Promote'), or we need to expand it into multiple registers
162  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
163  LegalizeAction getTypeAction(MVT::ValueType VT) const {
164    return ValueTypeActions.getTypeAction(VT);
165  }
166
167  /// getTypeToTransformTo - For types supported by the target, this is an
168  /// identity function.  For types that must be promoted to larger types, this
169  /// returns the larger type to promote to.  For types that are larger than the
170  /// largest integer register, this contains one step in the expansion to get
171  /// to the smaller register.
172  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
173    return TransformToType[VT];
174  }
175
176  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
177  legal_fpimm_iterator legal_fpimm_begin() const {
178    return LegalFPImmediates.begin();
179  }
180  legal_fpimm_iterator legal_fpimm_end() const {
181    return LegalFPImmediates.end();
182  }
183
184  /// getOperationAction - Return how this operation should be treated: either
185  /// it is legal, needs to be promoted to a larger size, needs to be
186  /// expanded to some other code sequence, or the target has a custom expander
187  /// for it.
188  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
189    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
190  }
191
192  /// isOperationLegal - Return true if the specified operation is legal on this
193  /// target.
194  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
195    return getOperationAction(Op, VT) == Legal ||
196           getOperationAction(Op, VT) == Custom;
197  }
198
199  /// getTypeToPromoteTo - If the action for this operation is to promote, this
200  /// method returns the ValueType to promote to.
201  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
202    assert(getOperationAction(Op, VT) == Promote &&
203           "This operation isn't promoted!");
204    MVT::ValueType NVT = VT;
205    do {
206      NVT = (MVT::ValueType)(NVT+1);
207      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
208             "Didn't find type to promote to!");
209    } while (!isTypeLegal(NVT) ||
210              getOperationAction(Op, NVT) == Promote);
211    return NVT;
212  }
213
214  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
215  /// This is fixed by the LLVM operations except for the pointer size.
216  MVT::ValueType getValueType(const Type *Ty) const {
217    switch (Ty->getTypeID()) {
218    default: assert(0 && "Unknown type!");
219    case Type::VoidTyID:    return MVT::isVoid;
220    case Type::BoolTyID:    return MVT::i1;
221    case Type::UByteTyID:
222    case Type::SByteTyID:   return MVT::i8;
223    case Type::ShortTyID:
224    case Type::UShortTyID:  return MVT::i16;
225    case Type::IntTyID:
226    case Type::UIntTyID:    return MVT::i32;
227    case Type::LongTyID:
228    case Type::ULongTyID:   return MVT::i64;
229    case Type::FloatTyID:   return MVT::f32;
230    case Type::DoubleTyID:  return MVT::f64;
231    case Type::PointerTyID: return PointerTy;
232    case Type::PackedTyID:  return MVT::Vector;
233    }
234  }
235
236  /// getNumElements - Return the number of registers that this ValueType will
237  /// eventually require.  This is always one for all non-integer types, is
238  /// one for any types promoted to live in larger registers, but may be more
239  /// than one for types (like i64) that are split into pieces.
240  unsigned getNumElements(MVT::ValueType VT) const {
241    return NumElementsForVT[VT];
242  }
243
244  /// hasTargetDAGCombine - If true, the target has custom DAG combine
245  /// transformations that it can perform for the specified node.
246  bool hasTargetDAGCombine(ISD::NodeType NT) const {
247    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
248  }
249
250  /// This function returns the maximum number of store operations permitted
251  /// to replace a call to llvm.memset. The value is set by the target at the
252  /// performance threshold for such a replacement.
253  /// @brief Get maximum # of store operations permitted for llvm.memset
254  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
255
256  /// This function returns the maximum number of store operations permitted
257  /// to replace a call to llvm.memcpy. The value is set by the target at the
258  /// performance threshold for such a replacement.
259  /// @brief Get maximum # of store operations permitted for llvm.memcpy
260  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
261
262  /// This function returns the maximum number of store operations permitted
263  /// to replace a call to llvm.memmove. The value is set by the target at the
264  /// performance threshold for such a replacement.
265  /// @brief Get maximum # of store operations permitted for llvm.memmove
266  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
267
268  /// This function returns true if the target allows unaligned memory accesses.
269  /// This is used, for example, in situations where an array copy/move/set is
270  /// converted to a sequence of store operations. It's use helps to ensure that
271  /// such replacements don't generate code that causes an alignment error
272  /// (trap) on the target machine.
273  /// @brief Determine if the target supports unaligned memory accesses.
274  bool allowsUnalignedMemoryAccesses() const {
275    return allowUnalignedMemoryAccesses;
276  }
277
278  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
279  /// to implement llvm.setjmp.
280  bool usesUnderscoreSetJmpLongJmp() const {
281    return UseUnderscoreSetJmpLongJmp;
282  }
283
284  /// getStackPointerRegisterToSaveRestore - If a physical register, this
285  /// specifies the register that llvm.savestack/llvm.restorestack should save
286  /// and restore.
287  unsigned getStackPointerRegisterToSaveRestore() const {
288    return StackPointerRegisterToSaveRestore;
289  }
290
291  //===--------------------------------------------------------------------===//
292  // TargetLowering Optimization Methods
293  //
294
295  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
296  /// SDOperands for returning information from TargetLowering to its clients
297  /// that want to combine
298  struct TargetLoweringOpt {
299    SelectionDAG &DAG;
300    SDOperand Old;
301    SDOperand New;
302
303    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
304
305    bool CombineTo(SDOperand O, SDOperand N) {
306      Old = O;
307      New = N;
308      return true;
309    }
310
311    /// ShrinkDemandedConstant - Check to see if the specified operand of the
312    /// specified instruction is a constant integer.  If so, check to see if there
313    /// are any bits set in the constant that are not demanded.  If so, shrink the
314    /// constant and return true.
315    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
316  };
317
318  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
319  /// use this predicate to simplify operations downstream.  Op and Mask are
320  /// known to be the same type.
321  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
322    const;
323
324  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
325  /// known to be either zero or one and return them in the KnownZero/KnownOne
326  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
327  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
328  /// method, to allow target nodes to be understood.
329  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
330                         uint64_t &KnownOne, unsigned Depth = 0) const;
331
332  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
333  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
334  /// use this information to simplify Op, create a new simplified DAG node and
335  /// return true, returning the original and new nodes in Old and New.
336  /// Otherwise, analyze the expression and return a mask of KnownOne and
337  /// KnownZero bits for the expression (used to simplify the caller).
338  /// The KnownZero/One bits may only be accurate for those bits in the
339  /// DemandedMask.
340  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
341                            uint64_t &KnownZero, uint64_t &KnownOne,
342                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
343
344  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
345  /// Mask are known to be either zero or one and return them in the
346  /// KnownZero/KnownOne bitsets.
347  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
348                                              uint64_t Mask,
349                                              uint64_t &KnownZero,
350                                              uint64_t &KnownOne,
351                                              unsigned Depth = 0) const;
352
353  struct DAGCombinerInfo {
354    void *DC;  // The DAG Combiner object.
355    bool BeforeLegalize;
356  public:
357    SelectionDAG &DAG;
358
359    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
360      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
361
362    bool isBeforeLegalize() const { return BeforeLegalize; }
363
364    void AddToWorklist(SDNode *N);
365    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
366    SDOperand CombineTo(SDNode *N, SDOperand Res);
367    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
368  };
369
370  /// PerformDAGCombine - This method will be invoked for all target nodes and
371  /// for any target-independent nodes that the target has registered with
372  /// invoke it for.
373  ///
374  /// The semantics are as follows:
375  /// Return Value:
376  ///   SDOperand.Val == 0   - No change was made
377  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
378  ///   otherwise            - N should be replaced by the returned Operand.
379  ///
380  /// In addition, methods provided by DAGCombinerInfo may be used to perform
381  /// more complex transformations.
382  ///
383  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
384
385  //===--------------------------------------------------------------------===//
386  // TargetLowering Configuration Methods - These methods should be invoked by
387  // the derived class constructor to configure this object for the target.
388  //
389
390protected:
391
392  /// setShiftAmountType - Describe the type that should be used for shift
393  /// amounts.  This type defaults to the pointer type.
394  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
395
396  /// setSetCCResultType - Describe the type that shoudl be used as the result
397  /// of a setcc operation.  This defaults to the pointer type.
398  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
399
400  /// setSetCCResultContents - Specify how the target extends the result of a
401  /// setcc operation in a register.
402  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
403
404  /// setSchedulingPreference - Specify the target scheduling preference.
405  void setSchedulingPreference(SchedPreference Pref) {
406    SchedPreferenceInfo = Pref;
407  }
408
409  /// setShiftAmountFlavor - Describe how the target handles out of range shift
410  /// amounts.
411  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
412    ShiftAmtHandling = OORSA;
413  }
414
415  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
416  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
417  /// the non _ versions.  Defaults to false.
418  void setUseUnderscoreSetJmpLongJmp(bool Val) {
419    UseUnderscoreSetJmpLongJmp = Val;
420  }
421
422  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
423  /// specifies the register that llvm.savestack/llvm.restorestack should save
424  /// and restore.
425  void setStackPointerRegisterToSaveRestore(unsigned R) {
426    StackPointerRegisterToSaveRestore = R;
427  }
428
429  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
430  /// setcc as a conditional branch.  This encourages the code generator to fold
431  /// setcc operations into other operations if possible.
432  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
433
434  /// setIntDivIsCheap - Tells the code generator that integer divide is
435  /// expensive, and if possible, should be replaced by an alternate sequence
436  /// of instructions not containing an integer divide.
437  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
438
439  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
440  /// srl/add/sra for a signed divide by power of two, and let the target handle
441  /// it.
442  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
443
444  /// addRegisterClass - Add the specified register class as an available
445  /// regclass for the specified value type.  This indicates the selector can
446  /// handle values of that class natively.
447  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
448    AvailableRegClasses.push_back(std::make_pair(VT, RC));
449    RegClassForVT[VT] = RC;
450  }
451
452  /// computeRegisterProperties - Once all of the register classes are added,
453  /// this allows us to compute derived properties we expose.
454  void computeRegisterProperties();
455
456  /// setOperationAction - Indicate that the specified operation does not work
457  /// with the specified type and indicate what to do about it.
458  void setOperationAction(unsigned Op, MVT::ValueType VT,
459                          LegalizeAction Action) {
460    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
461           "Table isn't big enough!");
462    OpActions[Op] &= ~(3ULL << VT*2);
463    OpActions[Op] |= (uint64_t)Action << VT*2;
464  }
465
466  /// addLegalFPImmediate - Indicate that this target can instruction select
467  /// the specified FP immediate natively.
468  void addLegalFPImmediate(double Imm) {
469    LegalFPImmediates.push_back(Imm);
470  }
471
472  /// setTargetDAGCombine - Targets should invoke this method for each target
473  /// independent node that they want to provide a custom DAG combiner for by
474  /// implementing the PerformDAGCombine virtual method.
475  void setTargetDAGCombine(ISD::NodeType NT) {
476    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
477  }
478
479public:
480
481  //===--------------------------------------------------------------------===//
482  // Lowering methods - These methods must be implemented by targets so that
483  // the SelectionDAGLowering code knows how to lower these.
484  //
485
486  /// LowerArguments - This hook must be implemented to indicate how we should
487  /// lower the arguments for the specified function, into the specified DAG.
488  virtual std::vector<SDOperand>
489  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
490
491  /// LowerCallTo - This hook lowers an abstract call to a function into an
492  /// actual call.  This returns a pair of operands.  The first element is the
493  /// return value for the function (if RetTy is not VoidTy).  The second
494  /// element is the outgoing token chain.
495  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
496  virtual std::pair<SDOperand, SDOperand>
497  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
498              unsigned CallingConv, bool isTailCall, SDOperand Callee,
499              ArgListTy &Args, SelectionDAG &DAG) = 0;
500
501  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
502  /// llvm.frameaddress (depending on the value of the first argument).  The
503  /// return values are the result pointer and the resultant token chain.  If
504  /// not implemented, both of these intrinsics will return null.
505  virtual std::pair<SDOperand, SDOperand>
506  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
507                          SelectionDAG &DAG);
508
509  /// LowerOperation - This callback is invoked for operations that are
510  /// unsupported by the target, which are registered to use 'custom' lowering,
511  /// and whose defined values are all legal.
512  /// If the target has no operations that require custom lowering, it need not
513  /// implement this.  The default implementation of this aborts.
514  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
515
516  /// CustomPromoteOperation - This callback is invoked for operations that are
517  /// unsupported by the target, are registered to use 'custom' lowering, and
518  /// whose type needs to be promoted.
519  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
520
521  /// getTargetNodeName() - This method returns the name of a target specific
522  /// DAG node.
523  virtual const char *getTargetNodeName(unsigned Opcode) const;
524
525  //===--------------------------------------------------------------------===//
526  // Inline Asm Support hooks
527  //
528
529  enum ConstraintType {
530    C_Register,            // Constraint represents a single register.
531    C_RegisterClass,       // Constraint represents one or more registers.
532    C_Memory,              // Memory constraint.
533    C_Other,               // Something else.
534    C_Unknown              // Unsupported constraint.
535  };
536
537  /// getConstraintType - Given a constraint letter, return the type of
538  /// constraint it is for this target.
539  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
540
541
542  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
543  /// return a list of registers that can be used to satisfy the constraint.
544  /// This should only be used for C_RegisterClass constraints.
545  virtual std::vector<unsigned>
546  getRegClassForInlineAsmConstraint(const std::string &Constraint,
547                                    MVT::ValueType VT) const;
548
549  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
550  /// {edx}), return the register number and the register class for the
551  /// register.  This should only be used for C_Register constraints.  On error,
552  /// this returns a register number of 0.
553  virtual std::pair<unsigned, const TargetRegisterClass*>
554    getRegForInlineAsmConstraint(const std::string &Constraint,
555                                 MVT::ValueType VT) const;
556
557
558  /// isOperandValidForConstraint - Return true if the specified SDOperand is
559  /// valid for the specified target constraint letter.
560  virtual bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter);
561
562  //===--------------------------------------------------------------------===//
563  // Loop Strength Reduction hooks
564  //
565
566  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
567  /// can be used as the offset of the target addressing mode.
568  virtual bool isLegalAddressImmediate(int64_t V) const;
569  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
570
571  //===--------------------------------------------------------------------===//
572  // Scheduler hooks
573  //
574
575  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
576  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
577  // instructions are special in various ways, which require special support to
578  // insert.  The specified MachineInstr is created but not inserted into any
579  // basic blocks, and the scheduler passes ownership of it to this method.
580  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
581                                                     MachineBasicBlock *MBB);
582
583private:
584  TargetMachine &TM;
585  const TargetData &TD;
586
587  /// IsLittleEndian - True if this is a little endian target.
588  ///
589  bool IsLittleEndian;
590
591  /// PointerTy - The type to use for pointers, usually i32 or i64.
592  ///
593  MVT::ValueType PointerTy;
594
595  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
596  /// PointerTy is.
597  MVT::ValueType ShiftAmountTy;
598
599  OutOfRangeShiftAmount ShiftAmtHandling;
600
601  /// SetCCIsExpensive - This is a short term hack for targets that codegen
602  /// setcc as a conditional branch.  This encourages the code generator to fold
603  /// setcc operations into other operations if possible.
604  bool SetCCIsExpensive;
605
606  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
607  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
608  /// a real cost model is in place.  If we ever optimize for size, this will be
609  /// set to true unconditionally.
610  bool IntDivIsCheap;
611
612  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
613  /// srl/add/sra for a signed divide by power of two, and let the target handle
614  /// it.
615  bool Pow2DivIsCheap;
616
617  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
618  /// PointerTy.
619  MVT::ValueType SetCCResultTy;
620
621  /// SetCCResultContents - Information about the contents of the high-bits in
622  /// the result of a setcc comparison operation.
623  SetCCResultValue SetCCResultContents;
624
625  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
626  /// total cycles or lowest register usage.
627  SchedPreference SchedPreferenceInfo;
628
629  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
630  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
631  bool UseUnderscoreSetJmpLongJmp;
632
633  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
634  /// specifies the register that llvm.savestack/llvm.restorestack should save
635  /// and restore.
636  unsigned StackPointerRegisterToSaveRestore;
637
638  /// RegClassForVT - This indicates the default register class to use for
639  /// each ValueType the target supports natively.
640  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
641  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
642
643  /// TransformToType - For any value types we are promoting or expanding, this
644  /// contains the value type that we are changing to.  For Expanded types, this
645  /// contains one step of the expand (e.g. i64 -> i32), even if there are
646  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
647  /// by the system, this holds the same type (e.g. i32 -> i32).
648  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
649
650  /// OpActions - For each operation and each value type, keep a LegalizeAction
651  /// that indicates how instruction selection should deal with the operation.
652  /// Most operations are Legal (aka, supported natively by the target), but
653  /// operations that are not should be described.  Note that operations on
654  /// non-legal value types are not described here.
655  uint64_t OpActions[156];
656
657  ValueTypeActionImpl ValueTypeActions;
658
659  std::vector<double> LegalFPImmediates;
660
661  std::vector<std::pair<MVT::ValueType,
662                        TargetRegisterClass*> > AvailableRegClasses;
663
664  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
665  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
666  /// which sets a bit in this array.
667  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
668
669protected:
670  /// When lowering %llvm.memset this field specifies the maximum number of
671  /// store operations that may be substituted for the call to memset. Targets
672  /// must set this value based on the cost threshold for that target. Targets
673  /// should assume that the memset will be done using as many of the largest
674  /// store operations first, followed by smaller ones, if necessary, per
675  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
676  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
677  /// store.  This only applies to setting a constant array of a constant size.
678  /// @brief Specify maximum number of store instructions per memset call.
679  unsigned maxStoresPerMemset;
680
681  /// When lowering %llvm.memcpy this field specifies the maximum number of
682  /// store operations that may be substituted for a call to memcpy. Targets
683  /// must set this value based on the cost threshold for that target. Targets
684  /// should assume that the memcpy will be done using as many of the largest
685  /// store operations first, followed by smaller ones, if necessary, per
686  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
687  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
688  /// and one 1-byte store. This only applies to copying a constant array of
689  /// constant size.
690  /// @brief Specify maximum bytes of store instructions per memcpy call.
691  unsigned maxStoresPerMemcpy;
692
693  /// When lowering %llvm.memmove this field specifies the maximum number of
694  /// store instructions that may be substituted for a call to memmove. Targets
695  /// must set this value based on the cost threshold for that target. Targets
696  /// should assume that the memmove will be done using as many of the largest
697  /// store operations first, followed by smaller ones, if necessary, per
698  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
699  /// with 8-bit alignment would result in nine 1-byte stores.  This only
700  /// applies to copying a constant array of constant size.
701  /// @brief Specify maximum bytes of store instructions per memmove call.
702  unsigned maxStoresPerMemmove;
703
704  /// This field specifies whether the target machine permits unaligned memory
705  /// accesses.  This is used, for example, to determine the size of store
706  /// operations when copying small arrays and other similar tasks.
707  /// @brief Indicate whether the target permits unaligned memory accesses.
708  bool allowUnalignedMemoryAccesses;
709};
710} // end llvm namespace
711
712#endif
713