TargetLowering.h revision 36397f50343639ce9a25996f2d790c656791ab92
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include <map>
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41  class VectorType;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData *getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
91  /// codegen.
92  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
93
94  /// isSelectExpensive - Return true if the select operation is expensive for
95  /// this target.
96  bool isSelectExpensive() const { return SelectIsExpensive; }
97
98  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
99  /// a sequence of several shifts, adds, and multiplies for this target.
100  bool isIntDivCheap() const { return IntDivIsCheap; }
101
102  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
103  /// srl/add/sra.
104  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
105
106  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
107  ///
108  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
109
110  /// getSetCCResultContents - For targets without boolean registers, this flag
111  /// returns information about the contents of the high-bits in the setcc
112  /// result register.
113  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
114
115  /// getSchedulingPreference - Return target scheduling preference.
116  SchedPreference getSchedulingPreference() const {
117    return SchedPreferenceInfo;
118  }
119
120  /// getRegClassFor - Return the register class that should be used for the
121  /// specified value type.  This may only be called on legal types.
122  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
123    assert(!MVT::isExtendedVT(VT));
124    TargetRegisterClass *RC = RegClassForVT[VT];
125    assert(RC && "This value type is not natively supported!");
126    return RC;
127  }
128
129  /// isTypeLegal - Return true if the target has native support for the
130  /// specified value type.  This means that it has a register that directly
131  /// holds it without promotions or expansions.
132  bool isTypeLegal(MVT::ValueType VT) const {
133    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
134  }
135
136  class ValueTypeActionImpl {
137    /// ValueTypeActions - This is a bitvector that contains two bits for each
138    /// value type, where the two bits correspond to the LegalizeAction enum.
139    /// This can be queried with "getTypeAction(VT)".
140    uint32_t ValueTypeActions[2];
141  public:
142    ValueTypeActionImpl() {
143      ValueTypeActions[0] = ValueTypeActions[1] = 0;
144    }
145    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
146      ValueTypeActions[0] = RHS.ValueTypeActions[0];
147      ValueTypeActions[1] = RHS.ValueTypeActions[1];
148    }
149
150    LegalizeAction getTypeAction(MVT::ValueType VT) const {
151      if (MVT::isExtendedVT(VT)) return Expand;
152      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
153    }
154    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
155      assert(!MVT::isExtendedVT(VT));
156      assert(unsigned(VT >> 4) <
157             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
158      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
159    }
160  };
161
162  const ValueTypeActionImpl &getValueTypeActions() const {
163    return ValueTypeActions;
164  }
165
166  /// getTypeAction - Return how we should legalize values of this type, either
167  /// it is already legal (return 'Legal') or we need to promote it to a larger
168  /// type (return 'Promote'), or we need to expand it into multiple registers
169  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
170  LegalizeAction getTypeAction(MVT::ValueType VT) const {
171    return ValueTypeActions.getTypeAction(VT);
172  }
173
174  /// getTypeToTransformTo - For types supported by the target, this is an
175  /// identity function.  For types that must be promoted to larger types, this
176  /// returns the larger type to promote to.  For integer types that are larger
177  /// than the largest integer register, this contains one step in the expansion
178  /// to get to the smaller register. For illegal floating point types, this
179  /// returns the integer type to transform to.
180  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
181    if (MVT::isExtendedVT(VT))
182      return MVT::getVectorType(MVT::getVectorElementType(VT),
183                                MVT::getVectorNumElements(VT) / 2);
184
185    return TransformToType[VT];
186  }
187
188  /// getTypeToExpandTo - For types supported by the target, this is an
189  /// identity function.  For types that must be expanded (i.e. integer types
190  /// that are larger than the largest integer register or illegal floating
191  /// point types), this returns the largest legal type it will be expanded to.
192  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
193    assert(!MVT::isExtendedVT(VT));
194    while (true) {
195      switch (getTypeAction(VT)) {
196      case Legal:
197        return VT;
198      case Expand:
199        VT = getTypeToTransformTo(VT);
200        break;
201      default:
202        assert(false && "Type is not legal nor is it to be expanded!");
203        return VT;
204      }
205    }
206    return VT;
207  }
208
209  /// getVectorTypeBreakdown - Vector types are broken down into some number of
210  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
211  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
212  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
213  ///
214  /// This method returns the number of registers needed, and the VT for each
215  /// register.  It also returns the VT and quantity of the intermediate values
216  /// before they are promoted/expanded.
217  ///
218  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
219                                  MVT::ValueType &IntermediateVT,
220                                  unsigned &NumIntermediates,
221                                  MVT::ValueType &RegisterVT) const;
222
223  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
224  legal_fpimm_iterator legal_fpimm_begin() const {
225    return LegalFPImmediates.begin();
226  }
227  legal_fpimm_iterator legal_fpimm_end() const {
228    return LegalFPImmediates.end();
229  }
230
231  /// isShuffleMaskLegal - Targets can use this to indicate that they only
232  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
233  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
234  /// are assumed to be legal.
235  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
236    return true;
237  }
238
239  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
240  /// used by Targets can use this to indicate if there is a suitable
241  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
242  /// pool entry.
243  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
244                                      MVT::ValueType EVT,
245                                      SelectionDAG &DAG) const {
246    return false;
247  }
248
249  /// getOperationAction - Return how this operation should be treated: either
250  /// it is legal, needs to be promoted to a larger size, needs to be
251  /// expanded to some other code sequence, or the target has a custom expander
252  /// for it.
253  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
254    if (MVT::isExtendedVT(VT)) return Expand;
255    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
256  }
257
258  /// isOperationLegal - Return true if the specified operation is legal on this
259  /// target.
260  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
261    return getOperationAction(Op, VT) == Legal ||
262           getOperationAction(Op, VT) == Custom;
263  }
264
265  /// getLoadXAction - Return how this load with extension should be treated:
266  /// either it is legal, needs to be promoted to a larger size, needs to be
267  /// expanded to some other code sequence, or the target has a custom expander
268  /// for it.
269  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
270    if (MVT::isExtendedVT(VT)) return Expand;
271    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
272  }
273
274  /// isLoadXLegal - Return true if the specified load with extension is legal
275  /// on this target.
276  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
277    return getLoadXAction(LType, VT) == Legal ||
278           getLoadXAction(LType, VT) == Custom;
279  }
280
281  /// getStoreXAction - Return how this store with truncation should be treated:
282  /// either it is legal, needs to be promoted to a larger size, needs to be
283  /// expanded to some other code sequence, or the target has a custom expander
284  /// for it.
285  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
286    if (MVT::isExtendedVT(VT)) return Expand;
287    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
288  }
289
290  /// isStoreXLegal - Return true if the specified store with truncation is
291  /// legal on this target.
292  bool isStoreXLegal(MVT::ValueType VT) const {
293    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
294  }
295
296  /// getIndexedLoadAction - Return how the indexed load should be treated:
297  /// either it is legal, needs to be promoted to a larger size, needs to be
298  /// expanded to some other code sequence, or the target has a custom expander
299  /// for it.
300  LegalizeAction
301  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
302    if (MVT::isExtendedVT(VT)) return Expand;
303    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
304  }
305
306  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
307  /// on this target.
308  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
309    return getIndexedLoadAction(IdxMode, VT) == Legal ||
310           getIndexedLoadAction(IdxMode, VT) == Custom;
311  }
312
313  /// getIndexedStoreAction - Return how the indexed store should be treated:
314  /// either it is legal, needs to be promoted to a larger size, needs to be
315  /// expanded to some other code sequence, or the target has a custom expander
316  /// for it.
317  LegalizeAction
318  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
319    if (MVT::isExtendedVT(VT)) return Expand;
320    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
321  }
322
323  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
324  /// on this target.
325  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
326    return getIndexedStoreAction(IdxMode, VT) == Legal ||
327           getIndexedStoreAction(IdxMode, VT) == Custom;
328  }
329
330  /// getTypeToPromoteTo - If the action for this operation is to promote, this
331  /// method returns the ValueType to promote to.
332  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
333    assert(getOperationAction(Op, VT) == Promote &&
334           "This operation isn't promoted!");
335
336    // See if this has an explicit type specified.
337    std::map<std::pair<unsigned, MVT::ValueType>,
338             MVT::ValueType>::const_iterator PTTI =
339      PromoteToType.find(std::make_pair(Op, VT));
340    if (PTTI != PromoteToType.end()) return PTTI->second;
341
342    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
343           "Cannot autopromote this type, add it with AddPromotedToType.");
344
345    MVT::ValueType NVT = VT;
346    do {
347      NVT = (MVT::ValueType)(NVT+1);
348      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
349             "Didn't find type to promote to!");
350    } while (!isTypeLegal(NVT) ||
351              getOperationAction(Op, NVT) == Promote);
352    return NVT;
353  }
354
355  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
356  /// This is fixed by the LLVM operations except for the pointer size.  If
357  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
358  /// counterpart (e.g. structs), otherwise it will assert.
359  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
360    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
361    return VT == MVT::iPTR ? PointerTy : VT;
362  }
363
364  /// getRegisterType - Return the type of registers that this ValueType will
365  /// eventually require.
366  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
367    if (!MVT::isExtendedVT(VT))
368      return RegisterTypeForVT[VT];
369
370    MVT::ValueType VT1, RegisterVT;
371    unsigned NumIntermediates;
372    (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
373    return RegisterVT;
374  }
375
376  /// getNumRegisters - Return the number of registers that this ValueType will
377  /// eventually require.  This is one for any types promoted to live in larger
378  /// registers, but may be more than one for types (like i64) that are split
379  /// into pieces.
380  unsigned getNumRegisters(MVT::ValueType VT) const {
381    if (!MVT::isExtendedVT(VT))
382      return NumRegistersForVT[VT];
383
384    MVT::ValueType VT1, VT2;
385    unsigned NumIntermediates;
386    return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
387  }
388
389  /// hasTargetDAGCombine - If true, the target has custom DAG combine
390  /// transformations that it can perform for the specified node.
391  bool hasTargetDAGCombine(ISD::NodeType NT) const {
392    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
393  }
394
395  /// This function returns the maximum number of store operations permitted
396  /// to replace a call to llvm.memset. The value is set by the target at the
397  /// performance threshold for such a replacement.
398  /// @brief Get maximum # of store operations permitted for llvm.memset
399  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
400
401  /// This function returns the maximum number of store operations permitted
402  /// to replace a call to llvm.memcpy. The value is set by the target at the
403  /// performance threshold for such a replacement.
404  /// @brief Get maximum # of store operations permitted for llvm.memcpy
405  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
406
407  /// This function returns the maximum number of store operations permitted
408  /// to replace a call to llvm.memmove. The value is set by the target at the
409  /// performance threshold for such a replacement.
410  /// @brief Get maximum # of store operations permitted for llvm.memmove
411  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
412
413  /// This function returns true if the target allows unaligned memory accesses.
414  /// This is used, for example, in situations where an array copy/move/set is
415  /// converted to a sequence of store operations. It's use helps to ensure that
416  /// such replacements don't generate code that causes an alignment error
417  /// (trap) on the target machine.
418  /// @brief Determine if the target supports unaligned memory accesses.
419  bool allowsUnalignedMemoryAccesses() const {
420    return allowUnalignedMemoryAccesses;
421  }
422
423  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
424  /// to implement llvm.setjmp.
425  bool usesUnderscoreSetJmp() const {
426    return UseUnderscoreSetJmp;
427  }
428
429  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
430  /// to implement llvm.longjmp.
431  bool usesUnderscoreLongJmp() const {
432    return UseUnderscoreLongJmp;
433  }
434
435  /// getStackPointerRegisterToSaveRestore - If a physical register, this
436  /// specifies the register that llvm.savestack/llvm.restorestack should save
437  /// and restore.
438  unsigned getStackPointerRegisterToSaveRestore() const {
439    return StackPointerRegisterToSaveRestore;
440  }
441
442  /// getExceptionAddressRegister - If a physical register, this returns
443  /// the register that receives the exception address on entry to a landing
444  /// pad.
445  unsigned getExceptionAddressRegister() const {
446    return ExceptionPointerRegister;
447  }
448
449  /// getExceptionSelectorRegister - If a physical register, this returns
450  /// the register that receives the exception typeid on entry to a landing
451  /// pad.
452  unsigned getExceptionSelectorRegister() const {
453    return ExceptionSelectorRegister;
454  }
455
456  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
457  /// set, the default is 200)
458  unsigned getJumpBufSize() const {
459    return JumpBufSize;
460  }
461
462  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
463  /// (if never set, the default is 0)
464  unsigned getJumpBufAlignment() const {
465    return JumpBufAlignment;
466  }
467
468  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
469  /// limit. Any block whose size is greater should not be predicated.
470  virtual unsigned getIfCvtBlockSizeLimit() const {
471    return IfCvtBlockSizeLimit;
472  }
473
474  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
475  /// block to be considered for duplication. Any block whose size is greater
476  /// should not be duplicated to facilitate its predication.
477  virtual unsigned getIfCvtDupBlockSizeLimit() const {
478    return IfCvtDupBlockSizeLimit;
479  }
480
481  /// getPreIndexedAddressParts - returns true by value, base pointer and
482  /// offset pointer and addressing mode by reference if the node's address
483  /// can be legally represented as pre-indexed load / store address.
484  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
485                                         SDOperand &Offset,
486                                         ISD::MemIndexedMode &AM,
487                                         SelectionDAG &DAG) {
488    return false;
489  }
490
491  /// getPostIndexedAddressParts - returns true by value, base pointer and
492  /// offset pointer and addressing mode by reference if this node can be
493  /// combined with a load / store to form a post-indexed load / store.
494  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
495                                          SDOperand &Base, SDOperand &Offset,
496                                          ISD::MemIndexedMode &AM,
497                                          SelectionDAG &DAG) {
498    return false;
499  }
500
501  //===--------------------------------------------------------------------===//
502  // TargetLowering Optimization Methods
503  //
504
505  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
506  /// SDOperands for returning information from TargetLowering to its clients
507  /// that want to combine
508  struct TargetLoweringOpt {
509    SelectionDAG &DAG;
510    SDOperand Old;
511    SDOperand New;
512
513    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
514
515    bool CombineTo(SDOperand O, SDOperand N) {
516      Old = O;
517      New = N;
518      return true;
519    }
520
521    /// ShrinkDemandedConstant - Check to see if the specified operand of the
522    /// specified instruction is a constant integer.  If so, check to see if there
523    /// are any bits set in the constant that are not demanded.  If so, shrink the
524    /// constant and return true.
525    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
526  };
527
528  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
529  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
530  /// use this information to simplify Op, create a new simplified DAG node and
531  /// return true, returning the original and new nodes in Old and New.
532  /// Otherwise, analyze the expression and return a mask of KnownOne and
533  /// KnownZero bits for the expression (used to simplify the caller).
534  /// The KnownZero/One bits may only be accurate for those bits in the
535  /// DemandedMask.
536  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
537                            uint64_t &KnownZero, uint64_t &KnownOne,
538                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
539
540  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
541  /// Mask are known to be either zero or one and return them in the
542  /// KnownZero/KnownOne bitsets.
543  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
544                                              uint64_t Mask,
545                                              uint64_t &KnownZero,
546                                              uint64_t &KnownOne,
547                                              const SelectionDAG &DAG,
548                                              unsigned Depth = 0) const;
549
550  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
551  /// targets that want to expose additional information about sign bits to the
552  /// DAG Combiner.
553  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
554                                                   unsigned Depth = 0) const;
555
556  struct DAGCombinerInfo {
557    void *DC;  // The DAG Combiner object.
558    bool BeforeLegalize;
559    bool CalledByLegalizer;
560  public:
561    SelectionDAG &DAG;
562
563    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
564      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
565
566    bool isBeforeLegalize() const { return BeforeLegalize; }
567    bool isCalledByLegalizer() const { return CalledByLegalizer; }
568
569    void AddToWorklist(SDNode *N);
570    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
571    SDOperand CombineTo(SDNode *N, SDOperand Res);
572    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
573  };
574
575  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
576  /// and cc. If it is unable to simplify it, return a null SDOperand.
577  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
578                          ISD::CondCode Cond, bool foldBooleans,
579                          DAGCombinerInfo &DCI) const;
580
581  /// PerformDAGCombine - This method will be invoked for all target nodes and
582  /// for any target-independent nodes that the target has registered with
583  /// invoke it for.
584  ///
585  /// The semantics are as follows:
586  /// Return Value:
587  ///   SDOperand.Val == 0   - No change was made
588  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
589  ///   otherwise            - N should be replaced by the returned Operand.
590  ///
591  /// In addition, methods provided by DAGCombinerInfo may be used to perform
592  /// more complex transformations.
593  ///
594  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
595
596  //===--------------------------------------------------------------------===//
597  // TargetLowering Configuration Methods - These methods should be invoked by
598  // the derived class constructor to configure this object for the target.
599  //
600
601protected:
602  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
603  /// GOT for PC-relative code.
604  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
605
606  /// setShiftAmountType - Describe the type that should be used for shift
607  /// amounts.  This type defaults to the pointer type.
608  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
609
610  /// setSetCCResultType - Describe the type that shoudl be used as the result
611  /// of a setcc operation.  This defaults to the pointer type.
612  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
613
614  /// setSetCCResultContents - Specify how the target extends the result of a
615  /// setcc operation in a register.
616  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
617
618  /// setSchedulingPreference - Specify the target scheduling preference.
619  void setSchedulingPreference(SchedPreference Pref) {
620    SchedPreferenceInfo = Pref;
621  }
622
623  /// setShiftAmountFlavor - Describe how the target handles out of range shift
624  /// amounts.
625  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
626    ShiftAmtHandling = OORSA;
627  }
628
629  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
630  /// use _setjmp to implement llvm.setjmp or the non _ version.
631  /// Defaults to false.
632  void setUseUnderscoreSetJmp(bool Val) {
633    UseUnderscoreSetJmp = Val;
634  }
635
636  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
637  /// use _longjmp to implement llvm.longjmp or the non _ version.
638  /// Defaults to false.
639  void setUseUnderscoreLongJmp(bool Val) {
640    UseUnderscoreLongJmp = Val;
641  }
642
643  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
644  /// specifies the register that llvm.savestack/llvm.restorestack should save
645  /// and restore.
646  void setStackPointerRegisterToSaveRestore(unsigned R) {
647    StackPointerRegisterToSaveRestore = R;
648  }
649
650  /// setExceptionPointerRegister - If set to a physical register, this sets
651  /// the register that receives the exception address on entry to a landing
652  /// pad.
653  void setExceptionPointerRegister(unsigned R) {
654    ExceptionPointerRegister = R;
655  }
656
657  /// setExceptionSelectorRegister - If set to a physical register, this sets
658  /// the register that receives the exception typeid on entry to a landing
659  /// pad.
660  void setExceptionSelectorRegister(unsigned R) {
661    ExceptionSelectorRegister = R;
662  }
663
664  /// SelectIsExpensive - Tells the code generator not to expand operations
665  /// into sequences that use the select operations if possible.
666  void setSelectIsExpensive() { SelectIsExpensive = true; }
667
668  /// setIntDivIsCheap - Tells the code generator that integer divide is
669  /// expensive, and if possible, should be replaced by an alternate sequence
670  /// of instructions not containing an integer divide.
671  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
672
673  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
674  /// srl/add/sra for a signed divide by power of two, and let the target handle
675  /// it.
676  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
677
678  /// addRegisterClass - Add the specified register class as an available
679  /// regclass for the specified value type.  This indicates the selector can
680  /// handle values of that class natively.
681  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
682    assert(!MVT::isExtendedVT(VT));
683    AvailableRegClasses.push_back(std::make_pair(VT, RC));
684    RegClassForVT[VT] = RC;
685  }
686
687  /// computeRegisterProperties - Once all of the register classes are added,
688  /// this allows us to compute derived properties we expose.
689  void computeRegisterProperties();
690
691  /// setOperationAction - Indicate that the specified operation does not work
692  /// with the specified type and indicate what to do about it.
693  void setOperationAction(unsigned Op, MVT::ValueType VT,
694                          LegalizeAction Action) {
695    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
696           "Table isn't big enough!");
697    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
698    OpActions[Op] |= (uint64_t)Action << VT*2;
699  }
700
701  /// setLoadXAction - Indicate that the specified load with extension does not
702  /// work with the with specified type and indicate what to do about it.
703  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
704                      LegalizeAction Action) {
705    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
706           "Table isn't big enough!");
707    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
708    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
709  }
710
711  /// setStoreXAction - Indicate that the specified store with truncation does
712  /// not work with the with specified type and indicate what to do about it.
713  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
714    assert(VT < 32 && "Table isn't big enough!");
715    StoreXActions &= ~(uint64_t(3UL) << VT*2);
716    StoreXActions |= (uint64_t)Action << VT*2;
717  }
718
719  /// setIndexedLoadAction - Indicate that the specified indexed load does or
720  /// does not work with the with specified type and indicate what to do abort
721  /// it. NOTE: All indexed mode loads are initialized to Expand in
722  /// TargetLowering.cpp
723  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
724                            LegalizeAction Action) {
725    assert(VT < 32 && IdxMode <
726           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
727           "Table isn't big enough!");
728    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
729    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
730  }
731
732  /// setIndexedStoreAction - Indicate that the specified indexed store does or
733  /// does not work with the with specified type and indicate what to do about
734  /// it. NOTE: All indexed mode stores are initialized to Expand in
735  /// TargetLowering.cpp
736  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
737                             LegalizeAction Action) {
738    assert(VT < 32 && IdxMode <
739           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
740           "Table isn't big enough!");
741    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
742    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
743  }
744
745  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
746  /// promotion code defaults to trying a larger integer/fp until it can find
747  /// one that works.  If that default is insufficient, this method can be used
748  /// by the target to override the default.
749  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
750                         MVT::ValueType DestVT) {
751    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
752  }
753
754  /// addLegalFPImmediate - Indicate that this target can instruction select
755  /// the specified FP immediate natively.
756  void addLegalFPImmediate(double Imm) {
757    LegalFPImmediates.push_back(Imm);
758  }
759
760  /// setTargetDAGCombine - Targets should invoke this method for each target
761  /// independent node that they want to provide a custom DAG combiner for by
762  /// implementing the PerformDAGCombine virtual method.
763  void setTargetDAGCombine(ISD::NodeType NT) {
764    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
765  }
766
767  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
768  /// bytes); default is 200
769  void setJumpBufSize(unsigned Size) {
770    JumpBufSize = Size;
771  }
772
773  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
774  /// alignment (in bytes); default is 0
775  void setJumpBufAlignment(unsigned Align) {
776    JumpBufAlignment = Align;
777  }
778
779  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
780  /// limit (in number of instructions); default is 2.
781  void setIfCvtBlockSizeLimit(unsigned Limit) {
782    IfCvtBlockSizeLimit = Limit;
783  }
784
785  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
786  /// of instructions) to be considered for code duplication during
787  /// if-conversion; default is 2.
788  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
789    IfCvtDupBlockSizeLimit = Limit;
790  }
791
792public:
793
794  //===--------------------------------------------------------------------===//
795  // Lowering methods - These methods must be implemented by targets so that
796  // the SelectionDAGLowering code knows how to lower these.
797  //
798
799  /// LowerArguments - This hook must be implemented to indicate how we should
800  /// lower the arguments for the specified function, into the specified DAG.
801  virtual std::vector<SDOperand>
802  LowerArguments(Function &F, SelectionDAG &DAG);
803
804  /// LowerCallTo - This hook lowers an abstract call to a function into an
805  /// actual call.  This returns a pair of operands.  The first element is the
806  /// return value for the function (if RetTy is not VoidTy).  The second
807  /// element is the outgoing token chain.
808  struct ArgListEntry {
809    SDOperand Node;
810    const Type* Ty;
811    bool isSExt;
812    bool isZExt;
813    bool isInReg;
814    bool isSRet;
815    bool isNest;
816
817    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
818      isSRet(false), isNest(false) { };
819  };
820  typedef std::vector<ArgListEntry> ArgListTy;
821  virtual std::pair<SDOperand, SDOperand>
822  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
823              bool isVarArg, unsigned CallingConv, bool isTailCall,
824              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
825
826  /// LowerOperation - This callback is invoked for operations that are
827  /// unsupported by the target, which are registered to use 'custom' lowering,
828  /// and whose defined values are all legal.
829  /// If the target has no operations that require custom lowering, it need not
830  /// implement this.  The default implementation of this aborts.
831  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
832
833  /// CustomPromoteOperation - This callback is invoked for operations that are
834  /// unsupported by the target, are registered to use 'custom' lowering, and
835  /// whose type needs to be promoted.
836  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
837
838  /// getTargetNodeName() - This method returns the name of a target specific
839  /// DAG node.
840  virtual const char *getTargetNodeName(unsigned Opcode) const;
841
842  //===--------------------------------------------------------------------===//
843  // Inline Asm Support hooks
844  //
845
846  enum ConstraintType {
847    C_Register,            // Constraint represents a single register.
848    C_RegisterClass,       // Constraint represents one or more registers.
849    C_Memory,              // Memory constraint.
850    C_Other,               // Something else.
851    C_Unknown              // Unsupported constraint.
852  };
853
854  /// getConstraintType - Given a constraint, return the type of constraint it
855  /// is for this target.
856  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
857
858
859  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
860  /// return a list of registers that can be used to satisfy the constraint.
861  /// This should only be used for C_RegisterClass constraints.
862  virtual std::vector<unsigned>
863  getRegClassForInlineAsmConstraint(const std::string &Constraint,
864                                    MVT::ValueType VT) const;
865
866  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
867  /// {edx}), return the register number and the register class for the
868  /// register.
869  ///
870  /// Given a register class constraint, like 'r', if this corresponds directly
871  /// to an LLVM register class, return a register of 0 and the register class
872  /// pointer.
873  ///
874  /// This should only be used for C_Register constraints.  On error,
875  /// this returns a register number of 0 and a null register class pointer..
876  virtual std::pair<unsigned, const TargetRegisterClass*>
877    getRegForInlineAsmConstraint(const std::string &Constraint,
878                                 MVT::ValueType VT) const;
879
880
881  /// isOperandValidForConstraint - Return the specified operand (possibly
882  /// modified) if the specified SDOperand is valid for the specified target
883  /// constraint letter, otherwise return null.
884  virtual SDOperand
885    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
886                                SelectionDAG &DAG);
887
888  //===--------------------------------------------------------------------===//
889  // Scheduler hooks
890  //
891
892  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
893  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
894  // instructions are special in various ways, which require special support to
895  // insert.  The specified MachineInstr is created but not inserted into any
896  // basic blocks, and the scheduler passes ownership of it to this method.
897  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
898                                                     MachineBasicBlock *MBB);
899
900  //===--------------------------------------------------------------------===//
901  // Addressing mode description hooks (used by LSR etc).
902  //
903
904  /// AddrMode - This represents an addressing mode of:
905  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
906  /// If BaseGV is null,  there is no BaseGV.
907  /// If BaseOffs is zero, there is no base offset.
908  /// If HasBaseReg is false, there is no base register.
909  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
910  /// no scale.
911  ///
912  struct AddrMode {
913    GlobalValue *BaseGV;
914    int64_t      BaseOffs;
915    bool         HasBaseReg;
916    int64_t      Scale;
917    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
918  };
919
920  /// isLegalAddressingMode - Return true if the addressing mode represented by
921  /// AM is legal for this target, for a load/store of the specified type.
922  /// TODO: Handle pre/postinc as well.
923  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
924
925  //===--------------------------------------------------------------------===//
926  // Div utility functions
927  //
928  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
929                      std::vector<SDNode*>* Created) const;
930  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
931                      std::vector<SDNode*>* Created) const;
932
933
934  //===--------------------------------------------------------------------===//
935  // Runtime Library hooks
936  //
937
938  /// setLibcallName - Rename the default libcall routine name for the specified
939  /// libcall.
940  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
941    LibcallRoutineNames[Call] = Name;
942  }
943
944  /// getLibcallName - Get the libcall routine name for the specified libcall.
945  ///
946  const char *getLibcallName(RTLIB::Libcall Call) const {
947    return LibcallRoutineNames[Call];
948  }
949
950  /// setCmpLibcallCC - Override the default CondCode to be used to test the
951  /// result of the comparison libcall against zero.
952  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
953    CmpLibcallCCs[Call] = CC;
954  }
955
956  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
957  /// the comparison libcall against zero.
958  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
959    return CmpLibcallCCs[Call];
960  }
961
962private:
963  TargetMachine &TM;
964  const TargetData *TD;
965
966  /// IsLittleEndian - True if this is a little endian target.
967  ///
968  bool IsLittleEndian;
969
970  /// PointerTy - The type to use for pointers, usually i32 or i64.
971  ///
972  MVT::ValueType PointerTy;
973
974  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
975  ///
976  bool UsesGlobalOffsetTable;
977
978  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
979  /// PointerTy is.
980  MVT::ValueType ShiftAmountTy;
981
982  OutOfRangeShiftAmount ShiftAmtHandling;
983
984  /// SelectIsExpensive - Tells the code generator not to expand operations
985  /// into sequences that use the select operations if possible.
986  bool SelectIsExpensive;
987
988  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
989  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
990  /// a real cost model is in place.  If we ever optimize for size, this will be
991  /// set to true unconditionally.
992  bool IntDivIsCheap;
993
994  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
995  /// srl/add/sra for a signed divide by power of two, and let the target handle
996  /// it.
997  bool Pow2DivIsCheap;
998
999  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1000  /// PointerTy.
1001  MVT::ValueType SetCCResultTy;
1002
1003  /// SetCCResultContents - Information about the contents of the high-bits in
1004  /// the result of a setcc comparison operation.
1005  SetCCResultValue SetCCResultContents;
1006
1007  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1008  /// total cycles or lowest register usage.
1009  SchedPreference SchedPreferenceInfo;
1010
1011  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1012  /// llvm.setjmp.  Defaults to false.
1013  bool UseUnderscoreSetJmp;
1014
1015  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1016  /// llvm.longjmp.  Defaults to false.
1017  bool UseUnderscoreLongJmp;
1018
1019  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1020  unsigned JumpBufSize;
1021
1022  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1023  /// buffers
1024  unsigned JumpBufAlignment;
1025
1026  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1027  /// if-converted.
1028  unsigned IfCvtBlockSizeLimit;
1029
1030  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1031  /// duplicated during if-conversion.
1032  unsigned IfCvtDupBlockSizeLimit;
1033
1034  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1035  /// specifies the register that llvm.savestack/llvm.restorestack should save
1036  /// and restore.
1037  unsigned StackPointerRegisterToSaveRestore;
1038
1039  /// ExceptionPointerRegister - If set to a physical register, this specifies
1040  /// the register that receives the exception address on entry to a landing
1041  /// pad.
1042  unsigned ExceptionPointerRegister;
1043
1044  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1045  /// the register that receives the exception typeid on entry to a landing
1046  /// pad.
1047  unsigned ExceptionSelectorRegister;
1048
1049  /// RegClassForVT - This indicates the default register class to use for
1050  /// each ValueType the target supports natively.
1051  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1052  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1053  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1054
1055  /// TransformToType - For any value types we are promoting or expanding, this
1056  /// contains the value type that we are changing to.  For Expanded types, this
1057  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1058  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1059  /// by the system, this holds the same type (e.g. i32 -> i32).
1060  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1061
1062  /// OpActions - For each operation and each value type, keep a LegalizeAction
1063  /// that indicates how instruction selection should deal with the operation.
1064  /// Most operations are Legal (aka, supported natively by the target), but
1065  /// operations that are not should be described.  Note that operations on
1066  /// non-legal value types are not described here.
1067  uint64_t OpActions[156];
1068
1069  /// LoadXActions - For each load of load extension type and each value type,
1070  /// keep a LegalizeAction that indicates how instruction selection should deal
1071  /// with the load.
1072  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1073
1074  /// StoreXActions - For each store with truncation of each value type, keep a
1075  /// LegalizeAction that indicates how instruction selection should deal with
1076  /// the store.
1077  uint64_t StoreXActions;
1078
1079  /// IndexedModeActions - For each indexed mode and each value type, keep a
1080  /// pair of LegalizeAction that indicates how instruction selection should
1081  /// deal with the load / store.
1082  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1083
1084  ValueTypeActionImpl ValueTypeActions;
1085
1086  std::vector<double> LegalFPImmediates;
1087
1088  std::vector<std::pair<MVT::ValueType,
1089                        TargetRegisterClass*> > AvailableRegClasses;
1090
1091  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1092  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1093  /// which sets a bit in this array.
1094  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1095
1096  /// PromoteToType - For operations that must be promoted to a specific type,
1097  /// this holds the destination type.  This map should be sparse, so don't hold
1098  /// it as an array.
1099  ///
1100  /// Targets add entries to this map with AddPromotedToType(..), clients access
1101  /// this with getTypeToPromoteTo(..).
1102  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1103
1104  /// LibcallRoutineNames - Stores the name each libcall.
1105  ///
1106  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1107
1108  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1109  /// of each of the comparison libcall against zero.
1110  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1111
1112protected:
1113  /// When lowering %llvm.memset this field specifies the maximum number of
1114  /// store operations that may be substituted for the call to memset. Targets
1115  /// must set this value based on the cost threshold for that target. Targets
1116  /// should assume that the memset will be done using as many of the largest
1117  /// store operations first, followed by smaller ones, if necessary, per
1118  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1119  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1120  /// store.  This only applies to setting a constant array of a constant size.
1121  /// @brief Specify maximum number of store instructions per memset call.
1122  unsigned maxStoresPerMemset;
1123
1124  /// When lowering %llvm.memcpy this field specifies the maximum number of
1125  /// store operations that may be substituted for a call to memcpy. Targets
1126  /// must set this value based on the cost threshold for that target. Targets
1127  /// should assume that the memcpy will be done using as many of the largest
1128  /// store operations first, followed by smaller ones, if necessary, per
1129  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1130  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1131  /// and one 1-byte store. This only applies to copying a constant array of
1132  /// constant size.
1133  /// @brief Specify maximum bytes of store instructions per memcpy call.
1134  unsigned maxStoresPerMemcpy;
1135
1136  /// When lowering %llvm.memmove this field specifies the maximum number of
1137  /// store instructions that may be substituted for a call to memmove. Targets
1138  /// must set this value based on the cost threshold for that target. Targets
1139  /// should assume that the memmove will be done using as many of the largest
1140  /// store operations first, followed by smaller ones, if necessary, per
1141  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1142  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1143  /// applies to copying a constant array of constant size.
1144  /// @brief Specify maximum bytes of store instructions per memmove call.
1145  unsigned maxStoresPerMemmove;
1146
1147  /// This field specifies whether the target machine permits unaligned memory
1148  /// accesses.  This is used, for example, to determine the size of store
1149  /// operations when copying small arrays and other similar tasks.
1150  /// @brief Indicate whether the target permits unaligned memory accesses.
1151  bool allowUnalignedMemoryAccesses;
1152};
1153} // end llvm namespace
1154
1155#endif
1156