TargetLowering.h revision 37f32ee7ffe77d7c2bc1b185802e98979612f041
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetSubtarget;
59  class TargetLoweringObjectFile;
60  class Value;
61
62  // FIXME: should this be here?
63  namespace TLSModel {
64    enum Model {
65      GeneralDynamic,
66      LocalDynamic,
67      InitialExec,
68      LocalExec
69    };
70  }
71  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
72
73
74//===----------------------------------------------------------------------===//
75/// TargetLowering - This class defines information used to lower LLVM code to
76/// legal SelectionDAG operators that the target instruction selector can accept
77/// natively.
78///
79/// This class also defines callbacks that targets must implement to lower
80/// target-specific constructs to SelectionDAG operators.
81///
82class TargetLowering {
83  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
84  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
85public:
86  /// LegalizeAction - This enum indicates whether operations are valid for a
87  /// target, and if not, what action should be used to make them valid.
88  enum LegalizeAction {
89    Legal,      // The target natively supports this operation.
90    Promote,    // This operation should be executed in a larger type.
91    Expand,     // Try to expand this to other ops, otherwise use a libcall.
92    Custom      // Use the LowerOperation hook to implement custom lowering.
93  };
94
95  enum BooleanContent { // How the target represents true/false values.
96    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
97    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
98    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
99  };
100
101  enum SchedPreference {
102    SchedulingForLatency,          // Scheduling for shortest total latency.
103    SchedulingForRegPressure       // Scheduling for lowest register pressure.
104  };
105
106  /// NOTE: The constructor takes ownership of TLOF.
107  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
108  virtual ~TargetLowering();
109
110  TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
113
114  bool isBigEndian() const { return !IsLittleEndian; }
115  bool isLittleEndian() const { return IsLittleEndian; }
116  MVT getPointerTy() const { return PointerTy; }
117  MVT getShiftAmountTy() const { return ShiftAmountTy; }
118
119  /// isSelectExpensive - Return true if the select operation is expensive for
120  /// this target.
121  bool isSelectExpensive() const { return SelectIsExpensive; }
122
123  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
124  /// a sequence of several shifts, adds, and multiplies for this target.
125  bool isIntDivCheap() const { return IntDivIsCheap; }
126
127  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
128  /// srl/add/sra.
129  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
130
131  /// getSetCCResultType - Return the ValueType of the result of SETCC
132  /// operations.  Also used to obtain the target's preferred type for
133  /// the condition operand of SELECT and BRCOND nodes.  In the case of
134  /// BRCOND the argument passed is MVT::Other since there are no other
135  /// operands to get a type hint from.
136  virtual
137  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
138
139  /// getCmpLibcallReturnType - Return the ValueType for comparison
140  /// libcalls. Comparions libcalls include floating point comparion calls,
141  /// and Ordered/Unordered check calls on floating point numbers.
142  virtual
143  MVT::SimpleValueType getCmpLibcallReturnType() const;
144
145  /// getBooleanContents - For targets without i1 registers, this gives the
146  /// nature of the high-bits of boolean values held in types wider than i1.
147  /// "Boolean values" are special true/false values produced by nodes like
148  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
149  /// Not to be confused with general values promoted from i1.
150  BooleanContent getBooleanContents() const { return BooleanContents;}
151
152  /// getSchedulingPreference - Return target scheduling preference.
153  SchedPreference getSchedulingPreference() const {
154    return SchedPreferenceInfo;
155  }
156
157  /// getRegClassFor - Return the register class that should be used for the
158  /// specified value type.  This may only be called on legal types.
159  TargetRegisterClass *getRegClassFor(EVT VT) const {
160    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
161    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
162    assert(RC && "This value type is not natively supported!");
163    return RC;
164  }
165
166  /// isTypeLegal - Return true if the target has native support for the
167  /// specified value type.  This means that it has a register that directly
168  /// holds it without promotions or expansions.
169  bool isTypeLegal(EVT VT) const {
170    assert(!VT.isSimple() ||
171           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
172    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
173  }
174
175  class ValueTypeActionImpl {
176    /// ValueTypeActions - This is a bitvector that contains two bits for each
177    /// value type, where the two bits correspond to the LegalizeAction enum.
178    /// This can be queried with "getTypeAction(VT)".
179    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
180    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
181  public:
182    ValueTypeActionImpl() {
183      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
184    }
185    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
186      if (VT.isExtended()) {
187        if (VT.isVector()) {
188          return VT.isPow2VectorType() ? Expand : Promote;
189        }
190        if (VT.isInteger())
191          // First promote to a power-of-two size, then expand if necessary.
192          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
193        assert(0 && "Unsupported extended type!");
194        return Legal;
195      }
196      unsigned I = VT.getSimpleVT().SimpleTy;
197      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
198      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
199    }
200    void setTypeAction(EVT VT, LegalizeAction Action) {
201      unsigned I = VT.getSimpleVT().SimpleTy;
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
204    }
205  };
206
207  const ValueTypeActionImpl &getValueTypeActions() const {
208    return ValueTypeActions;
209  }
210
211  /// getTypeAction - Return how we should legalize values of this type, either
212  /// it is already legal (return 'Legal') or we need to promote it to a larger
213  /// type (return 'Promote'), or we need to expand it into multiple registers
214  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
215  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
216    return ValueTypeActions.getTypeAction(Context, VT);
217  }
218
219  /// getTypeToTransformTo - For types supported by the target, this is an
220  /// identity function.  For types that must be promoted to larger types, this
221  /// returns the larger type to promote to.  For integer types that are larger
222  /// than the largest integer register, this contains one step in the expansion
223  /// to get to the smaller register. For illegal floating point types, this
224  /// returns the integer type to transform to.
225  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
226    if (VT.isSimple()) {
227      assert((unsigned)VT.getSimpleVT().SimpleTy <
228             array_lengthof(TransformToType));
229      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
230      assert(getTypeAction(Context, NVT) != Promote &&
231             "Promote may not follow Expand or Promote");
232      return NVT;
233    }
234
235    if (VT.isVector()) {
236      EVT NVT = VT.getPow2VectorType(Context);
237      if (NVT == VT) {
238        // Vector length is a power of 2 - split to half the size.
239        unsigned NumElts = VT.getVectorNumElements();
240        EVT EltVT = VT.getVectorElementType();
241        return (NumElts == 1) ?
242          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
243      }
244      // Promote to a power of two size, avoiding multi-step promotion.
245      return getTypeAction(Context, NVT) == Promote ?
246        getTypeToTransformTo(Context, NVT) : NVT;
247    } else if (VT.isInteger()) {
248      EVT NVT = VT.getRoundIntegerType(Context);
249      if (NVT == VT)
250        // Size is a power of two - expand to half the size.
251        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
252      else
253        // Promote to a power of two size, avoiding multi-step promotion.
254        return getTypeAction(Context, NVT) == Promote ?
255          getTypeToTransformTo(Context, NVT) : NVT;
256    }
257    assert(0 && "Unsupported extended type!");
258    return MVT(MVT::Other); // Not reached
259  }
260
261  /// getTypeToExpandTo - For types supported by the target, this is an
262  /// identity function.  For types that must be expanded (i.e. integer types
263  /// that are larger than the largest integer register or illegal floating
264  /// point types), this returns the largest legal type it will be expanded to.
265  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
266    assert(!VT.isVector());
267    while (true) {
268      switch (getTypeAction(Context, VT)) {
269      case Legal:
270        return VT;
271      case Expand:
272        VT = getTypeToTransformTo(Context, VT);
273        break;
274      default:
275        assert(false && "Type is not legal nor is it to be expanded!");
276        return VT;
277      }
278    }
279    return VT;
280  }
281
282  /// getVectorTypeBreakdown - Vector types are broken down into some number of
283  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
284  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
285  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
286  ///
287  /// This method returns the number of registers needed, and the VT for each
288  /// register.  It also returns the VT and quantity of the intermediate values
289  /// before they are promoted/expanded.
290  ///
291  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
292                                  EVT &IntermediateVT,
293                                  unsigned &NumIntermediates,
294                                  EVT &RegisterVT) const;
295
296  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
297  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
298  /// this is the case, it returns true and store the intrinsic
299  /// information into the IntrinsicInfo that was passed to the function.
300  struct IntrinsicInfo {
301    unsigned     opc;         // target opcode
302    EVT          memVT;       // memory VT
303    const Value* ptrVal;      // value representing memory location
304    int          offset;      // offset off of ptrVal
305    unsigned     align;       // alignment
306    bool         vol;         // is volatile?
307    bool         readMem;     // reads memory?
308    bool         writeMem;    // writes memory?
309  };
310
311  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
312                                  const CallInst &I, unsigned Intrinsic) {
313    return false;
314  }
315
316  /// isFPImmLegal - Returns true if the target can instruction select the
317  /// specified FP immediate natively. If false, the legalizer will materialize
318  /// the FP immediate as a load from a constant pool.
319  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
320    return false;
321  }
322
323  /// isShuffleMaskLegal - Targets can use this to indicate that they only
324  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
325  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
326  /// are assumed to be legal.
327  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
328                                  EVT VT) const {
329    return true;
330  }
331
332  /// canOpTrap - Returns true if the operation can trap for the value type.
333  /// VT must be a legal type. By default, we optimistically assume most
334  /// operations don't trap except for divide and remainder.
335  virtual bool canOpTrap(unsigned Op, EVT VT) const;
336
337  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
338  /// used by Targets can use this to indicate if there is a suitable
339  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
340  /// pool entry.
341  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
342                                      EVT VT) const {
343    return false;
344  }
345
346  /// getOperationAction - Return how this operation should be treated: either
347  /// it is legal, needs to be promoted to a larger size, needs to be
348  /// expanded to some other code sequence, or the target has a custom expander
349  /// for it.
350  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
351    if (VT.isExtended()) return Expand;
352    assert(Op < array_lengthof(OpActions[0]) &&
353           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
354           "Table isn't big enough!");
355    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
356    unsigned J = I & 31;
357    I = I >> 5;
358    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
359  }
360
361  /// isOperationLegalOrCustom - Return true if the specified operation is
362  /// legal on this target or can be made legal with custom lowering. This
363  /// is used to help guide high-level lowering decisions.
364  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
365    return (VT == MVT::Other || isTypeLegal(VT)) &&
366      (getOperationAction(Op, VT) == Legal ||
367       getOperationAction(Op, VT) == Custom);
368  }
369
370  /// isOperationLegal - Return true if the specified operation is legal on this
371  /// target.
372  bool isOperationLegal(unsigned Op, EVT VT) const {
373    return (VT == MVT::Other || isTypeLegal(VT)) &&
374           getOperationAction(Op, VT) == Legal;
375  }
376
377  /// getLoadExtAction - Return how this load with extension should be treated:
378  /// either it is legal, needs to be promoted to a larger size, needs to be
379  /// expanded to some other code sequence, or the target has a custom expander
380  /// for it.
381  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
382    assert(LType < array_lengthof(LoadExtActions) &&
383           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
384           "Table isn't big enough!");
385    return (LegalizeAction)((LoadExtActions[LType] >>
386              (2*VT.getSimpleVT().SimpleTy)) & 3);
387  }
388
389  /// isLoadExtLegal - Return true if the specified load with extension is legal
390  /// on this target.
391  bool isLoadExtLegal(unsigned LType, EVT VT) const {
392    return VT.isSimple() &&
393      (getLoadExtAction(LType, VT) == Legal ||
394       getLoadExtAction(LType, VT) == Custom);
395  }
396
397  /// getTruncStoreAction - Return how this store with truncation should be
398  /// treated: either it is legal, needs to be promoted to a larger size, needs
399  /// to be expanded to some other code sequence, or the target has a custom
400  /// expander for it.
401  LegalizeAction getTruncStoreAction(EVT ValVT,
402                                     EVT MemVT) const {
403    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
404             array_lengthof(TruncStoreActions) &&
405           (unsigned)MemVT.getSimpleVT().SimpleTy <
406             sizeof(TruncStoreActions[0])*4 &&
407           "Table isn't big enough!");
408    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
409                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
410  }
411
412  /// isTruncStoreLegal - Return true if the specified store with truncation is
413  /// legal on this target.
414  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
415    return isTypeLegal(ValVT) && MemVT.isSimple() &&
416      (getTruncStoreAction(ValVT, MemVT) == Legal ||
417       getTruncStoreAction(ValVT, MemVT) == Custom);
418  }
419
420  /// getIndexedLoadAction - Return how the indexed load should be treated:
421  /// either it is legal, needs to be promoted to a larger size, needs to be
422  /// expanded to some other code sequence, or the target has a custom expander
423  /// for it.
424  LegalizeAction
425  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
426    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
427           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
428           "Table isn't big enough!");
429    return (LegalizeAction)((IndexedModeActions[
430                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
431  }
432
433  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
434  /// on this target.
435  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
436    return VT.isSimple() &&
437      (getIndexedLoadAction(IdxMode, VT) == Legal ||
438       getIndexedLoadAction(IdxMode, VT) == Custom);
439  }
440
441  /// getIndexedStoreAction - Return how the indexed store should be treated:
442  /// either it is legal, needs to be promoted to a larger size, needs to be
443  /// expanded to some other code sequence, or the target has a custom expander
444  /// for it.
445  LegalizeAction
446  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
447    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
448           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
449           "Table isn't big enough!");
450    return (LegalizeAction)((IndexedModeActions[
451              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
452  }
453
454  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
455  /// on this target.
456  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
457    return VT.isSimple() &&
458      (getIndexedStoreAction(IdxMode, VT) == Legal ||
459       getIndexedStoreAction(IdxMode, VT) == Custom);
460  }
461
462  /// getCondCodeAction - Return how the condition code should be treated:
463  /// either it is legal, needs to be expanded to some other code sequence,
464  /// or the target has a custom expander for it.
465  LegalizeAction
466  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
467    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
468           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
469           "Table isn't big enough!");
470    LegalizeAction Action = (LegalizeAction)
471      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
472    assert(Action != Promote && "Can't promote condition code!");
473    return Action;
474  }
475
476  /// isCondCodeLegal - Return true if the specified condition code is legal
477  /// on this target.
478  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
479    return getCondCodeAction(CC, VT) == Legal ||
480           getCondCodeAction(CC, VT) == Custom;
481  }
482
483
484  /// getTypeToPromoteTo - If the action for this operation is to promote, this
485  /// method returns the ValueType to promote to.
486  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
487    assert(getOperationAction(Op, VT) == Promote &&
488           "This operation isn't promoted!");
489
490    // See if this has an explicit type specified.
491    std::map<std::pair<unsigned, MVT::SimpleValueType>,
492             MVT::SimpleValueType>::const_iterator PTTI =
493      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
494    if (PTTI != PromoteToType.end()) return PTTI->second;
495
496    assert((VT.isInteger() || VT.isFloatingPoint()) &&
497           "Cannot autopromote this type, add it with AddPromotedToType.");
498
499    EVT NVT = VT;
500    do {
501      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
502      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
503             "Didn't find type to promote to!");
504    } while (!isTypeLegal(NVT) ||
505              getOperationAction(Op, NVT) == Promote);
506    return NVT;
507  }
508
509  /// getValueType - Return the EVT corresponding to this LLVM type.
510  /// This is fixed by the LLVM operations except for the pointer size.  If
511  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
512  /// counterpart (e.g. structs), otherwise it will assert.
513  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
514    EVT VT = EVT::getEVT(Ty, AllowUnknown);
515    return VT == MVT::iPTR ? PointerTy : VT;
516  }
517
518  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
519  /// function arguments in the caller parameter area.  This is the actual
520  /// alignment, not its logarithm.
521  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
522
523  /// getRegisterType - Return the type of registers that this ValueType will
524  /// eventually require.
525  EVT getRegisterType(MVT VT) const {
526    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
527    return RegisterTypeForVT[VT.SimpleTy];
528  }
529
530  /// getRegisterType - Return the type of registers that this ValueType will
531  /// eventually require.
532  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
533    if (VT.isSimple()) {
534      assert((unsigned)VT.getSimpleVT().SimpleTy <
535                array_lengthof(RegisterTypeForVT));
536      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
537    }
538    if (VT.isVector()) {
539      EVT VT1, RegisterVT;
540      unsigned NumIntermediates;
541      (void)getVectorTypeBreakdown(Context, VT, VT1,
542                                   NumIntermediates, RegisterVT);
543      return RegisterVT;
544    }
545    if (VT.isInteger()) {
546      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
547    }
548    assert(0 && "Unsupported extended type!");
549    return EVT(MVT::Other); // Not reached
550  }
551
552  /// getNumRegisters - Return the number of registers that this ValueType will
553  /// eventually require.  This is one for any types promoted to live in larger
554  /// registers, but may be more than one for types (like i64) that are split
555  /// into pieces.  For types like i140, which are first promoted then expanded,
556  /// it is the number of registers needed to hold all the bits of the original
557  /// type.  For an i140 on a 32 bit machine this means 5 registers.
558  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
559    if (VT.isSimple()) {
560      assert((unsigned)VT.getSimpleVT().SimpleTy <
561                array_lengthof(NumRegistersForVT));
562      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
563    }
564    if (VT.isVector()) {
565      EVT VT1, VT2;
566      unsigned NumIntermediates;
567      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
568    }
569    if (VT.isInteger()) {
570      unsigned BitWidth = VT.getSizeInBits();
571      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
572      return (BitWidth + RegWidth - 1) / RegWidth;
573    }
574    assert(0 && "Unsupported extended type!");
575    return 0; // Not reached
576  }
577
578  /// ShouldShrinkFPConstant - If true, then instruction selection should
579  /// seek to shrink the FP constant of the specified type to a smaller type
580  /// in order to save space and / or reduce runtime.
581  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
582
583  /// hasTargetDAGCombine - If true, the target has custom DAG combine
584  /// transformations that it can perform for the specified node.
585  bool hasTargetDAGCombine(ISD::NodeType NT) const {
586    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
587    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
588  }
589
590  /// This function returns the maximum number of store operations permitted
591  /// to replace a call to llvm.memset. The value is set by the target at the
592  /// performance threshold for such a replacement.
593  /// @brief Get maximum # of store operations permitted for llvm.memset
594  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
595
596  /// This function returns the maximum number of store operations permitted
597  /// to replace a call to llvm.memcpy. The value is set by the target at the
598  /// performance threshold for such a replacement.
599  /// @brief Get maximum # of store operations permitted for llvm.memcpy
600  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
601
602  /// This function returns the maximum number of store operations permitted
603  /// to replace a call to llvm.memmove. The value is set by the target at the
604  /// performance threshold for such a replacement.
605  /// @brief Get maximum # of store operations permitted for llvm.memmove
606  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
607
608  /// This function returns true if the target allows unaligned memory accesses.
609  /// of the specified type. This is used, for example, in situations where an
610  /// array copy/move/set is  converted to a sequence of store operations. It's
611  /// use helps to ensure that such replacements don't generate code that causes
612  /// an alignment error  (trap) on the target machine.
613  /// @brief Determine if the target supports unaligned memory accesses.
614  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
615    return false;
616  }
617
618  /// This function returns true if the target would benefit from code placement
619  /// optimization.
620  /// @brief Determine if the target should perform code placement optimization.
621  bool shouldOptimizeCodePlacement() const {
622    return benefitFromCodePlacementOpt;
623  }
624
625  /// getOptimalMemOpType - Returns the target specific optimal type for load
626  /// and store operations as a result of memset, memcpy, and memmove
627  /// lowering. If DstAlign is zero that means it's safe to destination
628  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
629  /// means there isn't a need to check it against alignment requirement,
630  /// probably because the source does not need to be loaded. If
631  /// 'NonScalarIntSafe' is true, that means it's safe to return a
632  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
633  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
634  /// constant so it does not need to be loaded.
635  /// It returns EVT::Other if the type should be determined using generic
636  /// target-independent logic.
637  virtual EVT getOptimalMemOpType(uint64_t Size,
638                                  unsigned DstAlign, unsigned SrcAlign,
639                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
640                                  MachineFunction &MF) const {
641    return MVT::Other;
642  }
643
644  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
645  /// to implement llvm.setjmp.
646  bool usesUnderscoreSetJmp() const {
647    return UseUnderscoreSetJmp;
648  }
649
650  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
651  /// to implement llvm.longjmp.
652  bool usesUnderscoreLongJmp() const {
653    return UseUnderscoreLongJmp;
654  }
655
656  /// getStackPointerRegisterToSaveRestore - If a physical register, this
657  /// specifies the register that llvm.savestack/llvm.restorestack should save
658  /// and restore.
659  unsigned getStackPointerRegisterToSaveRestore() const {
660    return StackPointerRegisterToSaveRestore;
661  }
662
663  /// getExceptionAddressRegister - If a physical register, this returns
664  /// the register that receives the exception address on entry to a landing
665  /// pad.
666  unsigned getExceptionAddressRegister() const {
667    return ExceptionPointerRegister;
668  }
669
670  /// getExceptionSelectorRegister - If a physical register, this returns
671  /// the register that receives the exception typeid on entry to a landing
672  /// pad.
673  unsigned getExceptionSelectorRegister() const {
674    return ExceptionSelectorRegister;
675  }
676
677  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
678  /// set, the default is 200)
679  unsigned getJumpBufSize() const {
680    return JumpBufSize;
681  }
682
683  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
684  /// (if never set, the default is 0)
685  unsigned getJumpBufAlignment() const {
686    return JumpBufAlignment;
687  }
688
689  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
690  /// limit. Any block whose size is greater should not be predicated.
691  unsigned getIfCvtBlockSizeLimit() const {
692    return IfCvtBlockSizeLimit;
693  }
694
695  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
696  /// block to be considered for duplication. Any block whose size is greater
697  /// should not be duplicated to facilitate its predication.
698  unsigned getIfCvtDupBlockSizeLimit() const {
699    return IfCvtDupBlockSizeLimit;
700  }
701
702  /// getPrefLoopAlignment - return the preferred loop alignment.
703  ///
704  unsigned getPrefLoopAlignment() const {
705    return PrefLoopAlignment;
706  }
707
708  /// getPreIndexedAddressParts - returns true by value, base pointer and
709  /// offset pointer and addressing mode by reference if the node's address
710  /// can be legally represented as pre-indexed load / store address.
711  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
712                                         SDValue &Offset,
713                                         ISD::MemIndexedMode &AM,
714                                         SelectionDAG &DAG) const {
715    return false;
716  }
717
718  /// getPostIndexedAddressParts - returns true by value, base pointer and
719  /// offset pointer and addressing mode by reference if this node can be
720  /// combined with a load / store to form a post-indexed load / store.
721  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
722                                          SDValue &Base, SDValue &Offset,
723                                          ISD::MemIndexedMode &AM,
724                                          SelectionDAG &DAG) const {
725    return false;
726  }
727
728  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
729  /// current function.  The returned value is a member of the
730  /// MachineJumpTableInfo::JTEntryKind enum.
731  virtual unsigned getJumpTableEncoding() const;
732
733  virtual const MCExpr *
734  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
735                            const MachineBasicBlock *MBB, unsigned uid,
736                            MCContext &Ctx) const {
737    assert(0 && "Need to implement this hook if target has custom JTIs");
738    return 0;
739  }
740
741  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
742  /// jumptable.
743  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
744                                           SelectionDAG &DAG) const;
745
746  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
747  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
748  /// MCExpr.
749  virtual const MCExpr *
750  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
751                               unsigned JTI, MCContext &Ctx) const;
752
753  /// isOffsetFoldingLegal - Return true if folding a constant offset
754  /// with the given GlobalAddress is legal.  It is frequently not legal in
755  /// PIC relocation models.
756  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
757
758  /// getFunctionAlignment - Return the Log2 alignment of this function.
759  virtual unsigned getFunctionAlignment(const Function *) const = 0;
760
761  //===--------------------------------------------------------------------===//
762  // TargetLowering Optimization Methods
763  //
764
765  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
766  /// SDValues for returning information from TargetLowering to its clients
767  /// that want to combine
768  struct TargetLoweringOpt {
769    SelectionDAG &DAG;
770    bool ShrinkOps;
771    SDValue Old;
772    SDValue New;
773
774    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool Shrink = false) :
775      DAG(InDAG), ShrinkOps(Shrink) {}
776
777    bool CombineTo(SDValue O, SDValue N) {
778      Old = O;
779      New = N;
780      return true;
781    }
782
783    /// ShrinkDemandedConstant - Check to see if the specified operand of the
784    /// specified instruction is a constant integer.  If so, check to see if
785    /// there are any bits set in the constant that are not demanded.  If so,
786    /// shrink the constant and return true.
787    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
788
789    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
790    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
791    /// cast, but it could be generalized for targets with other types of
792    /// implicit widening casts.
793    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
794                          DebugLoc dl);
795  };
796
797  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
798  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
799  /// use this information to simplify Op, create a new simplified DAG node and
800  /// return true, returning the original and new nodes in Old and New.
801  /// Otherwise, analyze the expression and return a mask of KnownOne and
802  /// KnownZero bits for the expression (used to simplify the caller).
803  /// The KnownZero/One bits may only be accurate for those bits in the
804  /// DemandedMask.
805  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
806                            APInt &KnownZero, APInt &KnownOne,
807                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
808
809  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
810  /// Mask are known to be either zero or one and return them in the
811  /// KnownZero/KnownOne bitsets.
812  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
813                                              const APInt &Mask,
814                                              APInt &KnownZero,
815                                              APInt &KnownOne,
816                                              const SelectionDAG &DAG,
817                                              unsigned Depth = 0) const;
818
819  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
820  /// targets that want to expose additional information about sign bits to the
821  /// DAG Combiner.
822  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
823                                                   unsigned Depth = 0) const;
824
825  struct DAGCombinerInfo {
826    void *DC;  // The DAG Combiner object.
827    bool BeforeLegalize;
828    bool BeforeLegalizeOps;
829    bool CalledByLegalizer;
830  public:
831    SelectionDAG &DAG;
832
833    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
834      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
835        CalledByLegalizer(cl), DAG(dag) {}
836
837    bool isBeforeLegalize() const { return BeforeLegalize; }
838    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
839    bool isCalledByLegalizer() const { return CalledByLegalizer; }
840
841    void AddToWorklist(SDNode *N);
842    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
843                      bool AddTo = true);
844    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
845    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
846
847    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
848  };
849
850  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
851  /// and cc. If it is unable to simplify it, return a null SDValue.
852  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
853                          ISD::CondCode Cond, bool foldBooleans,
854                          DAGCombinerInfo &DCI, DebugLoc dl) const;
855
856  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
857  /// node is a GlobalAddress + offset.
858  virtual bool
859  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
860
861  /// PerformDAGCombine - This method will be invoked for all target nodes and
862  /// for any target-independent nodes that the target has registered with
863  /// invoke it for.
864  ///
865  /// The semantics are as follows:
866  /// Return Value:
867  ///   SDValue.Val == 0   - No change was made
868  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
869  ///   otherwise          - N should be replaced by the returned Operand.
870  ///
871  /// In addition, methods provided by DAGCombinerInfo may be used to perform
872  /// more complex transformations.
873  ///
874  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
875
876  /// PerformDAGCombinePromotion - This method query the target whether it is
877  /// beneficial for dag combiner to promote the specified node. If true, it
878  /// should return the desired promotion type by reference.
879  virtual bool PerformDAGCombinePromotion(SDValue Op, EVT &PVT) const {
880    return false;
881  }
882
883  //===--------------------------------------------------------------------===//
884  // TargetLowering Configuration Methods - These methods should be invoked by
885  // the derived class constructor to configure this object for the target.
886  //
887
888protected:
889  /// setShiftAmountType - Describe the type that should be used for shift
890  /// amounts.  This type defaults to the pointer type.
891  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
892
893  /// setBooleanContents - Specify how the target extends the result of a
894  /// boolean value from i1 to a wider type.  See getBooleanContents.
895  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
896
897  /// setSchedulingPreference - Specify the target scheduling preference.
898  void setSchedulingPreference(SchedPreference Pref) {
899    SchedPreferenceInfo = Pref;
900  }
901
902  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
903  /// use _setjmp to implement llvm.setjmp or the non _ version.
904  /// Defaults to false.
905  void setUseUnderscoreSetJmp(bool Val) {
906    UseUnderscoreSetJmp = Val;
907  }
908
909  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
910  /// use _longjmp to implement llvm.longjmp or the non _ version.
911  /// Defaults to false.
912  void setUseUnderscoreLongJmp(bool Val) {
913    UseUnderscoreLongJmp = Val;
914  }
915
916  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
917  /// specifies the register that llvm.savestack/llvm.restorestack should save
918  /// and restore.
919  void setStackPointerRegisterToSaveRestore(unsigned R) {
920    StackPointerRegisterToSaveRestore = R;
921  }
922
923  /// setExceptionPointerRegister - If set to a physical register, this sets
924  /// the register that receives the exception address on entry to a landing
925  /// pad.
926  void setExceptionPointerRegister(unsigned R) {
927    ExceptionPointerRegister = R;
928  }
929
930  /// setExceptionSelectorRegister - If set to a physical register, this sets
931  /// the register that receives the exception typeid on entry to a landing
932  /// pad.
933  void setExceptionSelectorRegister(unsigned R) {
934    ExceptionSelectorRegister = R;
935  }
936
937  /// SelectIsExpensive - Tells the code generator not to expand operations
938  /// into sequences that use the select operations if possible.
939  void setSelectIsExpensive() { SelectIsExpensive = true; }
940
941  /// setIntDivIsCheap - Tells the code generator that integer divide is
942  /// expensive, and if possible, should be replaced by an alternate sequence
943  /// of instructions not containing an integer divide.
944  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
945
946  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
947  /// srl/add/sra for a signed divide by power of two, and let the target handle
948  /// it.
949  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
950
951  /// addRegisterClass - Add the specified register class as an available
952  /// regclass for the specified value type.  This indicates the selector can
953  /// handle values of that class natively.
954  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
955    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
956    AvailableRegClasses.push_back(std::make_pair(VT, RC));
957    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
958  }
959
960  /// computeRegisterProperties - Once all of the register classes are added,
961  /// this allows us to compute derived properties we expose.
962  void computeRegisterProperties();
963
964  /// setOperationAction - Indicate that the specified operation does not work
965  /// with the specified type and indicate what to do about it.
966  void setOperationAction(unsigned Op, MVT VT,
967                          LegalizeAction Action) {
968    unsigned I = (unsigned)VT.SimpleTy;
969    unsigned J = I & 31;
970    I = I >> 5;
971    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
972    OpActions[I][Op] |= (uint64_t)Action << (J*2);
973  }
974
975  /// setLoadExtAction - Indicate that the specified load with extension does
976  /// not work with the specified type and indicate what to do about it.
977  void setLoadExtAction(unsigned ExtType, MVT VT,
978                      LegalizeAction Action) {
979    assert((unsigned)VT.SimpleTy*2 < 63 &&
980           ExtType < array_lengthof(LoadExtActions) &&
981           "Table isn't big enough!");
982    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
983    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
984  }
985
986  /// setTruncStoreAction - Indicate that the specified truncating store does
987  /// not work with the specified type and indicate what to do about it.
988  void setTruncStoreAction(MVT ValVT, MVT MemVT,
989                           LegalizeAction Action) {
990    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
991           (unsigned)MemVT.SimpleTy*2 < 63 &&
992           "Table isn't big enough!");
993    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
994    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
995  }
996
997  /// setIndexedLoadAction - Indicate that the specified indexed load does or
998  /// does not work with the specified type and indicate what to do abort
999  /// it. NOTE: All indexed mode loads are initialized to Expand in
1000  /// TargetLowering.cpp
1001  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1002                            LegalizeAction Action) {
1003    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1004           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1005           "Table isn't big enough!");
1006    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1007  }
1008
1009  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1010  /// does not work with the specified type and indicate what to do about
1011  /// it. NOTE: All indexed mode stores are initialized to Expand in
1012  /// TargetLowering.cpp
1013  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1014                             LegalizeAction Action) {
1015    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1016           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1017           "Table isn't big enough!");
1018    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1019  }
1020
1021  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1022  /// supported on the target and indicate what to do about it.
1023  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1024                         LegalizeAction Action) {
1025    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1026           (unsigned)CC < array_lengthof(CondCodeActions) &&
1027           "Table isn't big enough!");
1028    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1029    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1030  }
1031
1032  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1033  /// promotion code defaults to trying a larger integer/fp until it can find
1034  /// one that works.  If that default is insufficient, this method can be used
1035  /// by the target to override the default.
1036  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1037    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1038  }
1039
1040  /// setTargetDAGCombine - Targets should invoke this method for each target
1041  /// independent node that they want to provide a custom DAG combiner for by
1042  /// implementing the PerformDAGCombine virtual method.
1043  void setTargetDAGCombine(ISD::NodeType NT) {
1044    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1045    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1046  }
1047
1048  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1049  /// bytes); default is 200
1050  void setJumpBufSize(unsigned Size) {
1051    JumpBufSize = Size;
1052  }
1053
1054  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1055  /// alignment (in bytes); default is 0
1056  void setJumpBufAlignment(unsigned Align) {
1057    JumpBufAlignment = Align;
1058  }
1059
1060  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1061  /// limit (in number of instructions); default is 2.
1062  void setIfCvtBlockSizeLimit(unsigned Limit) {
1063    IfCvtBlockSizeLimit = Limit;
1064  }
1065
1066  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1067  /// of instructions) to be considered for code duplication during
1068  /// if-conversion; default is 2.
1069  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1070    IfCvtDupBlockSizeLimit = Limit;
1071  }
1072
1073  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1074  /// alignment is zero, it means the target does not care about loop alignment.
1075  void setPrefLoopAlignment(unsigned Align) {
1076    PrefLoopAlignment = Align;
1077  }
1078
1079public:
1080
1081  virtual const TargetSubtarget *getSubtarget() {
1082    assert(0 && "Not Implemented");
1083    return NULL;    // this is here to silence compiler errors
1084  }
1085
1086  //===--------------------------------------------------------------------===//
1087  // Lowering methods - These methods must be implemented by targets so that
1088  // the SelectionDAGLowering code knows how to lower these.
1089  //
1090
1091  /// LowerFormalArguments - This hook must be implemented to lower the
1092  /// incoming (formal) arguments, described by the Ins array, into the
1093  /// specified DAG. The implementation should fill in the InVals array
1094  /// with legal-type argument values, and return the resulting token
1095  /// chain value.
1096  ///
1097  virtual SDValue
1098    LowerFormalArguments(SDValue Chain,
1099                         CallingConv::ID CallConv, bool isVarArg,
1100                         const SmallVectorImpl<ISD::InputArg> &Ins,
1101                         DebugLoc dl, SelectionDAG &DAG,
1102                         SmallVectorImpl<SDValue> &InVals) {
1103    assert(0 && "Not Implemented");
1104    return SDValue();    // this is here to silence compiler errors
1105  }
1106
1107  /// LowerCallTo - This function lowers an abstract call to a function into an
1108  /// actual call.  This returns a pair of operands.  The first element is the
1109  /// return value for the function (if RetTy is not VoidTy).  The second
1110  /// element is the outgoing token chain. It calls LowerCall to do the actual
1111  /// lowering.
1112  struct ArgListEntry {
1113    SDValue Node;
1114    const Type* Ty;
1115    bool isSExt  : 1;
1116    bool isZExt  : 1;
1117    bool isInReg : 1;
1118    bool isSRet  : 1;
1119    bool isNest  : 1;
1120    bool isByVal : 1;
1121    uint16_t Alignment;
1122
1123    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1124      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1125  };
1126  typedef std::vector<ArgListEntry> ArgListTy;
1127  std::pair<SDValue, SDValue>
1128  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1129              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1130              CallingConv::ID CallConv, bool isTailCall,
1131              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1132              SelectionDAG &DAG, DebugLoc dl);
1133
1134  /// LowerCall - This hook must be implemented to lower calls into the
1135  /// the specified DAG. The outgoing arguments to the call are described
1136  /// by the Outs array, and the values to be returned by the call are
1137  /// described by the Ins array. The implementation should fill in the
1138  /// InVals array with legal-type return values from the call, and return
1139  /// the resulting token chain value.
1140  virtual SDValue
1141    LowerCall(SDValue Chain, SDValue Callee,
1142              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1143              const SmallVectorImpl<ISD::OutputArg> &Outs,
1144              const SmallVectorImpl<ISD::InputArg> &Ins,
1145              DebugLoc dl, SelectionDAG &DAG,
1146              SmallVectorImpl<SDValue> &InVals) {
1147    assert(0 && "Not Implemented");
1148    return SDValue();    // this is here to silence compiler errors
1149  }
1150
1151  /// CanLowerReturn - This hook should be implemented to check whether the
1152  /// return values described by the Outs array can fit into the return
1153  /// registers.  If false is returned, an sret-demotion is performed.
1154  ///
1155  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1156               const SmallVectorImpl<EVT> &OutTys,
1157               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1158               SelectionDAG &DAG)
1159  {
1160    // Return true by default to get preexisting behavior.
1161    return true;
1162  }
1163  /// LowerReturn - This hook must be implemented to lower outgoing
1164  /// return values, described by the Outs array, into the specified
1165  /// DAG. The implementation should return the resulting token chain
1166  /// value.
1167  ///
1168  virtual SDValue
1169    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1170                const SmallVectorImpl<ISD::OutputArg> &Outs,
1171                DebugLoc dl, SelectionDAG &DAG) {
1172    assert(0 && "Not Implemented");
1173    return SDValue();    // this is here to silence compiler errors
1174  }
1175
1176  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1177  /// memcpy. This can be used by targets to provide code sequences for cases
1178  /// that don't fit the target's parameters for simple loads/stores and can be
1179  /// more efficient than using a library call. This function can return a null
1180  /// SDValue if the target declines to use custom code and a different
1181  /// lowering strategy should be used.
1182  ///
1183  /// If AlwaysInline is true, the size is constant and the target should not
1184  /// emit any calls and is strongly encouraged to attempt to emit inline code
1185  /// even if it is beyond the usual threshold because this intrinsic is being
1186  /// expanded in a place where calls are not feasible (e.g. within the prologue
1187  /// for another call). If the target chooses to decline an AlwaysInline
1188  /// request here, legalize will resort to using simple loads and stores.
1189  virtual SDValue
1190  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1191                          SDValue Chain,
1192                          SDValue Op1, SDValue Op2,
1193                          SDValue Op3, unsigned Align, bool isVolatile,
1194                          bool AlwaysInline,
1195                          const Value *DstSV, uint64_t DstOff,
1196                          const Value *SrcSV, uint64_t SrcOff) {
1197    return SDValue();
1198  }
1199
1200  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1201  /// memmove. This can be used by targets to provide code sequences for cases
1202  /// that don't fit the target's parameters for simple loads/stores and can be
1203  /// more efficient than using a library call. This function can return a null
1204  /// SDValue if the target declines to use custom code and a different
1205  /// lowering strategy should be used.
1206  virtual SDValue
1207  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1208                           SDValue Chain,
1209                           SDValue Op1, SDValue Op2,
1210                           SDValue Op3, unsigned Align, bool isVolatile,
1211                           const Value *DstSV, uint64_t DstOff,
1212                           const Value *SrcSV, uint64_t SrcOff) {
1213    return SDValue();
1214  }
1215
1216  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1217  /// memset. This can be used by targets to provide code sequences for cases
1218  /// that don't fit the target's parameters for simple stores and can be more
1219  /// efficient than using a library call. This function can return a null
1220  /// SDValue if the target declines to use custom code and a different
1221  /// lowering strategy should be used.
1222  virtual SDValue
1223  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1224                          SDValue Chain,
1225                          SDValue Op1, SDValue Op2,
1226                          SDValue Op3, unsigned Align, bool isVolatile,
1227                          const Value *DstSV, uint64_t DstOff) {
1228    return SDValue();
1229  }
1230
1231  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1232  /// to legalize nodes with an illegal operand type but legal result types.
1233  /// It replaces the LowerOperation callback in the type Legalizer.
1234  /// The reason we can not do away with LowerOperation entirely is that
1235  /// LegalizeDAG isn't yet ready to use this callback.
1236  /// TODO: Consider merging with ReplaceNodeResults.
1237
1238  /// The target places new result values for the node in Results (their number
1239  /// and types must exactly match those of the original return values of
1240  /// the node), or leaves Results empty, which indicates that the node is not
1241  /// to be custom lowered after all.
1242  /// The default implementation calls LowerOperation.
1243  virtual void LowerOperationWrapper(SDNode *N,
1244                                     SmallVectorImpl<SDValue> &Results,
1245                                     SelectionDAG &DAG);
1246
1247  /// LowerOperation - This callback is invoked for operations that are
1248  /// unsupported by the target, which are registered to use 'custom' lowering,
1249  /// and whose defined values are all legal.
1250  /// If the target has no operations that require custom lowering, it need not
1251  /// implement this.  The default implementation of this aborts.
1252  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1253
1254  /// ReplaceNodeResults - This callback is invoked when a node result type is
1255  /// illegal for the target, and the operation was registered to use 'custom'
1256  /// lowering for that result type.  The target places new result values for
1257  /// the node in Results (their number and types must exactly match those of
1258  /// the original return values of the node), or leaves Results empty, which
1259  /// indicates that the node is not to be custom lowered after all.
1260  ///
1261  /// If the target has no operations that require custom lowering, it need not
1262  /// implement this.  The default implementation aborts.
1263  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1264                                  SelectionDAG &DAG) {
1265    assert(0 && "ReplaceNodeResults not implemented for this target!");
1266  }
1267
1268  /// getTargetNodeName() - This method returns the name of a target specific
1269  /// DAG node.
1270  virtual const char *getTargetNodeName(unsigned Opcode) const;
1271
1272  /// createFastISel - This method returns a target specific FastISel object,
1273  /// or null if the target does not support "fast" ISel.
1274  virtual FastISel *
1275  createFastISel(MachineFunction &,
1276                 DenseMap<const Value *, unsigned> &,
1277                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1278                 DenseMap<const AllocaInst *, int> &
1279#ifndef NDEBUG
1280                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1281#endif
1282                 ) {
1283    return 0;
1284  }
1285
1286  //===--------------------------------------------------------------------===//
1287  // Inline Asm Support hooks
1288  //
1289
1290  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1291  /// call to be explicit llvm code if it wants to.  This is useful for
1292  /// turning simple inline asms into LLVM intrinsics, which gives the
1293  /// compiler more information about the behavior of the code.
1294  virtual bool ExpandInlineAsm(CallInst *CI) const {
1295    return false;
1296  }
1297
1298  enum ConstraintType {
1299    C_Register,            // Constraint represents specific register(s).
1300    C_RegisterClass,       // Constraint represents any of register(s) in class.
1301    C_Memory,              // Memory constraint.
1302    C_Other,               // Something else.
1303    C_Unknown              // Unsupported constraint.
1304  };
1305
1306  /// AsmOperandInfo - This contains information for each constraint that we are
1307  /// lowering.
1308  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1309    /// ConstraintCode - This contains the actual string for the code, like "m".
1310    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1311    /// most closely matches the operand.
1312    std::string ConstraintCode;
1313
1314    /// ConstraintType - Information about the constraint code, e.g. Register,
1315    /// RegisterClass, Memory, Other, Unknown.
1316    TargetLowering::ConstraintType ConstraintType;
1317
1318    /// CallOperandval - If this is the result output operand or a
1319    /// clobber, this is null, otherwise it is the incoming operand to the
1320    /// CallInst.  This gets modified as the asm is processed.
1321    Value *CallOperandVal;
1322
1323    /// ConstraintVT - The ValueType for the operand value.
1324    EVT ConstraintVT;
1325
1326    /// isMatchingInputConstraint - Return true of this is an input operand that
1327    /// is a matching constraint like "4".
1328    bool isMatchingInputConstraint() const;
1329
1330    /// getMatchedOperand - If this is an input matching constraint, this method
1331    /// returns the output operand it matches.
1332    unsigned getMatchedOperand() const;
1333
1334    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1335      : InlineAsm::ConstraintInfo(info),
1336        ConstraintType(TargetLowering::C_Unknown),
1337        CallOperandVal(0), ConstraintVT(MVT::Other) {
1338    }
1339  };
1340
1341  /// ComputeConstraintToUse - Determines the constraint code and constraint
1342  /// type to use for the specific AsmOperandInfo, setting
1343  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1344  /// being passed in is available, it can be passed in as Op, otherwise an
1345  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1346  /// constraint of the inline asm instruction being processed is 'm'.
1347  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1348                                      SDValue Op,
1349                                      bool hasMemory,
1350                                      SelectionDAG *DAG = 0) const;
1351
1352  /// getConstraintType - Given a constraint, return the type of constraint it
1353  /// is for this target.
1354  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1355
1356  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1357  /// return a list of registers that can be used to satisfy the constraint.
1358  /// This should only be used for C_RegisterClass constraints.
1359  virtual std::vector<unsigned>
1360  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1361                                    EVT VT) const;
1362
1363  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1364  /// {edx}), return the register number and the register class for the
1365  /// register.
1366  ///
1367  /// Given a register class constraint, like 'r', if this corresponds directly
1368  /// to an LLVM register class, return a register of 0 and the register class
1369  /// pointer.
1370  ///
1371  /// This should only be used for C_Register constraints.  On error,
1372  /// this returns a register number of 0 and a null register class pointer..
1373  virtual std::pair<unsigned, const TargetRegisterClass*>
1374    getRegForInlineAsmConstraint(const std::string &Constraint,
1375                                 EVT VT) const;
1376
1377  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1378  /// with another that has more specific requirements based on the type of the
1379  /// corresponding operand.  This returns null if there is no replacement to
1380  /// make.
1381  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1382
1383  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1384  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1385  /// it means one of the asm constraint of the inline asm instruction being
1386  /// processed is 'm'.
1387  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1388                                            bool hasMemory,
1389                                            std::vector<SDValue> &Ops,
1390                                            SelectionDAG &DAG) const;
1391
1392  //===--------------------------------------------------------------------===//
1393  // Instruction Emitting Hooks
1394  //
1395
1396  // EmitInstrWithCustomInserter - This method should be implemented by targets
1397  // that mark instructions with the 'usesCustomInserter' flag.  These
1398  // instructions are special in various ways, which require special support to
1399  // insert.  The specified MachineInstr is created but not inserted into any
1400  // basic blocks, and this method is called to expand it into a sequence of
1401  // instructions, potentially also creating new basic blocks and control flow.
1402  // When new basic blocks are inserted and the edges from MBB to its successors
1403  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1404  // DenseMap.
1405  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1406                                                         MachineBasicBlock *MBB,
1407                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1408
1409  //===--------------------------------------------------------------------===//
1410  // Addressing mode description hooks (used by LSR etc).
1411  //
1412
1413  /// AddrMode - This represents an addressing mode of:
1414  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1415  /// If BaseGV is null,  there is no BaseGV.
1416  /// If BaseOffs is zero, there is no base offset.
1417  /// If HasBaseReg is false, there is no base register.
1418  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1419  /// no scale.
1420  ///
1421  struct AddrMode {
1422    GlobalValue *BaseGV;
1423    int64_t      BaseOffs;
1424    bool         HasBaseReg;
1425    int64_t      Scale;
1426    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1427  };
1428
1429  /// isLegalAddressingMode - Return true if the addressing mode represented by
1430  /// AM is legal for this target, for a load/store of the specified type.
1431  /// The type may be VoidTy, in which case only return true if the addressing
1432  /// mode is legal for a load/store of any legal type.
1433  /// TODO: Handle pre/postinc as well.
1434  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1435
1436  /// isTruncateFree - Return true if it's free to truncate a value of
1437  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1438  /// register EAX to i16 by referencing its sub-register AX.
1439  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1440    return false;
1441  }
1442
1443  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1444    return false;
1445  }
1446
1447  /// isZExtFree - Return true if any actual instruction that defines a
1448  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1449  /// register. This does not necessarily include registers defined in
1450  /// unknown ways, such as incoming arguments, or copies from unknown
1451  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1452  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1453  /// all instructions that define 32-bit values implicit zero-extend the
1454  /// result out to 64 bits.
1455  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1456    return false;
1457  }
1458
1459  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1460    return false;
1461  }
1462
1463  /// isNarrowingProfitable - Return true if it's profitable to narrow
1464  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1465  /// from i32 to i8 but not from i32 to i16.
1466  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1467    return false;
1468  }
1469
1470  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1471  /// icmp immediate, that is the target has icmp instructions which can compare
1472  /// a register against the immediate without having to materialize the
1473  /// immediate into a register.
1474  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1475    return true;
1476  }
1477
1478  //===--------------------------------------------------------------------===//
1479  // Div utility functions
1480  //
1481  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1482                      std::vector<SDNode*>* Created) const;
1483  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1484                      std::vector<SDNode*>* Created) const;
1485
1486
1487  //===--------------------------------------------------------------------===//
1488  // Runtime Library hooks
1489  //
1490
1491  /// setLibcallName - Rename the default libcall routine name for the specified
1492  /// libcall.
1493  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1494    LibcallRoutineNames[Call] = Name;
1495  }
1496
1497  /// getLibcallName - Get the libcall routine name for the specified libcall.
1498  ///
1499  const char *getLibcallName(RTLIB::Libcall Call) const {
1500    return LibcallRoutineNames[Call];
1501  }
1502
1503  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1504  /// result of the comparison libcall against zero.
1505  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1506    CmpLibcallCCs[Call] = CC;
1507  }
1508
1509  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1510  /// the comparison libcall against zero.
1511  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1512    return CmpLibcallCCs[Call];
1513  }
1514
1515  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1516  /// specified libcall.
1517  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1518    LibcallCallingConvs[Call] = CC;
1519  }
1520
1521  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1522  /// specified libcall.
1523  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1524    return LibcallCallingConvs[Call];
1525  }
1526
1527private:
1528  TargetMachine &TM;
1529  const TargetData *TD;
1530  TargetLoweringObjectFile &TLOF;
1531
1532  /// PointerTy - The type to use for pointers, usually i32 or i64.
1533  ///
1534  MVT PointerTy;
1535
1536  /// IsLittleEndian - True if this is a little endian target.
1537  ///
1538  bool IsLittleEndian;
1539
1540  /// SelectIsExpensive - Tells the code generator not to expand operations
1541  /// into sequences that use the select operations if possible.
1542  bool SelectIsExpensive;
1543
1544  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1545  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1546  /// a real cost model is in place.  If we ever optimize for size, this will be
1547  /// set to true unconditionally.
1548  bool IntDivIsCheap;
1549
1550  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1551  /// srl/add/sra for a signed divide by power of two, and let the target handle
1552  /// it.
1553  bool Pow2DivIsCheap;
1554
1555  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1556  /// llvm.setjmp.  Defaults to false.
1557  bool UseUnderscoreSetJmp;
1558
1559  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1560  /// llvm.longjmp.  Defaults to false.
1561  bool UseUnderscoreLongJmp;
1562
1563  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1564  /// PointerTy is.
1565  MVT ShiftAmountTy;
1566
1567  /// BooleanContents - Information about the contents of the high-bits in
1568  /// boolean values held in a type wider than i1.  See getBooleanContents.
1569  BooleanContent BooleanContents;
1570
1571  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1572  /// total cycles or lowest register usage.
1573  SchedPreference SchedPreferenceInfo;
1574
1575  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1576  unsigned JumpBufSize;
1577
1578  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1579  /// buffers
1580  unsigned JumpBufAlignment;
1581
1582  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1583  /// if-converted.
1584  unsigned IfCvtBlockSizeLimit;
1585
1586  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1587  /// duplicated during if-conversion.
1588  unsigned IfCvtDupBlockSizeLimit;
1589
1590  /// PrefLoopAlignment - The perferred loop alignment.
1591  ///
1592  unsigned PrefLoopAlignment;
1593
1594  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1595  /// specifies the register that llvm.savestack/llvm.restorestack should save
1596  /// and restore.
1597  unsigned StackPointerRegisterToSaveRestore;
1598
1599  /// ExceptionPointerRegister - If set to a physical register, this specifies
1600  /// the register that receives the exception address on entry to a landing
1601  /// pad.
1602  unsigned ExceptionPointerRegister;
1603
1604  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1605  /// the register that receives the exception typeid on entry to a landing
1606  /// pad.
1607  unsigned ExceptionSelectorRegister;
1608
1609  /// RegClassForVT - This indicates the default register class to use for
1610  /// each ValueType the target supports natively.
1611  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1612  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1613  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1614
1615  /// TransformToType - For any value types we are promoting or expanding, this
1616  /// contains the value type that we are changing to.  For Expanded types, this
1617  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1618  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1619  /// by the system, this holds the same type (e.g. i32 -> i32).
1620  EVT TransformToType[MVT::LAST_VALUETYPE];
1621
1622  /// OpActions - For each operation and each value type, keep a LegalizeAction
1623  /// that indicates how instruction selection should deal with the operation.
1624  /// Most operations are Legal (aka, supported natively by the target), but
1625  /// operations that are not should be described.  Note that operations on
1626  /// non-legal value types are not described here.
1627  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1628  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1629  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1630
1631  /// LoadExtActions - For each load of load extension type and each value type,
1632  /// keep a LegalizeAction that indicates how instruction selection should deal
1633  /// with the load.
1634  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1635
1636  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1637  /// indicates how instruction selection should deal with the store.
1638  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1639
1640  /// IndexedModeActions - For each indexed mode and each value type,
1641  /// keep a pair of LegalizeAction that indicates how instruction
1642  /// selection should deal with the load / store.  The first
1643  /// dimension is now the value_type for the reference.  The second
1644  /// dimension is the load [0] vs. store[1].  The third dimension
1645  /// represents the various modes for load store.
1646  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1647
1648  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1649  /// LegalizeAction that indicates how instruction selection should
1650  /// deal with the condition code.
1651  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1652
1653  ValueTypeActionImpl ValueTypeActions;
1654
1655  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1656
1657  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1658  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1659  /// which sets a bit in this array.
1660  unsigned char
1661  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1662
1663  /// PromoteToType - For operations that must be promoted to a specific type,
1664  /// this holds the destination type.  This map should be sparse, so don't hold
1665  /// it as an array.
1666  ///
1667  /// Targets add entries to this map with AddPromotedToType(..), clients access
1668  /// this with getTypeToPromoteTo(..).
1669  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1670    PromoteToType;
1671
1672  /// LibcallRoutineNames - Stores the name each libcall.
1673  ///
1674  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1675
1676  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1677  /// of each of the comparison libcall against zero.
1678  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1679
1680  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1681  /// libcall.
1682  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1683
1684protected:
1685  /// When lowering \@llvm.memset this field specifies the maximum number of
1686  /// store operations that may be substituted for the call to memset. Targets
1687  /// must set this value based on the cost threshold for that target. Targets
1688  /// should assume that the memset will be done using as many of the largest
1689  /// store operations first, followed by smaller ones, if necessary, per
1690  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1691  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1692  /// store.  This only applies to setting a constant array of a constant size.
1693  /// @brief Specify maximum number of store instructions per memset call.
1694  unsigned maxStoresPerMemset;
1695
1696  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1697  /// store operations that may be substituted for a call to memcpy. Targets
1698  /// must set this value based on the cost threshold for that target. Targets
1699  /// should assume that the memcpy will be done using as many of the largest
1700  /// store operations first, followed by smaller ones, if necessary, per
1701  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1702  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1703  /// and one 1-byte store. This only applies to copying a constant array of
1704  /// constant size.
1705  /// @brief Specify maximum bytes of store instructions per memcpy call.
1706  unsigned maxStoresPerMemcpy;
1707
1708  /// When lowering \@llvm.memmove this field specifies the maximum number of
1709  /// store instructions that may be substituted for a call to memmove. Targets
1710  /// must set this value based on the cost threshold for that target. Targets
1711  /// should assume that the memmove will be done using as many of the largest
1712  /// store operations first, followed by smaller ones, if necessary, per
1713  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1714  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1715  /// applies to copying a constant array of constant size.
1716  /// @brief Specify maximum bytes of store instructions per memmove call.
1717  unsigned maxStoresPerMemmove;
1718
1719  /// This field specifies whether the target can benefit from code placement
1720  /// optimization.
1721  bool benefitFromCodePlacementOpt;
1722};
1723} // end llvm namespace
1724
1725#endif
1726