TargetLowering.h revision 46510a73e977273ec67747eb34cbdb43f815e451
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetSubtarget;
59  class TargetLoweringObjectFile;
60  class Value;
61
62  // FIXME: should this be here?
63  namespace TLSModel {
64    enum Model {
65      GeneralDynamic,
66      LocalDynamic,
67      InitialExec,
68      LocalExec
69    };
70  }
71  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
72
73
74//===----------------------------------------------------------------------===//
75/// TargetLowering - This class defines information used to lower LLVM code to
76/// legal SelectionDAG operators that the target instruction selector can accept
77/// natively.
78///
79/// This class also defines callbacks that targets must implement to lower
80/// target-specific constructs to SelectionDAG operators.
81///
82class TargetLowering {
83  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
84  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
85public:
86  /// LegalizeAction - This enum indicates whether operations are valid for a
87  /// target, and if not, what action should be used to make them valid.
88  enum LegalizeAction {
89    Legal,      // The target natively supports this operation.
90    Promote,    // This operation should be executed in a larger type.
91    Expand,     // Try to expand this to other ops, otherwise use a libcall.
92    Custom      // Use the LowerOperation hook to implement custom lowering.
93  };
94
95  enum BooleanContent { // How the target represents true/false values.
96    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
97    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
98    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
99  };
100
101  enum SchedPreference {
102    SchedulingForLatency,          // Scheduling for shortest total latency.
103    SchedulingForRegPressure       // Scheduling for lowest register pressure.
104  };
105
106  /// NOTE: The constructor takes ownership of TLOF.
107  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
108  virtual ~TargetLowering();
109
110  TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
113
114  bool isBigEndian() const { return !IsLittleEndian; }
115  bool isLittleEndian() const { return IsLittleEndian; }
116  MVT getPointerTy() const { return PointerTy; }
117  MVT getShiftAmountTy() const { return ShiftAmountTy; }
118
119  /// isSelectExpensive - Return true if the select operation is expensive for
120  /// this target.
121  bool isSelectExpensive() const { return SelectIsExpensive; }
122
123  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
124  /// a sequence of several shifts, adds, and multiplies for this target.
125  bool isIntDivCheap() const { return IntDivIsCheap; }
126
127  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
128  /// srl/add/sra.
129  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
130
131  /// getSetCCResultType - Return the ValueType of the result of SETCC
132  /// operations.  Also used to obtain the target's preferred type for
133  /// the condition operand of SELECT and BRCOND nodes.  In the case of
134  /// BRCOND the argument passed is MVT::Other since there are no other
135  /// operands to get a type hint from.
136  virtual
137  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
138
139  /// getCmpLibcallReturnType - Return the ValueType for comparison
140  /// libcalls. Comparions libcalls include floating point comparion calls,
141  /// and Ordered/Unordered check calls on floating point numbers.
142  virtual
143  MVT::SimpleValueType getCmpLibcallReturnType() const;
144
145  /// getBooleanContents - For targets without i1 registers, this gives the
146  /// nature of the high-bits of boolean values held in types wider than i1.
147  /// "Boolean values" are special true/false values produced by nodes like
148  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
149  /// Not to be confused with general values promoted from i1.
150  BooleanContent getBooleanContents() const { return BooleanContents;}
151
152  /// getSchedulingPreference - Return target scheduling preference.
153  SchedPreference getSchedulingPreference() const {
154    return SchedPreferenceInfo;
155  }
156
157  /// getRegClassFor - Return the register class that should be used for the
158  /// specified value type.  This may only be called on legal types.
159  TargetRegisterClass *getRegClassFor(EVT VT) const {
160    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
161    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
162    assert(RC && "This value type is not natively supported!");
163    return RC;
164  }
165
166  /// isTypeLegal - Return true if the target has native support for the
167  /// specified value type.  This means that it has a register that directly
168  /// holds it without promotions or expansions.
169  bool isTypeLegal(EVT VT) const {
170    assert(!VT.isSimple() ||
171           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
172    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
173  }
174
175  class ValueTypeActionImpl {
176    /// ValueTypeActions - This is a bitvector that contains two bits for each
177    /// value type, where the two bits correspond to the LegalizeAction enum.
178    /// This can be queried with "getTypeAction(VT)".
179    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
180    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
181  public:
182    ValueTypeActionImpl() {
183      ValueTypeActions[0] = ValueTypeActions[1] = 0;
184      ValueTypeActions[2] = ValueTypeActions[3] = 0;
185    }
186    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
187      ValueTypeActions[0] = RHS.ValueTypeActions[0];
188      ValueTypeActions[1] = RHS.ValueTypeActions[1];
189      ValueTypeActions[2] = RHS.ValueTypeActions[2];
190      ValueTypeActions[3] = RHS.ValueTypeActions[3];
191    }
192
193    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
194      if (VT.isExtended()) {
195        if (VT.isVector()) {
196          return VT.isPow2VectorType() ? Expand : Promote;
197        }
198        if (VT.isInteger())
199          // First promote to a power-of-two size, then expand if necessary.
200          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
201        assert(0 && "Unsupported extended type!");
202        return Legal;
203      }
204      unsigned I = VT.getSimpleVT().SimpleTy;
205      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
206      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
207    }
208    void setTypeAction(EVT VT, LegalizeAction Action) {
209      unsigned I = VT.getSimpleVT().SimpleTy;
210      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
211      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
212    }
213  };
214
215  const ValueTypeActionImpl &getValueTypeActions() const {
216    return ValueTypeActions;
217  }
218
219  /// getTypeAction - Return how we should legalize values of this type, either
220  /// it is already legal (return 'Legal') or we need to promote it to a larger
221  /// type (return 'Promote'), or we need to expand it into multiple registers
222  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
223  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
224    return ValueTypeActions.getTypeAction(Context, VT);
225  }
226
227  /// getTypeToTransformTo - For types supported by the target, this is an
228  /// identity function.  For types that must be promoted to larger types, this
229  /// returns the larger type to promote to.  For integer types that are larger
230  /// than the largest integer register, this contains one step in the expansion
231  /// to get to the smaller register. For illegal floating point types, this
232  /// returns the integer type to transform to.
233  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
234    if (VT.isSimple()) {
235      assert((unsigned)VT.getSimpleVT().SimpleTy <
236             array_lengthof(TransformToType));
237      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
238      assert(getTypeAction(Context, NVT) != Promote &&
239             "Promote may not follow Expand or Promote");
240      return NVT;
241    }
242
243    if (VT.isVector()) {
244      EVT NVT = VT.getPow2VectorType(Context);
245      if (NVT == VT) {
246        // Vector length is a power of 2 - split to half the size.
247        unsigned NumElts = VT.getVectorNumElements();
248        EVT EltVT = VT.getVectorElementType();
249        return (NumElts == 1) ?
250          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
251      }
252      // Promote to a power of two size, avoiding multi-step promotion.
253      return getTypeAction(Context, NVT) == Promote ?
254        getTypeToTransformTo(Context, NVT) : NVT;
255    } else if (VT.isInteger()) {
256      EVT NVT = VT.getRoundIntegerType(Context);
257      if (NVT == VT)
258        // Size is a power of two - expand to half the size.
259        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
260      else
261        // Promote to a power of two size, avoiding multi-step promotion.
262        return getTypeAction(Context, NVT) == Promote ?
263          getTypeToTransformTo(Context, NVT) : NVT;
264    }
265    assert(0 && "Unsupported extended type!");
266    return MVT(MVT::Other); // Not reached
267  }
268
269  /// getTypeToExpandTo - For types supported by the target, this is an
270  /// identity function.  For types that must be expanded (i.e. integer types
271  /// that are larger than the largest integer register or illegal floating
272  /// point types), this returns the largest legal type it will be expanded to.
273  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
274    assert(!VT.isVector());
275    while (true) {
276      switch (getTypeAction(Context, VT)) {
277      case Legal:
278        return VT;
279      case Expand:
280        VT = getTypeToTransformTo(Context, VT);
281        break;
282      default:
283        assert(false && "Type is not legal nor is it to be expanded!");
284        return VT;
285      }
286    }
287    return VT;
288  }
289
290  /// getVectorTypeBreakdown - Vector types are broken down into some number of
291  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
292  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
293  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
294  ///
295  /// This method returns the number of registers needed, and the VT for each
296  /// register.  It also returns the VT and quantity of the intermediate values
297  /// before they are promoted/expanded.
298  ///
299  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
300                                  EVT &IntermediateVT,
301                                  unsigned &NumIntermediates,
302                                  EVT &RegisterVT) const;
303
304  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
305  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
306  /// this is the case, it returns true and store the intrinsic
307  /// information into the IntrinsicInfo that was passed to the function.
308  struct IntrinsicInfo {
309    unsigned     opc;         // target opcode
310    EVT          memVT;       // memory VT
311    const Value* ptrVal;      // value representing memory location
312    int          offset;      // offset off of ptrVal
313    unsigned     align;       // alignment
314    bool         vol;         // is volatile?
315    bool         readMem;     // reads memory?
316    bool         writeMem;    // writes memory?
317  };
318
319  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
320                                  const CallInst &I, unsigned Intrinsic) {
321    return false;
322  }
323
324  /// isFPImmLegal - Returns true if the target can instruction select the
325  /// specified FP immediate natively. If false, the legalizer will materialize
326  /// the FP immediate as a load from a constant pool.
327  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
328    return false;
329  }
330
331  /// isShuffleMaskLegal - Targets can use this to indicate that they only
332  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
333  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
334  /// are assumed to be legal.
335  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
336                                  EVT VT) const {
337    return true;
338  }
339
340  /// canOpTrap - Returns true if the operation can trap for the value type.
341  /// VT must be a legal type. By default, we optimistically assume most
342  /// operations don't trap except for divide and remainder.
343  virtual bool canOpTrap(unsigned Op, EVT VT) const;
344
345  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
346  /// used by Targets can use this to indicate if there is a suitable
347  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
348  /// pool entry.
349  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
350                                      EVT VT) const {
351    return false;
352  }
353
354  /// getOperationAction - Return how this operation should be treated: either
355  /// it is legal, needs to be promoted to a larger size, needs to be
356  /// expanded to some other code sequence, or the target has a custom expander
357  /// for it.
358  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
359    if (VT.isExtended()) return Expand;
360    assert(Op < array_lengthof(OpActions[0]) &&
361           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
362           "Table isn't big enough!");
363    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
364    unsigned J = I & 31;
365    I = I >> 5;
366    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
367  }
368
369  /// isOperationLegalOrCustom - Return true if the specified operation is
370  /// legal on this target or can be made legal with custom lowering. This
371  /// is used to help guide high-level lowering decisions.
372  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
373    return (VT == MVT::Other || isTypeLegal(VT)) &&
374      (getOperationAction(Op, VT) == Legal ||
375       getOperationAction(Op, VT) == Custom);
376  }
377
378  /// isOperationLegal - Return true if the specified operation is legal on this
379  /// target.
380  bool isOperationLegal(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382           getOperationAction(Op, VT) == Legal;
383  }
384
385  /// getLoadExtAction - Return how this load with extension should be treated:
386  /// either it is legal, needs to be promoted to a larger size, needs to be
387  /// expanded to some other code sequence, or the target has a custom expander
388  /// for it.
389  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
390    assert(LType < array_lengthof(LoadExtActions) &&
391           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
392           "Table isn't big enough!");
393    return (LegalizeAction)((LoadExtActions[LType] >>
394              (2*VT.getSimpleVT().SimpleTy)) & 3);
395  }
396
397  /// isLoadExtLegal - Return true if the specified load with extension is legal
398  /// on this target.
399  bool isLoadExtLegal(unsigned LType, EVT VT) const {
400    return VT.isSimple() &&
401      (getLoadExtAction(LType, VT) == Legal ||
402       getLoadExtAction(LType, VT) == Custom);
403  }
404
405  /// getTruncStoreAction - Return how this store with truncation should be
406  /// treated: either it is legal, needs to be promoted to a larger size, needs
407  /// to be expanded to some other code sequence, or the target has a custom
408  /// expander for it.
409  LegalizeAction getTruncStoreAction(EVT ValVT,
410                                     EVT MemVT) const {
411    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
412             array_lengthof(TruncStoreActions) &&
413           (unsigned)MemVT.getSimpleVT().SimpleTy <
414             sizeof(TruncStoreActions[0])*4 &&
415           "Table isn't big enough!");
416    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
417                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
418  }
419
420  /// isTruncStoreLegal - Return true if the specified store with truncation is
421  /// legal on this target.
422  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
423    return isTypeLegal(ValVT) && MemVT.isSimple() &&
424      (getTruncStoreAction(ValVT, MemVT) == Legal ||
425       getTruncStoreAction(ValVT, MemVT) == Custom);
426  }
427
428  /// getIndexedLoadAction - Return how the indexed load should be treated:
429  /// either it is legal, needs to be promoted to a larger size, needs to be
430  /// expanded to some other code sequence, or the target has a custom expander
431  /// for it.
432  LegalizeAction
433  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
434    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
435           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
436           "Table isn't big enough!");
437    return (LegalizeAction)((IndexedModeActions[
438                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
439  }
440
441  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
442  /// on this target.
443  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
444    return VT.isSimple() &&
445      (getIndexedLoadAction(IdxMode, VT) == Legal ||
446       getIndexedLoadAction(IdxMode, VT) == Custom);
447  }
448
449  /// getIndexedStoreAction - Return how the indexed store should be treated:
450  /// either it is legal, needs to be promoted to a larger size, needs to be
451  /// expanded to some other code sequence, or the target has a custom expander
452  /// for it.
453  LegalizeAction
454  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
455    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
456           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
457           "Table isn't big enough!");
458    return (LegalizeAction)((IndexedModeActions[
459              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
460  }
461
462  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
463  /// on this target.
464  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
465    return VT.isSimple() &&
466      (getIndexedStoreAction(IdxMode, VT) == Legal ||
467       getIndexedStoreAction(IdxMode, VT) == Custom);
468  }
469
470  /// getCondCodeAction - Return how the condition code should be treated:
471  /// either it is legal, needs to be expanded to some other code sequence,
472  /// or the target has a custom expander for it.
473  LegalizeAction
474  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
475    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
476           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
477           "Table isn't big enough!");
478    LegalizeAction Action = (LegalizeAction)
479      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
480    assert(Action != Promote && "Can't promote condition code!");
481    return Action;
482  }
483
484  /// isCondCodeLegal - Return true if the specified condition code is legal
485  /// on this target.
486  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
487    return getCondCodeAction(CC, VT) == Legal ||
488           getCondCodeAction(CC, VT) == Custom;
489  }
490
491
492  /// getTypeToPromoteTo - If the action for this operation is to promote, this
493  /// method returns the ValueType to promote to.
494  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
495    assert(getOperationAction(Op, VT) == Promote &&
496           "This operation isn't promoted!");
497
498    // See if this has an explicit type specified.
499    std::map<std::pair<unsigned, MVT::SimpleValueType>,
500             MVT::SimpleValueType>::const_iterator PTTI =
501      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
502    if (PTTI != PromoteToType.end()) return PTTI->second;
503
504    assert((VT.isInteger() || VT.isFloatingPoint()) &&
505           "Cannot autopromote this type, add it with AddPromotedToType.");
506
507    EVT NVT = VT;
508    do {
509      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
510      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
511             "Didn't find type to promote to!");
512    } while (!isTypeLegal(NVT) ||
513              getOperationAction(Op, NVT) == Promote);
514    return NVT;
515  }
516
517  /// getValueType - Return the EVT corresponding to this LLVM type.
518  /// This is fixed by the LLVM operations except for the pointer size.  If
519  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
520  /// counterpart (e.g. structs), otherwise it will assert.
521  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
522    EVT VT = EVT::getEVT(Ty, AllowUnknown);
523    return VT == MVT::iPTR ? PointerTy : VT;
524  }
525
526  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
527  /// function arguments in the caller parameter area.  This is the actual
528  /// alignment, not its logarithm.
529  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
530
531  /// getRegisterType - Return the type of registers that this ValueType will
532  /// eventually require.
533  EVT getRegisterType(MVT VT) const {
534    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
535    return RegisterTypeForVT[VT.SimpleTy];
536  }
537
538  /// getRegisterType - Return the type of registers that this ValueType will
539  /// eventually require.
540  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
541    if (VT.isSimple()) {
542      assert((unsigned)VT.getSimpleVT().SimpleTy <
543                array_lengthof(RegisterTypeForVT));
544      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
545    }
546    if (VT.isVector()) {
547      EVT VT1, RegisterVT;
548      unsigned NumIntermediates;
549      (void)getVectorTypeBreakdown(Context, VT, VT1,
550                                   NumIntermediates, RegisterVT);
551      return RegisterVT;
552    }
553    if (VT.isInteger()) {
554      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
555    }
556    assert(0 && "Unsupported extended type!");
557    return EVT(MVT::Other); // Not reached
558  }
559
560  /// getNumRegisters - Return the number of registers that this ValueType will
561  /// eventually require.  This is one for any types promoted to live in larger
562  /// registers, but may be more than one for types (like i64) that are split
563  /// into pieces.  For types like i140, which are first promoted then expanded,
564  /// it is the number of registers needed to hold all the bits of the original
565  /// type.  For an i140 on a 32 bit machine this means 5 registers.
566  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
567    if (VT.isSimple()) {
568      assert((unsigned)VT.getSimpleVT().SimpleTy <
569                array_lengthof(NumRegistersForVT));
570      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
571    }
572    if (VT.isVector()) {
573      EVT VT1, VT2;
574      unsigned NumIntermediates;
575      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
576    }
577    if (VT.isInteger()) {
578      unsigned BitWidth = VT.getSizeInBits();
579      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
580      return (BitWidth + RegWidth - 1) / RegWidth;
581    }
582    assert(0 && "Unsupported extended type!");
583    return 0; // Not reached
584  }
585
586  /// ShouldShrinkFPConstant - If true, then instruction selection should
587  /// seek to shrink the FP constant of the specified type to a smaller type
588  /// in order to save space and / or reduce runtime.
589  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
590
591  /// hasTargetDAGCombine - If true, the target has custom DAG combine
592  /// transformations that it can perform for the specified node.
593  bool hasTargetDAGCombine(ISD::NodeType NT) const {
594    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
595    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
596  }
597
598  /// This function returns the maximum number of store operations permitted
599  /// to replace a call to llvm.memset. The value is set by the target at the
600  /// performance threshold for such a replacement.
601  /// @brief Get maximum # of store operations permitted for llvm.memset
602  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
603
604  /// This function returns the maximum number of store operations permitted
605  /// to replace a call to llvm.memcpy. The value is set by the target at the
606  /// performance threshold for such a replacement.
607  /// @brief Get maximum # of store operations permitted for llvm.memcpy
608  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
609
610  /// This function returns the maximum number of store operations permitted
611  /// to replace a call to llvm.memmove. The value is set by the target at the
612  /// performance threshold for such a replacement.
613  /// @brief Get maximum # of store operations permitted for llvm.memmove
614  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
615
616  /// This function returns true if the target allows unaligned memory accesses.
617  /// of the specified type. This is used, for example, in situations where an
618  /// array copy/move/set is  converted to a sequence of store operations. It's
619  /// use helps to ensure that such replacements don't generate code that causes
620  /// an alignment error  (trap) on the target machine.
621  /// @brief Determine if the target supports unaligned memory accesses.
622  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
623    return false;
624  }
625
626  /// This function returns true if the target would benefit from code placement
627  /// optimization.
628  /// @brief Determine if the target should perform code placement optimization.
629  bool shouldOptimizeCodePlacement() const {
630    return benefitFromCodePlacementOpt;
631  }
632
633  /// getOptimalMemOpType - Returns the target specific optimal type for load
634  /// and store operations as a result of memset, memcpy, and memmove
635  /// lowering. If DstAlign is zero that means it's safe to destination
636  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
637  /// means there isn't a need to check it against alignment requirement,
638  /// probably because the source does not need to be loaded. If
639  /// 'NonScalarIntSafe' is true, that means it's safe to return a
640  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
641  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
642  /// constant so it does not need to be loaded.
643  /// It returns EVT::Other if SelectionDAG should be responsible for
644  /// determining the type.
645  virtual EVT getOptimalMemOpType(uint64_t Size,
646                                  unsigned DstAlign, unsigned SrcAlign,
647                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
648                                  SelectionDAG &DAG) const {
649    return MVT::Other;
650  }
651
652  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
653  /// to implement llvm.setjmp.
654  bool usesUnderscoreSetJmp() const {
655    return UseUnderscoreSetJmp;
656  }
657
658  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
659  /// to implement llvm.longjmp.
660  bool usesUnderscoreLongJmp() const {
661    return UseUnderscoreLongJmp;
662  }
663
664  /// getStackPointerRegisterToSaveRestore - If a physical register, this
665  /// specifies the register that llvm.savestack/llvm.restorestack should save
666  /// and restore.
667  unsigned getStackPointerRegisterToSaveRestore() const {
668    return StackPointerRegisterToSaveRestore;
669  }
670
671  /// getExceptionAddressRegister - If a physical register, this returns
672  /// the register that receives the exception address on entry to a landing
673  /// pad.
674  unsigned getExceptionAddressRegister() const {
675    return ExceptionPointerRegister;
676  }
677
678  /// getExceptionSelectorRegister - If a physical register, this returns
679  /// the register that receives the exception typeid on entry to a landing
680  /// pad.
681  unsigned getExceptionSelectorRegister() const {
682    return ExceptionSelectorRegister;
683  }
684
685  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
686  /// set, the default is 200)
687  unsigned getJumpBufSize() const {
688    return JumpBufSize;
689  }
690
691  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
692  /// (if never set, the default is 0)
693  unsigned getJumpBufAlignment() const {
694    return JumpBufAlignment;
695  }
696
697  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
698  /// limit. Any block whose size is greater should not be predicated.
699  unsigned getIfCvtBlockSizeLimit() const {
700    return IfCvtBlockSizeLimit;
701  }
702
703  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
704  /// block to be considered for duplication. Any block whose size is greater
705  /// should not be duplicated to facilitate its predication.
706  unsigned getIfCvtDupBlockSizeLimit() const {
707    return IfCvtDupBlockSizeLimit;
708  }
709
710  /// getPrefLoopAlignment - return the preferred loop alignment.
711  ///
712  unsigned getPrefLoopAlignment() const {
713    return PrefLoopAlignment;
714  }
715
716  /// getPreIndexedAddressParts - returns true by value, base pointer and
717  /// offset pointer and addressing mode by reference if the node's address
718  /// can be legally represented as pre-indexed load / store address.
719  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
720                                         SDValue &Offset,
721                                         ISD::MemIndexedMode &AM,
722                                         SelectionDAG &DAG) const {
723    return false;
724  }
725
726  /// getPostIndexedAddressParts - returns true by value, base pointer and
727  /// offset pointer and addressing mode by reference if this node can be
728  /// combined with a load / store to form a post-indexed load / store.
729  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
730                                          SDValue &Base, SDValue &Offset,
731                                          ISD::MemIndexedMode &AM,
732                                          SelectionDAG &DAG) const {
733    return false;
734  }
735
736  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
737  /// current function.  The returned value is a member of the
738  /// MachineJumpTableInfo::JTEntryKind enum.
739  virtual unsigned getJumpTableEncoding() const;
740
741  virtual const MCExpr *
742  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
743                            const MachineBasicBlock *MBB, unsigned uid,
744                            MCContext &Ctx) const {
745    assert(0 && "Need to implement this hook if target has custom JTIs");
746    return 0;
747  }
748
749  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
750  /// jumptable.
751  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
752                                           SelectionDAG &DAG) const;
753
754  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
755  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
756  /// MCExpr.
757  virtual const MCExpr *
758  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
759                               unsigned JTI, MCContext &Ctx) const;
760
761  /// isOffsetFoldingLegal - Return true if folding a constant offset
762  /// with the given GlobalAddress is legal.  It is frequently not legal in
763  /// PIC relocation models.
764  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
765
766  /// getFunctionAlignment - Return the Log2 alignment of this function.
767  virtual unsigned getFunctionAlignment(const Function *) const = 0;
768
769  //===--------------------------------------------------------------------===//
770  // TargetLowering Optimization Methods
771  //
772
773  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
774  /// SDValues for returning information from TargetLowering to its clients
775  /// that want to combine
776  struct TargetLoweringOpt {
777    SelectionDAG &DAG;
778    bool ShrinkOps;
779    SDValue Old;
780    SDValue New;
781
782    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool Shrink = false) :
783      DAG(InDAG), ShrinkOps(Shrink) {}
784
785    bool CombineTo(SDValue O, SDValue N) {
786      Old = O;
787      New = N;
788      return true;
789    }
790
791    /// ShrinkDemandedConstant - Check to see if the specified operand of the
792    /// specified instruction is a constant integer.  If so, check to see if
793    /// there are any bits set in the constant that are not demanded.  If so,
794    /// shrink the constant and return true.
795    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
796
797    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
798    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
799    /// cast, but it could be generalized for targets with other types of
800    /// implicit widening casts.
801    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
802                          DebugLoc dl);
803  };
804
805  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
806  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
807  /// use this information to simplify Op, create a new simplified DAG node and
808  /// return true, returning the original and new nodes in Old and New.
809  /// Otherwise, analyze the expression and return a mask of KnownOne and
810  /// KnownZero bits for the expression (used to simplify the caller).
811  /// The KnownZero/One bits may only be accurate for those bits in the
812  /// DemandedMask.
813  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
814                            APInt &KnownZero, APInt &KnownOne,
815                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
816
817  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
818  /// Mask are known to be either zero or one and return them in the
819  /// KnownZero/KnownOne bitsets.
820  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
821                                              const APInt &Mask,
822                                              APInt &KnownZero,
823                                              APInt &KnownOne,
824                                              const SelectionDAG &DAG,
825                                              unsigned Depth = 0) const;
826
827  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
828  /// targets that want to expose additional information about sign bits to the
829  /// DAG Combiner.
830  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
831                                                   unsigned Depth = 0) const;
832
833  struct DAGCombinerInfo {
834    void *DC;  // The DAG Combiner object.
835    bool BeforeLegalize;
836    bool BeforeLegalizeOps;
837    bool CalledByLegalizer;
838  public:
839    SelectionDAG &DAG;
840
841    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
842      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
843        CalledByLegalizer(cl), DAG(dag) {}
844
845    bool isBeforeLegalize() const { return BeforeLegalize; }
846    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
847    bool isCalledByLegalizer() const { return CalledByLegalizer; }
848
849    void AddToWorklist(SDNode *N);
850    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
851                      bool AddTo = true);
852    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
853    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
854
855    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
856  };
857
858  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
859  /// and cc. If it is unable to simplify it, return a null SDValue.
860  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
861                          ISD::CondCode Cond, bool foldBooleans,
862                          DAGCombinerInfo &DCI, DebugLoc dl) const;
863
864  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
865  /// node is a GlobalAddress + offset.
866  virtual bool
867  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
868
869  /// PerformDAGCombine - This method will be invoked for all target nodes and
870  /// for any target-independent nodes that the target has registered with
871  /// invoke it for.
872  ///
873  /// The semantics are as follows:
874  /// Return Value:
875  ///   SDValue.Val == 0   - No change was made
876  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
877  ///   otherwise          - N should be replaced by the returned Operand.
878  ///
879  /// In addition, methods provided by DAGCombinerInfo may be used to perform
880  /// more complex transformations.
881  ///
882  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
883
884  //===--------------------------------------------------------------------===//
885  // TargetLowering Configuration Methods - These methods should be invoked by
886  // the derived class constructor to configure this object for the target.
887  //
888
889protected:
890  /// setShiftAmountType - Describe the type that should be used for shift
891  /// amounts.  This type defaults to the pointer type.
892  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
893
894  /// setBooleanContents - Specify how the target extends the result of a
895  /// boolean value from i1 to a wider type.  See getBooleanContents.
896  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
897
898  /// setSchedulingPreference - Specify the target scheduling preference.
899  void setSchedulingPreference(SchedPreference Pref) {
900    SchedPreferenceInfo = Pref;
901  }
902
903  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
904  /// use _setjmp to implement llvm.setjmp or the non _ version.
905  /// Defaults to false.
906  void setUseUnderscoreSetJmp(bool Val) {
907    UseUnderscoreSetJmp = Val;
908  }
909
910  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
911  /// use _longjmp to implement llvm.longjmp or the non _ version.
912  /// Defaults to false.
913  void setUseUnderscoreLongJmp(bool Val) {
914    UseUnderscoreLongJmp = Val;
915  }
916
917  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
918  /// specifies the register that llvm.savestack/llvm.restorestack should save
919  /// and restore.
920  void setStackPointerRegisterToSaveRestore(unsigned R) {
921    StackPointerRegisterToSaveRestore = R;
922  }
923
924  /// setExceptionPointerRegister - If set to a physical register, this sets
925  /// the register that receives the exception address on entry to a landing
926  /// pad.
927  void setExceptionPointerRegister(unsigned R) {
928    ExceptionPointerRegister = R;
929  }
930
931  /// setExceptionSelectorRegister - If set to a physical register, this sets
932  /// the register that receives the exception typeid on entry to a landing
933  /// pad.
934  void setExceptionSelectorRegister(unsigned R) {
935    ExceptionSelectorRegister = R;
936  }
937
938  /// SelectIsExpensive - Tells the code generator not to expand operations
939  /// into sequences that use the select operations if possible.
940  void setSelectIsExpensive() { SelectIsExpensive = true; }
941
942  /// setIntDivIsCheap - Tells the code generator that integer divide is
943  /// expensive, and if possible, should be replaced by an alternate sequence
944  /// of instructions not containing an integer divide.
945  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
946
947  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
948  /// srl/add/sra for a signed divide by power of two, and let the target handle
949  /// it.
950  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
951
952  /// addRegisterClass - Add the specified register class as an available
953  /// regclass for the specified value type.  This indicates the selector can
954  /// handle values of that class natively.
955  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
956    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
957    AvailableRegClasses.push_back(std::make_pair(VT, RC));
958    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
959  }
960
961  /// computeRegisterProperties - Once all of the register classes are added,
962  /// this allows us to compute derived properties we expose.
963  void computeRegisterProperties();
964
965  /// setOperationAction - Indicate that the specified operation does not work
966  /// with the specified type and indicate what to do about it.
967  void setOperationAction(unsigned Op, MVT VT,
968                          LegalizeAction Action) {
969    unsigned I = (unsigned)VT.SimpleTy;
970    unsigned J = I & 31;
971    I = I >> 5;
972    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
973    OpActions[I][Op] |= (uint64_t)Action << (J*2);
974  }
975
976  /// setLoadExtAction - Indicate that the specified load with extension does
977  /// not work with the specified type and indicate what to do about it.
978  void setLoadExtAction(unsigned ExtType, MVT VT,
979                      LegalizeAction Action) {
980    assert((unsigned)VT.SimpleTy*2 < 63 &&
981           ExtType < array_lengthof(LoadExtActions) &&
982           "Table isn't big enough!");
983    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
984    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
985  }
986
987  /// setTruncStoreAction - Indicate that the specified truncating store does
988  /// not work with the specified type and indicate what to do about it.
989  void setTruncStoreAction(MVT ValVT, MVT MemVT,
990                           LegalizeAction Action) {
991    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
992           (unsigned)MemVT.SimpleTy*2 < 63 &&
993           "Table isn't big enough!");
994    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
995    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
996  }
997
998  /// setIndexedLoadAction - Indicate that the specified indexed load does or
999  /// does not work with the specified type and indicate what to do abort
1000  /// it. NOTE: All indexed mode loads are initialized to Expand in
1001  /// TargetLowering.cpp
1002  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1003                            LegalizeAction Action) {
1004    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1005           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1006           "Table isn't big enough!");
1007    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1008  }
1009
1010  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1011  /// does not work with the specified type and indicate what to do about
1012  /// it. NOTE: All indexed mode stores are initialized to Expand in
1013  /// TargetLowering.cpp
1014  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1015                             LegalizeAction Action) {
1016    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1017           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1018           "Table isn't big enough!");
1019    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1020  }
1021
1022  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1023  /// supported on the target and indicate what to do about it.
1024  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1025                         LegalizeAction Action) {
1026    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1027           (unsigned)CC < array_lengthof(CondCodeActions) &&
1028           "Table isn't big enough!");
1029    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1030    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1031  }
1032
1033  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1034  /// promotion code defaults to trying a larger integer/fp until it can find
1035  /// one that works.  If that default is insufficient, this method can be used
1036  /// by the target to override the default.
1037  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1038    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1039  }
1040
1041  /// setTargetDAGCombine - Targets should invoke this method for each target
1042  /// independent node that they want to provide a custom DAG combiner for by
1043  /// implementing the PerformDAGCombine virtual method.
1044  void setTargetDAGCombine(ISD::NodeType NT) {
1045    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1046    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1047  }
1048
1049  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1050  /// bytes); default is 200
1051  void setJumpBufSize(unsigned Size) {
1052    JumpBufSize = Size;
1053  }
1054
1055  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1056  /// alignment (in bytes); default is 0
1057  void setJumpBufAlignment(unsigned Align) {
1058    JumpBufAlignment = Align;
1059  }
1060
1061  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1062  /// limit (in number of instructions); default is 2.
1063  void setIfCvtBlockSizeLimit(unsigned Limit) {
1064    IfCvtBlockSizeLimit = Limit;
1065  }
1066
1067  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1068  /// of instructions) to be considered for code duplication during
1069  /// if-conversion; default is 2.
1070  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1071    IfCvtDupBlockSizeLimit = Limit;
1072  }
1073
1074  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1075  /// alignment is zero, it means the target does not care about loop alignment.
1076  void setPrefLoopAlignment(unsigned Align) {
1077    PrefLoopAlignment = Align;
1078  }
1079
1080public:
1081
1082  virtual const TargetSubtarget *getSubtarget() {
1083    assert(0 && "Not Implemented");
1084    return NULL;    // this is here to silence compiler errors
1085  }
1086
1087  //===--------------------------------------------------------------------===//
1088  // Lowering methods - These methods must be implemented by targets so that
1089  // the SelectionDAGLowering code knows how to lower these.
1090  //
1091
1092  /// LowerFormalArguments - This hook must be implemented to lower the
1093  /// incoming (formal) arguments, described by the Ins array, into the
1094  /// specified DAG. The implementation should fill in the InVals array
1095  /// with legal-type argument values, and return the resulting token
1096  /// chain value.
1097  ///
1098  virtual SDValue
1099    LowerFormalArguments(SDValue Chain,
1100                         CallingConv::ID CallConv, bool isVarArg,
1101                         const SmallVectorImpl<ISD::InputArg> &Ins,
1102                         DebugLoc dl, SelectionDAG &DAG,
1103                         SmallVectorImpl<SDValue> &InVals) {
1104    assert(0 && "Not Implemented");
1105    return SDValue();    // this is here to silence compiler errors
1106  }
1107
1108  /// LowerCallTo - This function lowers an abstract call to a function into an
1109  /// actual call.  This returns a pair of operands.  The first element is the
1110  /// return value for the function (if RetTy is not VoidTy).  The second
1111  /// element is the outgoing token chain. It calls LowerCall to do the actual
1112  /// lowering.
1113  struct ArgListEntry {
1114    SDValue Node;
1115    const Type* Ty;
1116    bool isSExt  : 1;
1117    bool isZExt  : 1;
1118    bool isInReg : 1;
1119    bool isSRet  : 1;
1120    bool isNest  : 1;
1121    bool isByVal : 1;
1122    uint16_t Alignment;
1123
1124    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1125      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1126  };
1127  typedef std::vector<ArgListEntry> ArgListTy;
1128  std::pair<SDValue, SDValue>
1129  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1130              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1131              CallingConv::ID CallConv, bool isTailCall,
1132              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1133              SelectionDAG &DAG, DebugLoc dl);
1134
1135  /// LowerCall - This hook must be implemented to lower calls into the
1136  /// the specified DAG. The outgoing arguments to the call are described
1137  /// by the Outs array, and the values to be returned by the call are
1138  /// described by the Ins array. The implementation should fill in the
1139  /// InVals array with legal-type return values from the call, and return
1140  /// the resulting token chain value.
1141  virtual SDValue
1142    LowerCall(SDValue Chain, SDValue Callee,
1143              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1144              const SmallVectorImpl<ISD::OutputArg> &Outs,
1145              const SmallVectorImpl<ISD::InputArg> &Ins,
1146              DebugLoc dl, SelectionDAG &DAG,
1147              SmallVectorImpl<SDValue> &InVals) {
1148    assert(0 && "Not Implemented");
1149    return SDValue();    // this is here to silence compiler errors
1150  }
1151
1152  /// CanLowerReturn - This hook should be implemented to check whether the
1153  /// return values described by the Outs array can fit into the return
1154  /// registers.  If false is returned, an sret-demotion is performed.
1155  ///
1156  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1157               const SmallVectorImpl<EVT> &OutTys,
1158               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1159               SelectionDAG &DAG)
1160  {
1161    // Return true by default to get preexisting behavior.
1162    return true;
1163  }
1164  /// LowerReturn - This hook must be implemented to lower outgoing
1165  /// return values, described by the Outs array, into the specified
1166  /// DAG. The implementation should return the resulting token chain
1167  /// value.
1168  ///
1169  virtual SDValue
1170    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1171                const SmallVectorImpl<ISD::OutputArg> &Outs,
1172                DebugLoc dl, SelectionDAG &DAG) {
1173    assert(0 && "Not Implemented");
1174    return SDValue();    // this is here to silence compiler errors
1175  }
1176
1177  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1178  /// memcpy. This can be used by targets to provide code sequences for cases
1179  /// that don't fit the target's parameters for simple loads/stores and can be
1180  /// more efficient than using a library call. This function can return a null
1181  /// SDValue if the target declines to use custom code and a different
1182  /// lowering strategy should be used.
1183  ///
1184  /// If AlwaysInline is true, the size is constant and the target should not
1185  /// emit any calls and is strongly encouraged to attempt to emit inline code
1186  /// even if it is beyond the usual threshold because this intrinsic is being
1187  /// expanded in a place where calls are not feasible (e.g. within the prologue
1188  /// for another call). If the target chooses to decline an AlwaysInline
1189  /// request here, legalize will resort to using simple loads and stores.
1190  virtual SDValue
1191  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1192                          SDValue Chain,
1193                          SDValue Op1, SDValue Op2,
1194                          SDValue Op3, unsigned Align, bool isVolatile,
1195                          bool AlwaysInline,
1196                          const Value *DstSV, uint64_t DstOff,
1197                          const Value *SrcSV, uint64_t SrcOff) {
1198    return SDValue();
1199  }
1200
1201  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1202  /// memmove. This can be used by targets to provide code sequences for cases
1203  /// that don't fit the target's parameters for simple loads/stores and can be
1204  /// more efficient than using a library call. This function can return a null
1205  /// SDValue if the target declines to use custom code and a different
1206  /// lowering strategy should be used.
1207  virtual SDValue
1208  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1209                           SDValue Chain,
1210                           SDValue Op1, SDValue Op2,
1211                           SDValue Op3, unsigned Align, bool isVolatile,
1212                           const Value *DstSV, uint64_t DstOff,
1213                           const Value *SrcSV, uint64_t SrcOff) {
1214    return SDValue();
1215  }
1216
1217  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1218  /// memset. This can be used by targets to provide code sequences for cases
1219  /// that don't fit the target's parameters for simple stores and can be more
1220  /// efficient than using a library call. This function can return a null
1221  /// SDValue if the target declines to use custom code and a different
1222  /// lowering strategy should be used.
1223  virtual SDValue
1224  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1225                          SDValue Chain,
1226                          SDValue Op1, SDValue Op2,
1227                          SDValue Op3, unsigned Align, bool isVolatile,
1228                          const Value *DstSV, uint64_t DstOff) {
1229    return SDValue();
1230  }
1231
1232  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1233  /// to legalize nodes with an illegal operand type but legal result types.
1234  /// It replaces the LowerOperation callback in the type Legalizer.
1235  /// The reason we can not do away with LowerOperation entirely is that
1236  /// LegalizeDAG isn't yet ready to use this callback.
1237  /// TODO: Consider merging with ReplaceNodeResults.
1238
1239  /// The target places new result values for the node in Results (their number
1240  /// and types must exactly match those of the original return values of
1241  /// the node), or leaves Results empty, which indicates that the node is not
1242  /// to be custom lowered after all.
1243  /// The default implementation calls LowerOperation.
1244  virtual void LowerOperationWrapper(SDNode *N,
1245                                     SmallVectorImpl<SDValue> &Results,
1246                                     SelectionDAG &DAG);
1247
1248  /// LowerOperation - This callback is invoked for operations that are
1249  /// unsupported by the target, which are registered to use 'custom' lowering,
1250  /// and whose defined values are all legal.
1251  /// If the target has no operations that require custom lowering, it need not
1252  /// implement this.  The default implementation of this aborts.
1253  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1254
1255  /// ReplaceNodeResults - This callback is invoked when a node result type is
1256  /// illegal for the target, and the operation was registered to use 'custom'
1257  /// lowering for that result type.  The target places new result values for
1258  /// the node in Results (their number and types must exactly match those of
1259  /// the original return values of the node), or leaves Results empty, which
1260  /// indicates that the node is not to be custom lowered after all.
1261  ///
1262  /// If the target has no operations that require custom lowering, it need not
1263  /// implement this.  The default implementation aborts.
1264  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1265                                  SelectionDAG &DAG) {
1266    assert(0 && "ReplaceNodeResults not implemented for this target!");
1267  }
1268
1269  /// getTargetNodeName() - This method returns the name of a target specific
1270  /// DAG node.
1271  virtual const char *getTargetNodeName(unsigned Opcode) const;
1272
1273  /// createFastISel - This method returns a target specific FastISel object,
1274  /// or null if the target does not support "fast" ISel.
1275  virtual FastISel *
1276  createFastISel(MachineFunction &,
1277                 DenseMap<const Value *, unsigned> &,
1278                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1279                 DenseMap<const AllocaInst *, int> &
1280#ifndef NDEBUG
1281                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1282#endif
1283                 ) {
1284    return 0;
1285  }
1286
1287  //===--------------------------------------------------------------------===//
1288  // Inline Asm Support hooks
1289  //
1290
1291  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1292  /// call to be explicit llvm code if it wants to.  This is useful for
1293  /// turning simple inline asms into LLVM intrinsics, which gives the
1294  /// compiler more information about the behavior of the code.
1295  virtual bool ExpandInlineAsm(CallInst *CI) const {
1296    return false;
1297  }
1298
1299  enum ConstraintType {
1300    C_Register,            // Constraint represents specific register(s).
1301    C_RegisterClass,       // Constraint represents any of register(s) in class.
1302    C_Memory,              // Memory constraint.
1303    C_Other,               // Something else.
1304    C_Unknown              // Unsupported constraint.
1305  };
1306
1307  /// AsmOperandInfo - This contains information for each constraint that we are
1308  /// lowering.
1309  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1310    /// ConstraintCode - This contains the actual string for the code, like "m".
1311    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1312    /// most closely matches the operand.
1313    std::string ConstraintCode;
1314
1315    /// ConstraintType - Information about the constraint code, e.g. Register,
1316    /// RegisterClass, Memory, Other, Unknown.
1317    TargetLowering::ConstraintType ConstraintType;
1318
1319    /// CallOperandval - If this is the result output operand or a
1320    /// clobber, this is null, otherwise it is the incoming operand to the
1321    /// CallInst.  This gets modified as the asm is processed.
1322    Value *CallOperandVal;
1323
1324    /// ConstraintVT - The ValueType for the operand value.
1325    EVT ConstraintVT;
1326
1327    /// isMatchingInputConstraint - Return true of this is an input operand that
1328    /// is a matching constraint like "4".
1329    bool isMatchingInputConstraint() const;
1330
1331    /// getMatchedOperand - If this is an input matching constraint, this method
1332    /// returns the output operand it matches.
1333    unsigned getMatchedOperand() const;
1334
1335    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1336      : InlineAsm::ConstraintInfo(info),
1337        ConstraintType(TargetLowering::C_Unknown),
1338        CallOperandVal(0), ConstraintVT(MVT::Other) {
1339    }
1340  };
1341
1342  /// ComputeConstraintToUse - Determines the constraint code and constraint
1343  /// type to use for the specific AsmOperandInfo, setting
1344  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1345  /// being passed in is available, it can be passed in as Op, otherwise an
1346  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1347  /// constraint of the inline asm instruction being processed is 'm'.
1348  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1349                                      SDValue Op,
1350                                      bool hasMemory,
1351                                      SelectionDAG *DAG = 0) const;
1352
1353  /// getConstraintType - Given a constraint, return the type of constraint it
1354  /// is for this target.
1355  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1356
1357  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1358  /// return a list of registers that can be used to satisfy the constraint.
1359  /// This should only be used for C_RegisterClass constraints.
1360  virtual std::vector<unsigned>
1361  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1362                                    EVT VT) const;
1363
1364  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1365  /// {edx}), return the register number and the register class for the
1366  /// register.
1367  ///
1368  /// Given a register class constraint, like 'r', if this corresponds directly
1369  /// to an LLVM register class, return a register of 0 and the register class
1370  /// pointer.
1371  ///
1372  /// This should only be used for C_Register constraints.  On error,
1373  /// this returns a register number of 0 and a null register class pointer..
1374  virtual std::pair<unsigned, const TargetRegisterClass*>
1375    getRegForInlineAsmConstraint(const std::string &Constraint,
1376                                 EVT VT) const;
1377
1378  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1379  /// with another that has more specific requirements based on the type of the
1380  /// corresponding operand.  This returns null if there is no replacement to
1381  /// make.
1382  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1383
1384  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1385  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1386  /// it means one of the asm constraint of the inline asm instruction being
1387  /// processed is 'm'.
1388  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1389                                            bool hasMemory,
1390                                            std::vector<SDValue> &Ops,
1391                                            SelectionDAG &DAG) const;
1392
1393  //===--------------------------------------------------------------------===//
1394  // Instruction Emitting Hooks
1395  //
1396
1397  // EmitInstrWithCustomInserter - This method should be implemented by targets
1398  // that mark instructions with the 'usesCustomInserter' flag.  These
1399  // instructions are special in various ways, which require special support to
1400  // insert.  The specified MachineInstr is created but not inserted into any
1401  // basic blocks, and this method is called to expand it into a sequence of
1402  // instructions, potentially also creating new basic blocks and control flow.
1403  // When new basic blocks are inserted and the edges from MBB to its successors
1404  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1405  // DenseMap.
1406  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1407                                                         MachineBasicBlock *MBB,
1408                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1409
1410  //===--------------------------------------------------------------------===//
1411  // Addressing mode description hooks (used by LSR etc).
1412  //
1413
1414  /// AddrMode - This represents an addressing mode of:
1415  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1416  /// If BaseGV is null,  there is no BaseGV.
1417  /// If BaseOffs is zero, there is no base offset.
1418  /// If HasBaseReg is false, there is no base register.
1419  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1420  /// no scale.
1421  ///
1422  struct AddrMode {
1423    GlobalValue *BaseGV;
1424    int64_t      BaseOffs;
1425    bool         HasBaseReg;
1426    int64_t      Scale;
1427    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1428  };
1429
1430  /// isLegalAddressingMode - Return true if the addressing mode represented by
1431  /// AM is legal for this target, for a load/store of the specified type.
1432  /// The type may be VoidTy, in which case only return true if the addressing
1433  /// mode is legal for a load/store of any legal type.
1434  /// TODO: Handle pre/postinc as well.
1435  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1436
1437  /// isTruncateFree - Return true if it's free to truncate a value of
1438  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1439  /// register EAX to i16 by referencing its sub-register AX.
1440  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1441    return false;
1442  }
1443
1444  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1445    return false;
1446  }
1447
1448  /// isZExtFree - Return true if any actual instruction that defines a
1449  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1450  /// register. This does not necessarily include registers defined in
1451  /// unknown ways, such as incoming arguments, or copies from unknown
1452  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1453  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1454  /// all instructions that define 32-bit values implicit zero-extend the
1455  /// result out to 64 bits.
1456  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1457    return false;
1458  }
1459
1460  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1461    return false;
1462  }
1463
1464  /// isNarrowingProfitable - Return true if it's profitable to narrow
1465  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1466  /// from i32 to i8 but not from i32 to i16.
1467  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1468    return false;
1469  }
1470
1471  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1472  /// icmp immediate, that is the target has icmp instructions which can compare
1473  /// a register against the immediate without having to materialize the
1474  /// immediate into a register.
1475  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1476    return true;
1477  }
1478
1479  //===--------------------------------------------------------------------===//
1480  // Div utility functions
1481  //
1482  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1483                      std::vector<SDNode*>* Created) const;
1484  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1485                      std::vector<SDNode*>* Created) const;
1486
1487
1488  //===--------------------------------------------------------------------===//
1489  // Runtime Library hooks
1490  //
1491
1492  /// setLibcallName - Rename the default libcall routine name for the specified
1493  /// libcall.
1494  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1495    LibcallRoutineNames[Call] = Name;
1496  }
1497
1498  /// getLibcallName - Get the libcall routine name for the specified libcall.
1499  ///
1500  const char *getLibcallName(RTLIB::Libcall Call) const {
1501    return LibcallRoutineNames[Call];
1502  }
1503
1504  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1505  /// result of the comparison libcall against zero.
1506  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1507    CmpLibcallCCs[Call] = CC;
1508  }
1509
1510  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1511  /// the comparison libcall against zero.
1512  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1513    return CmpLibcallCCs[Call];
1514  }
1515
1516  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1517  /// specified libcall.
1518  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1519    LibcallCallingConvs[Call] = CC;
1520  }
1521
1522  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1523  /// specified libcall.
1524  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1525    return LibcallCallingConvs[Call];
1526  }
1527
1528private:
1529  TargetMachine &TM;
1530  const TargetData *TD;
1531  TargetLoweringObjectFile &TLOF;
1532
1533  /// PointerTy - The type to use for pointers, usually i32 or i64.
1534  ///
1535  MVT PointerTy;
1536
1537  /// IsLittleEndian - True if this is a little endian target.
1538  ///
1539  bool IsLittleEndian;
1540
1541  /// SelectIsExpensive - Tells the code generator not to expand operations
1542  /// into sequences that use the select operations if possible.
1543  bool SelectIsExpensive;
1544
1545  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1546  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1547  /// a real cost model is in place.  If we ever optimize for size, this will be
1548  /// set to true unconditionally.
1549  bool IntDivIsCheap;
1550
1551  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1552  /// srl/add/sra for a signed divide by power of two, and let the target handle
1553  /// it.
1554  bool Pow2DivIsCheap;
1555
1556  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1557  /// llvm.setjmp.  Defaults to false.
1558  bool UseUnderscoreSetJmp;
1559
1560  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1561  /// llvm.longjmp.  Defaults to false.
1562  bool UseUnderscoreLongJmp;
1563
1564  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1565  /// PointerTy is.
1566  MVT ShiftAmountTy;
1567
1568  /// BooleanContents - Information about the contents of the high-bits in
1569  /// boolean values held in a type wider than i1.  See getBooleanContents.
1570  BooleanContent BooleanContents;
1571
1572  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1573  /// total cycles or lowest register usage.
1574  SchedPreference SchedPreferenceInfo;
1575
1576  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1577  unsigned JumpBufSize;
1578
1579  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1580  /// buffers
1581  unsigned JumpBufAlignment;
1582
1583  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1584  /// if-converted.
1585  unsigned IfCvtBlockSizeLimit;
1586
1587  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1588  /// duplicated during if-conversion.
1589  unsigned IfCvtDupBlockSizeLimit;
1590
1591  /// PrefLoopAlignment - The perferred loop alignment.
1592  ///
1593  unsigned PrefLoopAlignment;
1594
1595  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1596  /// specifies the register that llvm.savestack/llvm.restorestack should save
1597  /// and restore.
1598  unsigned StackPointerRegisterToSaveRestore;
1599
1600  /// ExceptionPointerRegister - If set to a physical register, this specifies
1601  /// the register that receives the exception address on entry to a landing
1602  /// pad.
1603  unsigned ExceptionPointerRegister;
1604
1605  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1606  /// the register that receives the exception typeid on entry to a landing
1607  /// pad.
1608  unsigned ExceptionSelectorRegister;
1609
1610  /// RegClassForVT - This indicates the default register class to use for
1611  /// each ValueType the target supports natively.
1612  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1613  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1614  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1615
1616  /// TransformToType - For any value types we are promoting or expanding, this
1617  /// contains the value type that we are changing to.  For Expanded types, this
1618  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1619  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1620  /// by the system, this holds the same type (e.g. i32 -> i32).
1621  EVT TransformToType[MVT::LAST_VALUETYPE];
1622
1623  /// OpActions - For each operation and each value type, keep a LegalizeAction
1624  /// that indicates how instruction selection should deal with the operation.
1625  /// Most operations are Legal (aka, supported natively by the target), but
1626  /// operations that are not should be described.  Note that operations on
1627  /// non-legal value types are not described here.
1628  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1629  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1630  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1631
1632  /// LoadExtActions - For each load of load extension type and each value type,
1633  /// keep a LegalizeAction that indicates how instruction selection should deal
1634  /// with the load.
1635  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1636
1637  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1638  /// indicates how instruction selection should deal with the store.
1639  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1640
1641  /// IndexedModeActions - For each indexed mode and each value type,
1642  /// keep a pair of LegalizeAction that indicates how instruction
1643  /// selection should deal with the load / store.  The first
1644  /// dimension is now the value_type for the reference.  The second
1645  /// dimension is the load [0] vs. store[1].  The third dimension
1646  /// represents the various modes for load store.
1647  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1648
1649  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1650  /// LegalizeAction that indicates how instruction selection should
1651  /// deal with the condition code.
1652  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1653
1654  ValueTypeActionImpl ValueTypeActions;
1655
1656  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1657
1658  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1659  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1660  /// which sets a bit in this array.
1661  unsigned char
1662  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1663
1664  /// PromoteToType - For operations that must be promoted to a specific type,
1665  /// this holds the destination type.  This map should be sparse, so don't hold
1666  /// it as an array.
1667  ///
1668  /// Targets add entries to this map with AddPromotedToType(..), clients access
1669  /// this with getTypeToPromoteTo(..).
1670  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1671    PromoteToType;
1672
1673  /// LibcallRoutineNames - Stores the name each libcall.
1674  ///
1675  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1676
1677  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1678  /// of each of the comparison libcall against zero.
1679  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1680
1681  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1682  /// libcall.
1683  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1684
1685protected:
1686  /// When lowering \@llvm.memset this field specifies the maximum number of
1687  /// store operations that may be substituted for the call to memset. Targets
1688  /// must set this value based on the cost threshold for that target. Targets
1689  /// should assume that the memset will be done using as many of the largest
1690  /// store operations first, followed by smaller ones, if necessary, per
1691  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1692  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1693  /// store.  This only applies to setting a constant array of a constant size.
1694  /// @brief Specify maximum number of store instructions per memset call.
1695  unsigned maxStoresPerMemset;
1696
1697  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1698  /// store operations that may be substituted for a call to memcpy. Targets
1699  /// must set this value based on the cost threshold for that target. Targets
1700  /// should assume that the memcpy will be done using as many of the largest
1701  /// store operations first, followed by smaller ones, if necessary, per
1702  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1703  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1704  /// and one 1-byte store. This only applies to copying a constant array of
1705  /// constant size.
1706  /// @brief Specify maximum bytes of store instructions per memcpy call.
1707  unsigned maxStoresPerMemcpy;
1708
1709  /// When lowering \@llvm.memmove this field specifies the maximum number of
1710  /// store instructions that may be substituted for a call to memmove. Targets
1711  /// must set this value based on the cost threshold for that target. Targets
1712  /// should assume that the memmove will be done using as many of the largest
1713  /// store operations first, followed by smaller ones, if necessary, per
1714  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1715  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1716  /// applies to copying a constant array of constant size.
1717  /// @brief Specify maximum bytes of store instructions per memmove call.
1718  unsigned maxStoresPerMemmove;
1719
1720  /// This field specifies whether the target can benefit from code placement
1721  /// optimization.
1722  bool benefitFromCodePlacementOpt;
1723};
1724} // end llvm namespace
1725
1726#endif
1727