TargetLowering.h revision 4bfcd4acbc7d12aa55f8de9af84a38422f0f6d83
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class CallInst;
40  class CCState;
41  class FastISel;
42  class FunctionLoweringInfo;
43  class ImmutableCallSite;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineInstr;
47  class MachineJumpTableInfo;
48  class MCContext;
49  class MCExpr;
50  template<typename T> class SmallVectorImpl;
51  class TargetData;
52  class TargetRegisterClass;
53  class TargetLoweringObjectFile;
54  class Value;
55
56  namespace Sched {
57    enum Preference {
58      None,             // No preference
59      Source,           // Follow source order.
60      RegPressure,      // Scheduling for lowest register pressure.
61      Hybrid,           // Scheduling for both latency and register pressure.
62      ILP,              // Scheduling for ILP in low register pressure mode.
63      VLIW              // Scheduling for VLIW targets.
64    };
65  }
66
67  // FIXME: should this be here?
68  namespace TLSModel {
69    enum Model {
70      GeneralDynamic,
71      LocalDynamic,
72      InitialExec,
73      LocalExec
74    };
75  }
76  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
77
78
79//===----------------------------------------------------------------------===//
80/// TargetLowering - This class defines information used to lower LLVM code to
81/// legal SelectionDAG operators that the target instruction selector can accept
82/// natively.
83///
84/// This class also defines callbacks that targets must implement to lower
85/// target-specific constructs to SelectionDAG operators.
86///
87class TargetLowering {
88  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
89  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
90public:
91  /// LegalizeAction - This enum indicates whether operations are valid for a
92  /// target, and if not, what action should be used to make them valid.
93  enum LegalizeAction {
94    Legal,      // The target natively supports this operation.
95    Promote,    // This operation should be executed in a larger type.
96    Expand,     // Try to expand this to other ops, otherwise use a libcall.
97    Custom      // Use the LowerOperation hook to implement custom lowering.
98  };
99
100  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
101  /// target, and if not, what action should be used to make them valid.
102  enum LegalizeTypeAction {
103    TypeLegal,           // The target natively supports this type.
104    TypePromoteInteger,  // Replace this integer with a larger one.
105    TypeExpandInteger,   // Split this integer into two of half the size.
106    TypeSoftenFloat,     // Convert this float to a same size integer type.
107    TypeExpandFloat,     // Split this float into two of half the size.
108    TypeScalarizeVector, // Replace this one-element vector with its element.
109    TypeSplitVector,     // Split this vector into two of half the size.
110    TypeWidenVector      // This vector should be widened into a larger vector.
111  };
112
113  enum BooleanContent { // How the target represents true/false values.
114    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
115    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
116    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
117  };
118
119  static ISD::NodeType getExtendForContent(BooleanContent Content) {
120    switch (Content) {
121    case UndefinedBooleanContent:
122      // Extend by adding rubbish bits.
123      return ISD::ANY_EXTEND;
124    case ZeroOrOneBooleanContent:
125      // Extend by adding zero bits.
126      return ISD::ZERO_EXTEND;
127    case ZeroOrNegativeOneBooleanContent:
128      // Extend by copying the sign bit.
129      return ISD::SIGN_EXTEND;
130    }
131    llvm_unreachable("Invalid content kind");
132  }
133
134  /// NOTE: The constructor takes ownership of TLOF.
135  explicit TargetLowering(const TargetMachine &TM,
136                          const TargetLoweringObjectFile *TLOF);
137  virtual ~TargetLowering();
138
139  const TargetMachine &getTargetMachine() const { return TM; }
140  const TargetData *getTargetData() const { return TD; }
141  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
142
143  bool isBigEndian() const { return !IsLittleEndian; }
144  bool isLittleEndian() const { return IsLittleEndian; }
145  MVT getPointerTy() const { return PointerTy; }
146  virtual MVT getShiftAmountTy(EVT LHSTy) const;
147
148  /// isSelectExpensive - Return true if the select operation is expensive for
149  /// this target.
150  bool isSelectExpensive() const { return SelectIsExpensive; }
151
152  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
153  /// a sequence of several shifts, adds, and multiplies for this target.
154  bool isIntDivCheap() const { return IntDivIsCheap; }
155
156  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
157  /// srl/add/sra.
158  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
159
160  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
161  /// that should be avoided.
162  bool isJumpExpensive() const { return JumpIsExpensive; }
163
164  /// getSetCCResultType - Return the ValueType of the result of SETCC
165  /// operations.  Also used to obtain the target's preferred type for
166  /// the condition operand of SELECT and BRCOND nodes.  In the case of
167  /// BRCOND the argument passed is MVT::Other since there are no other
168  /// operands to get a type hint from.
169  virtual EVT getSetCCResultType(EVT VT) const;
170
171  /// getCmpLibcallReturnType - Return the ValueType for comparison
172  /// libcalls. Comparions libcalls include floating point comparion calls,
173  /// and Ordered/Unordered check calls on floating point numbers.
174  virtual
175  MVT::SimpleValueType getCmpLibcallReturnType() const;
176
177  /// getBooleanContents - For targets without i1 registers, this gives the
178  /// nature of the high-bits of boolean values held in types wider than i1.
179  /// "Boolean values" are special true/false values produced by nodes like
180  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
181  /// Not to be confused with general values promoted from i1.
182  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
183  /// parameter selects between the two kinds.  For example on X86 a scalar
184  /// boolean should be zero extended from i1, while the elements of a vector
185  /// of booleans should be sign extended from i1.
186  BooleanContent getBooleanContents(bool isVec) const {
187    return isVec ? BooleanVectorContents : BooleanContents;
188  }
189
190  /// getSchedulingPreference - Return target scheduling preference.
191  Sched::Preference getSchedulingPreference() const {
192    return SchedPreferenceInfo;
193  }
194
195  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
196  /// different scheduling heuristics for different nodes. This function returns
197  /// the preference (or none) for the given node.
198  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
199    return Sched::None;
200  }
201
202  /// getRegClassFor - Return the register class that should be used for the
203  /// specified value type.
204  virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
205    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
206    const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
207    assert(RC && "This value type is not natively supported!");
208    return RC;
209  }
210
211  /// getRepRegClassFor - Return the 'representative' register class for the
212  /// specified value type. The 'representative' register class is the largest
213  /// legal super-reg register class for the register class of the value type.
214  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
215  /// while the rep register class is GR64 on x86_64.
216  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
217    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
218    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
219    return RC;
220  }
221
222  /// getRepRegClassCostFor - Return the cost of the 'representative' register
223  /// class for the specified value type.
224  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
225    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
226    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
227  }
228
229  /// isTypeLegal - Return true if the target has native support for the
230  /// specified value type.  This means that it has a register that directly
231  /// holds it without promotions or expansions.
232  bool isTypeLegal(EVT VT) const {
233    assert(!VT.isSimple() ||
234           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
235    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
236  }
237
238  class ValueTypeActionImpl {
239    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
240    /// that indicates how instruction selection should deal with the type.
241    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
242
243  public:
244    ValueTypeActionImpl() {
245      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
246    }
247
248    LegalizeTypeAction getTypeAction(MVT VT) const {
249      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
250    }
251
252    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
253      unsigned I = VT.getSimpleVT().SimpleTy;
254      ValueTypeActions[I] = Action;
255    }
256  };
257
258  const ValueTypeActionImpl &getValueTypeActions() const {
259    return ValueTypeActions;
260  }
261
262  /// getTypeAction - Return how we should legalize values of this type, either
263  /// it is already legal (return 'Legal') or we need to promote it to a larger
264  /// type (return 'Promote'), or we need to expand it into multiple registers
265  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
266  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
267    return getTypeConversion(Context, VT).first;
268  }
269  LegalizeTypeAction getTypeAction(MVT VT) const {
270    return ValueTypeActions.getTypeAction(VT);
271  }
272
273  /// getTypeToTransformTo - For types supported by the target, this is an
274  /// identity function.  For types that must be promoted to larger types, this
275  /// returns the larger type to promote to.  For integer types that are larger
276  /// than the largest integer register, this contains one step in the expansion
277  /// to get to the smaller register. For illegal floating point types, this
278  /// returns the integer type to transform to.
279  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
280    return getTypeConversion(Context, VT).second;
281  }
282
283  /// getTypeToExpandTo - For types supported by the target, this is an
284  /// identity function.  For types that must be expanded (i.e. integer types
285  /// that are larger than the largest integer register or illegal floating
286  /// point types), this returns the largest legal type it will be expanded to.
287  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
288    assert(!VT.isVector());
289    while (true) {
290      switch (getTypeAction(Context, VT)) {
291      case TypeLegal:
292        return VT;
293      case TypeExpandInteger:
294        VT = getTypeToTransformTo(Context, VT);
295        break;
296      default:
297        llvm_unreachable("Type is not legal nor is it to be expanded!");
298      }
299    }
300  }
301
302  /// getVectorTypeBreakdown - Vector types are broken down into some number of
303  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306  ///
307  /// This method returns the number of registers needed, and the VT for each
308  /// register.  It also returns the VT and quantity of the intermediate values
309  /// before they are promoted/expanded.
310  ///
311  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                  EVT &IntermediateVT,
313                                  unsigned &NumIntermediates,
314                                  EVT &RegisterVT) const;
315
316  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318  /// this is the case, it returns true and store the intrinsic
319  /// information into the IntrinsicInfo that was passed to the function.
320  struct IntrinsicInfo {
321    unsigned     opc;         // target opcode
322    EVT          memVT;       // memory VT
323    const Value* ptrVal;      // value representing memory location
324    int          offset;      // offset off of ptrVal
325    unsigned     align;       // alignment
326    bool         vol;         // is volatile?
327    bool         readMem;     // reads memory?
328    bool         writeMem;    // writes memory?
329  };
330
331  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
332                                  unsigned /*Intrinsic*/) const {
333    return false;
334  }
335
336  /// isFPImmLegal - Returns true if the target can instruction select the
337  /// specified FP immediate natively. If false, the legalizer will materialize
338  /// the FP immediate as a load from a constant pool.
339  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
340    return false;
341  }
342
343  /// isShuffleMaskLegal - Targets can use this to indicate that they only
344  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346  /// are assumed to be legal.
347  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
348                                  EVT /*VT*/) const {
349    return true;
350  }
351
352  /// canOpTrap - Returns true if the operation can trap for the value type.
353  /// VT must be a legal type. By default, we optimistically assume most
354  /// operations don't trap except for divide and remainder.
355  virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358  /// used by Targets can use this to indicate if there is a suitable
359  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360  /// pool entry.
361  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
362                                      EVT /*VT*/) const {
363    return false;
364  }
365
366  /// getOperationAction - Return how this operation should be treated: either
367  /// it is legal, needs to be promoted to a larger size, needs to be
368  /// expanded to some other code sequence, or the target has a custom expander
369  /// for it.
370  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371    if (VT.isExtended()) return Expand;
372    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374    return (LegalizeAction)OpActions[I][Op];
375  }
376
377  /// isOperationLegalOrCustom - Return true if the specified operation is
378  /// legal on this target or can be made legal with custom lowering. This
379  /// is used to help guide high-level lowering decisions.
380  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382      (getOperationAction(Op, VT) == Legal ||
383       getOperationAction(Op, VT) == Custom);
384  }
385
386  /// isOperationLegal - Return true if the specified operation is legal on this
387  /// target.
388  bool isOperationLegal(unsigned Op, EVT VT) const {
389    return (VT == MVT::Other || isTypeLegal(VT)) &&
390           getOperationAction(Op, VT) == Legal;
391  }
392
393  /// getLoadExtAction - Return how this load with extension should be treated:
394  /// either it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
400           "Table isn't big enough!");
401    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402  }
403
404  /// isLoadExtLegal - Return true if the specified load with extension is legal
405  /// on this target.
406  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
408  }
409
410  /// getTruncStoreAction - Return how this store with truncation should be
411  /// treated: either it is legal, needs to be promoted to a larger size, needs
412  /// to be expanded to some other code sequence, or the target has a custom
413  /// expander for it.
414  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
415    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
417           "Table isn't big enough!");
418    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
419                                            [MemVT.getSimpleVT().SimpleTy];
420  }
421
422  /// isTruncStoreLegal - Return true if the specified store with truncation is
423  /// legal on this target.
424  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425    return isTypeLegal(ValVT) && MemVT.isSimple() &&
426           getTruncStoreAction(ValVT, MemVT) == Legal;
427  }
428
429  /// getIndexedLoadAction - Return how the indexed load should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
440  }
441
442  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedLoadAction(IdxMode, VT) == Legal ||
447       getIndexedLoadAction(IdxMode, VT) == Custom);
448  }
449
450  /// getIndexedStoreAction - Return how the indexed store should be treated:
451  /// either it is legal, needs to be promoted to a larger size, needs to be
452  /// expanded to some other code sequence, or the target has a custom expander
453  /// for it.
454  LegalizeAction
455  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
457           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
460    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
461  }
462
463  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464  /// on this target.
465  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466    return VT.isSimple() &&
467      (getIndexedStoreAction(IdxMode, VT) == Legal ||
468       getIndexedStoreAction(IdxMode, VT) == Custom);
469  }
470
471  /// getCondCodeAction - Return how the condition code should be treated:
472  /// either it is legal, needs to be expanded to some other code sequence,
473  /// or the target has a custom expander for it.
474  LegalizeAction
475  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478           "Table isn't big enough!");
479    LegalizeAction Action = (LegalizeAction)
480      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481    assert(Action != Promote && "Can't promote condition code!");
482    return Action;
483  }
484
485  /// isCondCodeLegal - Return true if the specified condition code is legal
486  /// on this target.
487  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488    return getCondCodeAction(CC, VT) == Legal ||
489           getCondCodeAction(CC, VT) == Custom;
490  }
491
492
493  /// getTypeToPromoteTo - If the action for this operation is to promote, this
494  /// method returns the ValueType to promote to.
495  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496    assert(getOperationAction(Op, VT) == Promote &&
497           "This operation isn't promoted!");
498
499    // See if this has an explicit type specified.
500    std::map<std::pair<unsigned, MVT::SimpleValueType>,
501             MVT::SimpleValueType>::const_iterator PTTI =
502      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503    if (PTTI != PromoteToType.end()) return PTTI->second;
504
505    assert((VT.isInteger() || VT.isFloatingPoint()) &&
506           "Cannot autopromote this type, add it with AddPromotedToType.");
507
508    EVT NVT = VT;
509    do {
510      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512             "Didn't find type to promote to!");
513    } while (!isTypeLegal(NVT) ||
514              getOperationAction(Op, NVT) == Promote);
515    return NVT;
516  }
517
518  /// getValueType - Return the EVT corresponding to this LLVM type.
519  /// This is fixed by the LLVM operations except for the pointer size.  If
520  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521  /// counterpart (e.g. structs), otherwise it will assert.
522  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
523    // Lower scalar pointers to native pointer types.
524    if (Ty->isPointerTy()) return PointerTy;
525
526    if (Ty->isVectorTy()) {
527      VectorType *VTy = cast<VectorType>(Ty);
528      Type *Elm = VTy->getElementType();
529      // Lower vectors of pointers to native pointer types.
530      if (Elm->isPointerTy())
531        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
532      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
533                       VTy->getNumElements());
534    }
535    return EVT::getEVT(Ty, AllowUnknown);
536  }
537
538  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
539  /// function arguments in the caller parameter area.  This is the actual
540  /// alignment, not its logarithm.
541  virtual unsigned getByValTypeAlignment(Type *Ty) const;
542
543  /// getRegisterType - Return the type of registers that this ValueType will
544  /// eventually require.
545  EVT getRegisterType(MVT VT) const {
546    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
547    return RegisterTypeForVT[VT.SimpleTy];
548  }
549
550  /// getRegisterType - Return the type of registers that this ValueType will
551  /// eventually require.
552  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
553    if (VT.isSimple()) {
554      assert((unsigned)VT.getSimpleVT().SimpleTy <
555                array_lengthof(RegisterTypeForVT));
556      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
557    }
558    if (VT.isVector()) {
559      EVT VT1, RegisterVT;
560      unsigned NumIntermediates;
561      (void)getVectorTypeBreakdown(Context, VT, VT1,
562                                   NumIntermediates, RegisterVT);
563      return RegisterVT;
564    }
565    if (VT.isInteger()) {
566      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
567    }
568    llvm_unreachable("Unsupported extended type!");
569  }
570
571  /// getNumRegisters - Return the number of registers that this ValueType will
572  /// eventually require.  This is one for any types promoted to live in larger
573  /// registers, but may be more than one for types (like i64) that are split
574  /// into pieces.  For types like i140, which are first promoted then expanded,
575  /// it is the number of registers needed to hold all the bits of the original
576  /// type.  For an i140 on a 32 bit machine this means 5 registers.
577  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
578    if (VT.isSimple()) {
579      assert((unsigned)VT.getSimpleVT().SimpleTy <
580                array_lengthof(NumRegistersForVT));
581      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
582    }
583    if (VT.isVector()) {
584      EVT VT1, VT2;
585      unsigned NumIntermediates;
586      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
587    }
588    if (VT.isInteger()) {
589      unsigned BitWidth = VT.getSizeInBits();
590      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
591      return (BitWidth + RegWidth - 1) / RegWidth;
592    }
593    llvm_unreachable("Unsupported extended type!");
594  }
595
596  /// ShouldShrinkFPConstant - If true, then instruction selection should
597  /// seek to shrink the FP constant of the specified type to a smaller type
598  /// in order to save space and / or reduce runtime.
599  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
600
601  /// hasTargetDAGCombine - If true, the target has custom DAG combine
602  /// transformations that it can perform for the specified node.
603  bool hasTargetDAGCombine(ISD::NodeType NT) const {
604    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
605    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
606  }
607
608  /// This function returns the maximum number of store operations permitted
609  /// to replace a call to llvm.memset. The value is set by the target at the
610  /// performance threshold for such a replacement. If OptSize is true,
611  /// return the limit for functions that have OptSize attribute.
612  /// @brief Get maximum # of store operations permitted for llvm.memset
613  unsigned getMaxStoresPerMemset(bool OptSize) const {
614    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
615  }
616
617  /// This function returns the maximum number of store operations permitted
618  /// to replace a call to llvm.memcpy. The value is set by the target at the
619  /// performance threshold for such a replacement. If OptSize is true,
620  /// return the limit for functions that have OptSize attribute.
621  /// @brief Get maximum # of store operations permitted for llvm.memcpy
622  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
623    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
624  }
625
626  /// This function returns the maximum number of store operations permitted
627  /// to replace a call to llvm.memmove. The value is set by the target at the
628  /// performance threshold for such a replacement. If OptSize is true,
629  /// return the limit for functions that have OptSize attribute.
630  /// @brief Get maximum # of store operations permitted for llvm.memmove
631  unsigned getMaxStoresPerMemmove(bool OptSize) const {
632    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
633  }
634
635  /// This function returns true if the target allows unaligned memory accesses.
636  /// of the specified type. This is used, for example, in situations where an
637  /// array copy/move/set is  converted to a sequence of store operations. It's
638  /// use helps to ensure that such replacements don't generate code that causes
639  /// an alignment error  (trap) on the target machine.
640  /// @brief Determine if the target supports unaligned memory accesses.
641  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
642    return false;
643  }
644
645  /// This function returns true if the target would benefit from code placement
646  /// optimization.
647  /// @brief Determine if the target should perform code placement optimization.
648  bool shouldOptimizeCodePlacement() const {
649    return benefitFromCodePlacementOpt;
650  }
651
652  /// getOptimalMemOpType - Returns the target specific optimal type for load
653  /// and store operations as a result of memset, memcpy, and memmove
654  /// lowering. If DstAlign is zero that means it's safe to destination
655  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
656  /// means there isn't a need to check it against alignment requirement,
657  /// probably because the source does not need to be loaded. If
658  /// 'IsZeroVal' is true, that means it's safe to return a
659  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
660  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
661  /// constant so it does not need to be loaded.
662  /// It returns EVT::Other if the type should be determined using generic
663  /// target-independent logic.
664  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
665                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
666                                  bool /*IsZeroVal*/,
667                                  bool /*MemcpyStrSrc*/,
668                                  MachineFunction &/*MF*/) const {
669    return MVT::Other;
670  }
671
672  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
673  /// to implement llvm.setjmp.
674  bool usesUnderscoreSetJmp() const {
675    return UseUnderscoreSetJmp;
676  }
677
678  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
679  /// to implement llvm.longjmp.
680  bool usesUnderscoreLongJmp() const {
681    return UseUnderscoreLongJmp;
682  }
683
684  /// getStackPointerRegisterToSaveRestore - If a physical register, this
685  /// specifies the register that llvm.savestack/llvm.restorestack should save
686  /// and restore.
687  unsigned getStackPointerRegisterToSaveRestore() const {
688    return StackPointerRegisterToSaveRestore;
689  }
690
691  /// getExceptionPointerRegister - If a physical register, this returns
692  /// the register that receives the exception address on entry to a landing
693  /// pad.
694  unsigned getExceptionPointerRegister() const {
695    return ExceptionPointerRegister;
696  }
697
698  /// getExceptionSelectorRegister - If a physical register, this returns
699  /// the register that receives the exception typeid on entry to a landing
700  /// pad.
701  unsigned getExceptionSelectorRegister() const {
702    return ExceptionSelectorRegister;
703  }
704
705  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
706  /// set, the default is 200)
707  unsigned getJumpBufSize() const {
708    return JumpBufSize;
709  }
710
711  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
712  /// (if never set, the default is 0)
713  unsigned getJumpBufAlignment() const {
714    return JumpBufAlignment;
715  }
716
717  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
718  /// argument.
719  unsigned getMinStackArgumentAlignment() const {
720    return MinStackArgumentAlignment;
721  }
722
723  /// getMinFunctionAlignment - return the minimum function alignment.
724  ///
725  unsigned getMinFunctionAlignment() const {
726    return MinFunctionAlignment;
727  }
728
729  /// getPrefFunctionAlignment - return the preferred function alignment.
730  ///
731  unsigned getPrefFunctionAlignment() const {
732    return PrefFunctionAlignment;
733  }
734
735  /// getPrefLoopAlignment - return the preferred loop alignment.
736  ///
737  unsigned getPrefLoopAlignment() const {
738    return PrefLoopAlignment;
739  }
740
741  /// getShouldFoldAtomicFences - return whether the combiner should fold
742  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
743  ///
744  bool getShouldFoldAtomicFences() const {
745    return ShouldFoldAtomicFences;
746  }
747
748  /// getInsertFencesFor - return whether the DAG builder should automatically
749  /// insert fences and reduce ordering for atomics.
750  ///
751  bool getInsertFencesForAtomic() const {
752    return InsertFencesForAtomic;
753  }
754
755  /// getPreIndexedAddressParts - returns true by value, base pointer and
756  /// offset pointer and addressing mode by reference if the node's address
757  /// can be legally represented as pre-indexed load / store address.
758  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
759                                         SDValue &/*Offset*/,
760                                         ISD::MemIndexedMode &/*AM*/,
761                                         SelectionDAG &/*DAG*/) const {
762    return false;
763  }
764
765  /// getPostIndexedAddressParts - returns true by value, base pointer and
766  /// offset pointer and addressing mode by reference if this node can be
767  /// combined with a load / store to form a post-indexed load / store.
768  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
769                                          SDValue &/*Base*/, SDValue &/*Offset*/,
770                                          ISD::MemIndexedMode &/*AM*/,
771                                          SelectionDAG &/*DAG*/) const {
772    return false;
773  }
774
775  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
776  /// current function.  The returned value is a member of the
777  /// MachineJumpTableInfo::JTEntryKind enum.
778  virtual unsigned getJumpTableEncoding() const;
779
780  virtual const MCExpr *
781  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
782                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
783                            MCContext &/*Ctx*/) const {
784    llvm_unreachable("Need to implement this hook if target has custom JTIs");
785  }
786
787  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
788  /// jumptable.
789  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
790                                           SelectionDAG &DAG) const;
791
792  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
793  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
794  /// MCExpr.
795  virtual const MCExpr *
796  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
797                               unsigned JTI, MCContext &Ctx) const;
798
799  /// isOffsetFoldingLegal - Return true if folding a constant offset
800  /// with the given GlobalAddress is legal.  It is frequently not legal in
801  /// PIC relocation models.
802  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
803
804  /// getStackCookieLocation - Return true if the target stores stack
805  /// protector cookies at a fixed offset in some non-standard address
806  /// space, and populates the address space and offset as
807  /// appropriate.
808  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
809                                      unsigned &/*Offset*/) const {
810    return false;
811  }
812
813  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
814  /// used for loads / stores from the global.
815  virtual unsigned getMaximalGlobalOffset() const {
816    return 0;
817  }
818
819  //===--------------------------------------------------------------------===//
820  // TargetLowering Optimization Methods
821  //
822
823  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
824  /// SDValues for returning information from TargetLowering to its clients
825  /// that want to combine
826  struct TargetLoweringOpt {
827    SelectionDAG &DAG;
828    bool LegalTys;
829    bool LegalOps;
830    SDValue Old;
831    SDValue New;
832
833    explicit TargetLoweringOpt(SelectionDAG &InDAG,
834                               bool LT, bool LO) :
835      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
836
837    bool LegalTypes() const { return LegalTys; }
838    bool LegalOperations() const { return LegalOps; }
839
840    bool CombineTo(SDValue O, SDValue N) {
841      Old = O;
842      New = N;
843      return true;
844    }
845
846    /// ShrinkDemandedConstant - Check to see if the specified operand of the
847    /// specified instruction is a constant integer.  If so, check to see if
848    /// there are any bits set in the constant that are not demanded.  If so,
849    /// shrink the constant and return true.
850    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
851
852    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
853    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
854    /// cast, but it could be generalized for targets with other types of
855    /// implicit widening casts.
856    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
857                          DebugLoc dl);
858  };
859
860  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
861  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
862  /// use this information to simplify Op, create a new simplified DAG node and
863  /// return true, returning the original and new nodes in Old and New.
864  /// Otherwise, analyze the expression and return a mask of KnownOne and
865  /// KnownZero bits for the expression (used to simplify the caller).
866  /// The KnownZero/One bits may only be accurate for those bits in the
867  /// DemandedMask.
868  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
869                            APInt &KnownZero, APInt &KnownOne,
870                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
871
872  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
873  /// Mask are known to be either zero or one and return them in the
874  /// KnownZero/KnownOne bitsets.
875  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
876                                              const APInt &Mask,
877                                              APInt &KnownZero,
878                                              APInt &KnownOne,
879                                              const SelectionDAG &DAG,
880                                              unsigned Depth = 0) const;
881
882  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
883  /// targets that want to expose additional information about sign bits to the
884  /// DAG Combiner.
885  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
886                                                   unsigned Depth = 0) const;
887
888  struct DAGCombinerInfo {
889    void *DC;  // The DAG Combiner object.
890    bool BeforeLegalize;
891    bool BeforeLegalizeOps;
892    bool CalledByLegalizer;
893  public:
894    SelectionDAG &DAG;
895
896    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
897      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
898        CalledByLegalizer(cl), DAG(dag) {}
899
900    bool isBeforeLegalize() const { return BeforeLegalize; }
901    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
902    bool isCalledByLegalizer() const { return CalledByLegalizer; }
903
904    void AddToWorklist(SDNode *N);
905    void RemoveFromWorklist(SDNode *N);
906    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
907                      bool AddTo = true);
908    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
909    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
910
911    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
912  };
913
914  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
915  /// and cc. If it is unable to simplify it, return a null SDValue.
916  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
917                          ISD::CondCode Cond, bool foldBooleans,
918                          DAGCombinerInfo &DCI, DebugLoc dl) const;
919
920  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
921  /// node is a GlobalAddress + offset.
922  virtual bool
923  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
924
925  /// PerformDAGCombine - This method will be invoked for all target nodes and
926  /// for any target-independent nodes that the target has registered with
927  /// invoke it for.
928  ///
929  /// The semantics are as follows:
930  /// Return Value:
931  ///   SDValue.Val == 0   - No change was made
932  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
933  ///   otherwise          - N should be replaced by the returned Operand.
934  ///
935  /// In addition, methods provided by DAGCombinerInfo may be used to perform
936  /// more complex transformations.
937  ///
938  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
939
940  /// isTypeDesirableForOp - Return true if the target has native support for
941  /// the specified value type and it is 'desirable' to use the type for the
942  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
943  /// instruction encodings are longer and some i16 instructions are slow.
944  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
945    // By default, assume all legal types are desirable.
946    return isTypeLegal(VT);
947  }
948
949  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
950  /// to transform a floating point op of specified opcode to a equivalent op of
951  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
952  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
953                                                 EVT /*VT*/) const {
954    return false;
955  }
956
957  /// IsDesirableToPromoteOp - This method query the target whether it is
958  /// beneficial for dag combiner to promote the specified node. If true, it
959  /// should return the desired promotion type by reference.
960  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
961    return false;
962  }
963
964  //===--------------------------------------------------------------------===//
965  // TargetLowering Configuration Methods - These methods should be invoked by
966  // the derived class constructor to configure this object for the target.
967  //
968
969protected:
970  /// setBooleanContents - Specify how the target extends the result of a
971  /// boolean value from i1 to a wider type.  See getBooleanContents.
972  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
973  /// setBooleanVectorContents - Specify how the target extends the result
974  /// of a vector boolean value from a vector of i1 to a wider type.  See
975  /// getBooleanContents.
976  void setBooleanVectorContents(BooleanContent Ty) {
977    BooleanVectorContents = Ty;
978  }
979
980  /// setSchedulingPreference - Specify the target scheduling preference.
981  void setSchedulingPreference(Sched::Preference Pref) {
982    SchedPreferenceInfo = Pref;
983  }
984
985  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
986  /// use _setjmp to implement llvm.setjmp or the non _ version.
987  /// Defaults to false.
988  void setUseUnderscoreSetJmp(bool Val) {
989    UseUnderscoreSetJmp = Val;
990  }
991
992  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
993  /// use _longjmp to implement llvm.longjmp or the non _ version.
994  /// Defaults to false.
995  void setUseUnderscoreLongJmp(bool Val) {
996    UseUnderscoreLongJmp = Val;
997  }
998
999  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1000  /// specifies the register that llvm.savestack/llvm.restorestack should save
1001  /// and restore.
1002  void setStackPointerRegisterToSaveRestore(unsigned R) {
1003    StackPointerRegisterToSaveRestore = R;
1004  }
1005
1006  /// setExceptionPointerRegister - If set to a physical register, this sets
1007  /// the register that receives the exception address on entry to a landing
1008  /// pad.
1009  void setExceptionPointerRegister(unsigned R) {
1010    ExceptionPointerRegister = R;
1011  }
1012
1013  /// setExceptionSelectorRegister - If set to a physical register, this sets
1014  /// the register that receives the exception typeid on entry to a landing
1015  /// pad.
1016  void setExceptionSelectorRegister(unsigned R) {
1017    ExceptionSelectorRegister = R;
1018  }
1019
1020  /// SelectIsExpensive - Tells the code generator not to expand operations
1021  /// into sequences that use the select operations if possible.
1022  void setSelectIsExpensive(bool isExpensive = true) {
1023    SelectIsExpensive = isExpensive;
1024  }
1025
1026  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1027  /// operations into a separate sequences that increases the amount of
1028  /// flow control.
1029  void setJumpIsExpensive(bool isExpensive = true) {
1030    JumpIsExpensive = isExpensive;
1031  }
1032
1033  /// setIntDivIsCheap - Tells the code generator that integer divide is
1034  /// expensive, and if possible, should be replaced by an alternate sequence
1035  /// of instructions not containing an integer divide.
1036  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1037
1038  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1039  /// srl/add/sra for a signed divide by power of two, and let the target handle
1040  /// it.
1041  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1042
1043  /// addRegisterClass - Add the specified register class as an available
1044  /// regclass for the specified value type.  This indicates the selector can
1045  /// handle values of that class natively.
1046  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1047    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1048    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1049    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1050  }
1051
1052  /// findRepresentativeClass - Return the largest legal super-reg register class
1053  /// of the register class for the specified type and its associated "cost".
1054  virtual std::pair<const TargetRegisterClass*, uint8_t>
1055  findRepresentativeClass(EVT VT) const;
1056
1057  /// computeRegisterProperties - Once all of the register classes are added,
1058  /// this allows us to compute derived properties we expose.
1059  void computeRegisterProperties();
1060
1061  /// setOperationAction - Indicate that the specified operation does not work
1062  /// with the specified type and indicate what to do about it.
1063  void setOperationAction(unsigned Op, MVT VT,
1064                          LegalizeAction Action) {
1065    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1066    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1067  }
1068
1069  /// setLoadExtAction - Indicate that the specified load with extension does
1070  /// not work with the specified type and indicate what to do about it.
1071  void setLoadExtAction(unsigned ExtType, MVT VT,
1072                        LegalizeAction Action) {
1073    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1074           "Table isn't big enough!");
1075    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1076  }
1077
1078  /// setTruncStoreAction - Indicate that the specified truncating store does
1079  /// not work with the specified type and indicate what to do about it.
1080  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1081                           LegalizeAction Action) {
1082    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1083           "Table isn't big enough!");
1084    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1085  }
1086
1087  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1088  /// does not work with the specified type and indicate what to do abort
1089  /// it. NOTE: All indexed mode loads are initialized to Expand in
1090  /// TargetLowering.cpp
1091  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1092                            LegalizeAction Action) {
1093    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1094           (unsigned)Action < 0xf && "Table isn't big enough!");
1095    // Load action are kept in the upper half.
1096    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1097    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1098  }
1099
1100  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1101  /// does not work with the specified type and indicate what to do about
1102  /// it. NOTE: All indexed mode stores are initialized to Expand in
1103  /// TargetLowering.cpp
1104  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1105                             LegalizeAction Action) {
1106    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1107           (unsigned)Action < 0xf && "Table isn't big enough!");
1108    // Store action are kept in the lower half.
1109    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1110    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1111  }
1112
1113  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1114  /// supported on the target and indicate what to do about it.
1115  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1116                         LegalizeAction Action) {
1117    assert(VT < MVT::LAST_VALUETYPE &&
1118           (unsigned)CC < array_lengthof(CondCodeActions) &&
1119           "Table isn't big enough!");
1120    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1121    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1122  }
1123
1124  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1125  /// promotion code defaults to trying a larger integer/fp until it can find
1126  /// one that works.  If that default is insufficient, this method can be used
1127  /// by the target to override the default.
1128  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1129    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1130  }
1131
1132  /// setTargetDAGCombine - Targets should invoke this method for each target
1133  /// independent node that they want to provide a custom DAG combiner for by
1134  /// implementing the PerformDAGCombine virtual method.
1135  void setTargetDAGCombine(ISD::NodeType NT) {
1136    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1137    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1138  }
1139
1140  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1141  /// bytes); default is 200
1142  void setJumpBufSize(unsigned Size) {
1143    JumpBufSize = Size;
1144  }
1145
1146  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1147  /// alignment (in bytes); default is 0
1148  void setJumpBufAlignment(unsigned Align) {
1149    JumpBufAlignment = Align;
1150  }
1151
1152  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1153  /// log2(bytes))
1154  void setMinFunctionAlignment(unsigned Align) {
1155    MinFunctionAlignment = Align;
1156  }
1157
1158  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1159  /// This should be set if there is a performance benefit to
1160  /// higher-than-minimum alignment (in log2(bytes))
1161  void setPrefFunctionAlignment(unsigned Align) {
1162    PrefFunctionAlignment = Align;
1163  }
1164
1165  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1166  /// alignment is zero, it means the target does not care about loop alignment.
1167  /// The alignment is specified in log2(bytes).
1168  void setPrefLoopAlignment(unsigned Align) {
1169    PrefLoopAlignment = Align;
1170  }
1171
1172  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1173  /// argument (in log2(bytes)).
1174  void setMinStackArgumentAlignment(unsigned Align) {
1175    MinStackArgumentAlignment = Align;
1176  }
1177
1178  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1179  /// atomic operation intrinsics includes locking. Default is false.
1180  void setShouldFoldAtomicFences(bool fold) {
1181    ShouldFoldAtomicFences = fold;
1182  }
1183
1184  /// setInsertFencesForAtomic - Set if the the DAG builder should
1185  /// automatically insert fences and reduce the order of atomic memory
1186  /// operations to Monotonic.
1187  void setInsertFencesForAtomic(bool fence) {
1188    InsertFencesForAtomic = fence;
1189  }
1190
1191public:
1192  //===--------------------------------------------------------------------===//
1193  // Lowering methods - These methods must be implemented by targets so that
1194  // the SelectionDAGLowering code knows how to lower these.
1195  //
1196
1197  /// LowerFormalArguments - This hook must be implemented to lower the
1198  /// incoming (formal) arguments, described by the Ins array, into the
1199  /// specified DAG. The implementation should fill in the InVals array
1200  /// with legal-type argument values, and return the resulting token
1201  /// chain value.
1202  ///
1203  virtual SDValue
1204    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1205                         bool /*isVarArg*/,
1206                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1207                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1208                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1209    llvm_unreachable("Not Implemented");
1210  }
1211
1212  /// LowerCallTo - This function lowers an abstract call to a function into an
1213  /// actual call.  This returns a pair of operands.  The first element is the
1214  /// return value for the function (if RetTy is not VoidTy).  The second
1215  /// element is the outgoing token chain. It calls LowerCall to do the actual
1216  /// lowering.
1217  struct ArgListEntry {
1218    SDValue Node;
1219    Type* Ty;
1220    bool isSExt  : 1;
1221    bool isZExt  : 1;
1222    bool isInReg : 1;
1223    bool isSRet  : 1;
1224    bool isNest  : 1;
1225    bool isByVal : 1;
1226    uint16_t Alignment;
1227
1228    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1229      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1230  };
1231  typedef std::vector<ArgListEntry> ArgListTy;
1232  std::pair<SDValue, SDValue>
1233  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1234              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1235              CallingConv::ID CallConv, bool isTailCall,
1236              bool doesNotRet, bool isReturnValueUsed,
1237              SDValue Callee, ArgListTy &Args,
1238              SelectionDAG &DAG, DebugLoc dl) const;
1239
1240  /// LowerCall - This hook must be implemented to lower calls into the
1241  /// the specified DAG. The outgoing arguments to the call are described
1242  /// by the Outs array, and the values to be returned by the call are
1243  /// described by the Ins array. The implementation should fill in the
1244  /// InVals array with legal-type return values from the call, and return
1245  /// the resulting token chain value.
1246  virtual SDValue
1247    LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
1248              CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
1249              bool /*doesNotRet*/, bool &/*isTailCall*/,
1250              const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1251              const SmallVectorImpl<SDValue> &/*OutVals*/,
1252              const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1253              DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1254              SmallVectorImpl<SDValue> &/*InVals*/) const {
1255    llvm_unreachable("Not Implemented");
1256  }
1257
1258  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1259  virtual void HandleByVal(CCState *, unsigned &) const {}
1260
1261  /// CanLowerReturn - This hook should be implemented to check whether the
1262  /// return values described by the Outs array can fit into the return
1263  /// registers.  If false is returned, an sret-demotion is performed.
1264  ///
1265  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1266			      MachineFunction &/*MF*/, bool /*isVarArg*/,
1267               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1268               LLVMContext &/*Context*/) const
1269  {
1270    // Return true by default to get preexisting behavior.
1271    return true;
1272  }
1273
1274  /// LowerReturn - This hook must be implemented to lower outgoing
1275  /// return values, described by the Outs array, into the specified
1276  /// DAG. The implementation should return the resulting token chain
1277  /// value.
1278  ///
1279  virtual SDValue
1280    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1281                bool /*isVarArg*/,
1282                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1283                const SmallVectorImpl<SDValue> &/*OutVals*/,
1284                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1285    llvm_unreachable("Not Implemented");
1286  }
1287
1288  /// isUsedByReturnOnly - Return true if result of the specified node is used
1289  /// by a return node only. This is used to determine whether it is possible
1290  /// to codegen a libcall as tail call at legalization time.
1291  virtual bool isUsedByReturnOnly(SDNode *) const {
1292    return false;
1293  }
1294
1295  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1296  /// call instruction as a tail call. This is used by optimization passes to
1297  /// determine if it's profitable to duplicate return instructions to enable
1298  /// tailcall optimization.
1299  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1300    return false;
1301  }
1302
1303  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1304  /// sign extend a zeroext/signext integer argument or return value.
1305  /// FIXME: Most C calling convention requires the return type to be promoted,
1306  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1307  /// necessary for non-C calling conventions. The frontend should handle this
1308  /// and include all of the necessary information.
1309  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1310                                       ISD::NodeType /*ExtendKind*/) const {
1311    EVT MinVT = getRegisterType(Context, MVT::i32);
1312    return VT.bitsLT(MinVT) ? MinVT : VT;
1313  }
1314
1315  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1316  /// to legalize nodes with an illegal operand type but legal result types.
1317  /// It replaces the LowerOperation callback in the type Legalizer.
1318  /// The reason we can not do away with LowerOperation entirely is that
1319  /// LegalizeDAG isn't yet ready to use this callback.
1320  /// TODO: Consider merging with ReplaceNodeResults.
1321
1322  /// The target places new result values for the node in Results (their number
1323  /// and types must exactly match those of the original return values of
1324  /// the node), or leaves Results empty, which indicates that the node is not
1325  /// to be custom lowered after all.
1326  /// The default implementation calls LowerOperation.
1327  virtual void LowerOperationWrapper(SDNode *N,
1328                                     SmallVectorImpl<SDValue> &Results,
1329                                     SelectionDAG &DAG) const;
1330
1331  /// LowerOperation - This callback is invoked for operations that are
1332  /// unsupported by the target, which are registered to use 'custom' lowering,
1333  /// and whose defined values are all legal.
1334  /// If the target has no operations that require custom lowering, it need not
1335  /// implement this.  The default implementation of this aborts.
1336  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1337
1338  /// ReplaceNodeResults - This callback is invoked when a node result type is
1339  /// illegal for the target, and the operation was registered to use 'custom'
1340  /// lowering for that result type.  The target places new result values for
1341  /// the node in Results (their number and types must exactly match those of
1342  /// the original return values of the node), or leaves Results empty, which
1343  /// indicates that the node is not to be custom lowered after all.
1344  ///
1345  /// If the target has no operations that require custom lowering, it need not
1346  /// implement this.  The default implementation aborts.
1347  virtual void ReplaceNodeResults(SDNode * /*N*/,
1348                                  SmallVectorImpl<SDValue> &/*Results*/,
1349                                  SelectionDAG &/*DAG*/) const {
1350    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1351  }
1352
1353  /// getTargetNodeName() - This method returns the name of a target specific
1354  /// DAG node.
1355  virtual const char *getTargetNodeName(unsigned Opcode) const;
1356
1357  /// createFastISel - This method returns a target specific FastISel object,
1358  /// or null if the target does not support "fast" ISel.
1359  virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
1360    return 0;
1361  }
1362
1363  //===--------------------------------------------------------------------===//
1364  // Inline Asm Support hooks
1365  //
1366
1367  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1368  /// call to be explicit llvm code if it wants to.  This is useful for
1369  /// turning simple inline asms into LLVM intrinsics, which gives the
1370  /// compiler more information about the behavior of the code.
1371  virtual bool ExpandInlineAsm(CallInst *) const {
1372    return false;
1373  }
1374
1375  enum ConstraintType {
1376    C_Register,            // Constraint represents specific register(s).
1377    C_RegisterClass,       // Constraint represents any of register(s) in class.
1378    C_Memory,              // Memory constraint.
1379    C_Other,               // Something else.
1380    C_Unknown              // Unsupported constraint.
1381  };
1382
1383  enum ConstraintWeight {
1384    // Generic weights.
1385    CW_Invalid  = -1,     // No match.
1386    CW_Okay     = 0,      // Acceptable.
1387    CW_Good     = 1,      // Good weight.
1388    CW_Better   = 2,      // Better weight.
1389    CW_Best     = 3,      // Best weight.
1390
1391    // Well-known weights.
1392    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1393    CW_Register     = CW_Good,    // Register operands.
1394    CW_Memory       = CW_Better,  // Memory operands.
1395    CW_Constant     = CW_Best,    // Constant operand.
1396    CW_Default      = CW_Okay     // Default or don't know type.
1397  };
1398
1399  /// AsmOperandInfo - This contains information for each constraint that we are
1400  /// lowering.
1401  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1402    /// ConstraintCode - This contains the actual string for the code, like "m".
1403    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1404    /// most closely matches the operand.
1405    std::string ConstraintCode;
1406
1407    /// ConstraintType - Information about the constraint code, e.g. Register,
1408    /// RegisterClass, Memory, Other, Unknown.
1409    TargetLowering::ConstraintType ConstraintType;
1410
1411    /// CallOperandval - If this is the result output operand or a
1412    /// clobber, this is null, otherwise it is the incoming operand to the
1413    /// CallInst.  This gets modified as the asm is processed.
1414    Value *CallOperandVal;
1415
1416    /// ConstraintVT - The ValueType for the operand value.
1417    EVT ConstraintVT;
1418
1419    /// isMatchingInputConstraint - Return true of this is an input operand that
1420    /// is a matching constraint like "4".
1421    bool isMatchingInputConstraint() const;
1422
1423    /// getMatchedOperand - If this is an input matching constraint, this method
1424    /// returns the output operand it matches.
1425    unsigned getMatchedOperand() const;
1426
1427    /// Copy constructor for copying from an AsmOperandInfo.
1428    AsmOperandInfo(const AsmOperandInfo &info)
1429      : InlineAsm::ConstraintInfo(info),
1430        ConstraintCode(info.ConstraintCode),
1431        ConstraintType(info.ConstraintType),
1432        CallOperandVal(info.CallOperandVal),
1433        ConstraintVT(info.ConstraintVT) {
1434    }
1435
1436    /// Copy constructor for copying from a ConstraintInfo.
1437    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1438      : InlineAsm::ConstraintInfo(info),
1439        ConstraintType(TargetLowering::C_Unknown),
1440        CallOperandVal(0), ConstraintVT(MVT::Other) {
1441    }
1442  };
1443
1444  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1445
1446  /// ParseConstraints - Split up the constraint string from the inline
1447  /// assembly value into the specific constraints and their prefixes,
1448  /// and also tie in the associated operand values.
1449  /// If this returns an empty vector, and if the constraint string itself
1450  /// isn't empty, there was an error parsing.
1451  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1452
1453  /// Examine constraint type and operand type and determine a weight value.
1454  /// The operand object must already have been set up with the operand type.
1455  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1456      AsmOperandInfo &info, int maIndex) const;
1457
1458  /// Examine constraint string and operand type and determine a weight value.
1459  /// The operand object must already have been set up with the operand type.
1460  virtual ConstraintWeight getSingleConstraintMatchWeight(
1461      AsmOperandInfo &info, const char *constraint) const;
1462
1463  /// ComputeConstraintToUse - Determines the constraint code and constraint
1464  /// type to use for the specific AsmOperandInfo, setting
1465  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1466  /// being passed in is available, it can be passed in as Op, otherwise an
1467  /// empty SDValue can be passed.
1468  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1469                                      SDValue Op,
1470                                      SelectionDAG *DAG = 0) const;
1471
1472  /// getConstraintType - Given a constraint, return the type of constraint it
1473  /// is for this target.
1474  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1475
1476  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1477  /// {edx}), return the register number and the register class for the
1478  /// register.
1479  ///
1480  /// Given a register class constraint, like 'r', if this corresponds directly
1481  /// to an LLVM register class, return a register of 0 and the register class
1482  /// pointer.
1483  ///
1484  /// This should only be used for C_Register constraints.  On error,
1485  /// this returns a register number of 0 and a null register class pointer..
1486  virtual std::pair<unsigned, const TargetRegisterClass*>
1487    getRegForInlineAsmConstraint(const std::string &Constraint,
1488                                 EVT VT) const;
1489
1490  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1491  /// with another that has more specific requirements based on the type of the
1492  /// corresponding operand.  This returns null if there is no replacement to
1493  /// make.
1494  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1495
1496  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1497  /// vector.  If it is invalid, don't add anything to Ops.
1498  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1499                                            std::vector<SDValue> &Ops,
1500                                            SelectionDAG &DAG) const;
1501
1502  //===--------------------------------------------------------------------===//
1503  // Instruction Emitting Hooks
1504  //
1505
1506  // EmitInstrWithCustomInserter - This method should be implemented by targets
1507  // that mark instructions with the 'usesCustomInserter' flag.  These
1508  // instructions are special in various ways, which require special support to
1509  // insert.  The specified MachineInstr is created but not inserted into any
1510  // basic blocks, and this method is called to expand it into a sequence of
1511  // instructions, potentially also creating new basic blocks and control flow.
1512  virtual MachineBasicBlock *
1513    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1514
1515  /// AdjustInstrPostInstrSelection - This method should be implemented by
1516  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1517  /// instructions must be adjusted after instruction selection by target hooks.
1518  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1519  virtual void
1520  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1521
1522  //===--------------------------------------------------------------------===//
1523  // Addressing mode description hooks (used by LSR etc).
1524  //
1525
1526  /// AddrMode - This represents an addressing mode of:
1527  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1528  /// If BaseGV is null,  there is no BaseGV.
1529  /// If BaseOffs is zero, there is no base offset.
1530  /// If HasBaseReg is false, there is no base register.
1531  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1532  /// no scale.
1533  ///
1534  struct AddrMode {
1535    GlobalValue *BaseGV;
1536    int64_t      BaseOffs;
1537    bool         HasBaseReg;
1538    int64_t      Scale;
1539    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1540  };
1541
1542  /// isLegalAddressingMode - Return true if the addressing mode represented by
1543  /// AM is legal for this target, for a load/store of the specified type.
1544  /// The type may be VoidTy, in which case only return true if the addressing
1545  /// mode is legal for a load/store of any legal type.
1546  /// TODO: Handle pre/postinc as well.
1547  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1548
1549  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1550  /// icmp immediate, that is the target has icmp instructions which can compare
1551  /// a register against the immediate without having to materialize the
1552  /// immediate into a register.
1553  virtual bool isLegalICmpImmediate(int64_t) const {
1554    return true;
1555  }
1556
1557  /// isLegalAddImmediate - Return true if the specified immediate is legal
1558  /// add immediate, that is the target has add instructions which can add
1559  /// a register with the immediate without having to materialize the
1560  /// immediate into a register.
1561  virtual bool isLegalAddImmediate(int64_t) const {
1562    return true;
1563  }
1564
1565  /// isTruncateFree - Return true if it's free to truncate a value of
1566  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1567  /// register EAX to i16 by referencing its sub-register AX.
1568  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1569    return false;
1570  }
1571
1572  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1573    return false;
1574  }
1575
1576  /// isZExtFree - Return true if any actual instruction that defines a
1577  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1578  /// register. This does not necessarily include registers defined in
1579  /// unknown ways, such as incoming arguments, or copies from unknown
1580  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1581  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1582  /// all instructions that define 32-bit values implicit zero-extend the
1583  /// result out to 64 bits.
1584  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1585    return false;
1586  }
1587
1588  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1589    return false;
1590  }
1591
1592  /// isNarrowingProfitable - Return true if it's profitable to narrow
1593  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1594  /// from i32 to i8 but not from i32 to i16.
1595  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1596    return false;
1597  }
1598
1599  //===--------------------------------------------------------------------===//
1600  // Div utility functions
1601  //
1602  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1603                         SelectionDAG &DAG) const;
1604  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1605                      std::vector<SDNode*>* Created) const;
1606  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1607                      std::vector<SDNode*>* Created) const;
1608
1609
1610  //===--------------------------------------------------------------------===//
1611  // Runtime Library hooks
1612  //
1613
1614  /// setLibcallName - Rename the default libcall routine name for the specified
1615  /// libcall.
1616  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1617    LibcallRoutineNames[Call] = Name;
1618  }
1619
1620  /// getLibcallName - Get the libcall routine name for the specified libcall.
1621  ///
1622  const char *getLibcallName(RTLIB::Libcall Call) const {
1623    return LibcallRoutineNames[Call];
1624  }
1625
1626  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1627  /// result of the comparison libcall against zero.
1628  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1629    CmpLibcallCCs[Call] = CC;
1630  }
1631
1632  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1633  /// the comparison libcall against zero.
1634  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1635    return CmpLibcallCCs[Call];
1636  }
1637
1638  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1639  /// specified libcall.
1640  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1641    LibcallCallingConvs[Call] = CC;
1642  }
1643
1644  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1645  /// specified libcall.
1646  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1647    return LibcallCallingConvs[Call];
1648  }
1649
1650private:
1651  const TargetMachine &TM;
1652  const TargetData *TD;
1653  const TargetLoweringObjectFile &TLOF;
1654
1655  /// We are in the process of implementing a new TypeLegalization action
1656  /// which is the promotion of vector elements. This feature is under
1657  /// development. Until this feature is complete, it is only enabled using a
1658  /// flag. We pass this flag using a member because of circular dep issues.
1659  /// This member will be removed with the flag once we complete the transition.
1660  bool mayPromoteElements;
1661
1662  /// PointerTy - The type to use for pointers, usually i32 or i64.
1663  ///
1664  MVT PointerTy;
1665
1666  /// IsLittleEndian - True if this is a little endian target.
1667  ///
1668  bool IsLittleEndian;
1669
1670  /// SelectIsExpensive - Tells the code generator not to expand operations
1671  /// into sequences that use the select operations if possible.
1672  bool SelectIsExpensive;
1673
1674  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1675  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1676  /// a real cost model is in place.  If we ever optimize for size, this will be
1677  /// set to true unconditionally.
1678  bool IntDivIsCheap;
1679
1680  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1681  /// srl/add/sra for a signed divide by power of two, and let the target handle
1682  /// it.
1683  bool Pow2DivIsCheap;
1684
1685  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1686  /// extra flow control instructions and should attempt to combine flow
1687  /// control instructions via predication.
1688  bool JumpIsExpensive;
1689
1690  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1691  /// llvm.setjmp.  Defaults to false.
1692  bool UseUnderscoreSetJmp;
1693
1694  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1695  /// llvm.longjmp.  Defaults to false.
1696  bool UseUnderscoreLongJmp;
1697
1698  /// BooleanContents - Information about the contents of the high-bits in
1699  /// boolean values held in a type wider than i1.  See getBooleanContents.
1700  BooleanContent BooleanContents;
1701  /// BooleanVectorContents - Information about the contents of the high-bits
1702  /// in boolean vector values when the element type is wider than i1.  See
1703  /// getBooleanContents.
1704  BooleanContent BooleanVectorContents;
1705
1706  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1707  /// total cycles or lowest register usage.
1708  Sched::Preference SchedPreferenceInfo;
1709
1710  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1711  unsigned JumpBufSize;
1712
1713  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1714  /// buffers
1715  unsigned JumpBufAlignment;
1716
1717  /// MinStackArgumentAlignment - The minimum alignment that any argument
1718  /// on the stack needs to have.
1719  ///
1720  unsigned MinStackArgumentAlignment;
1721
1722  /// MinFunctionAlignment - The minimum function alignment (used when
1723  /// optimizing for size, and to prevent explicitly provided alignment
1724  /// from leading to incorrect code).
1725  ///
1726  unsigned MinFunctionAlignment;
1727
1728  /// PrefFunctionAlignment - The preferred function alignment (used when
1729  /// alignment unspecified and optimizing for speed).
1730  ///
1731  unsigned PrefFunctionAlignment;
1732
1733  /// PrefLoopAlignment - The preferred loop alignment.
1734  ///
1735  unsigned PrefLoopAlignment;
1736
1737  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1738  /// be folded into the enclosed atomic intrinsic instruction by the
1739  /// combiner.
1740  bool ShouldFoldAtomicFences;
1741
1742  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1743  /// insert fences and reduce ordering for atomics.  (This will be set for
1744  /// for most architectures with weak memory ordering.)
1745  bool InsertFencesForAtomic;
1746
1747  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1748  /// specifies the register that llvm.savestack/llvm.restorestack should save
1749  /// and restore.
1750  unsigned StackPointerRegisterToSaveRestore;
1751
1752  /// ExceptionPointerRegister - If set to a physical register, this specifies
1753  /// the register that receives the exception address on entry to a landing
1754  /// pad.
1755  unsigned ExceptionPointerRegister;
1756
1757  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1758  /// the register that receives the exception typeid on entry to a landing
1759  /// pad.
1760  unsigned ExceptionSelectorRegister;
1761
1762  /// RegClassForVT - This indicates the default register class to use for
1763  /// each ValueType the target supports natively.
1764  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1765  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1766  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1767
1768  /// RepRegClassForVT - This indicates the "representative" register class to
1769  /// use for each ValueType the target supports natively. This information is
1770  /// used by the scheduler to track register pressure. By default, the
1771  /// representative register class is the largest legal super-reg register
1772  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1773  /// and i32's representative class would be GR32.
1774  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1775
1776  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1777  /// register class for each ValueType. The cost is used by the scheduler to
1778  /// approximate register pressure.
1779  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1780
1781  /// TransformToType - For any value types we are promoting or expanding, this
1782  /// contains the value type that we are changing to.  For Expanded types, this
1783  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1784  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1785  /// by the system, this holds the same type (e.g. i32 -> i32).
1786  EVT TransformToType[MVT::LAST_VALUETYPE];
1787
1788  /// OpActions - For each operation and each value type, keep a LegalizeAction
1789  /// that indicates how instruction selection should deal with the operation.
1790  /// Most operations are Legal (aka, supported natively by the target), but
1791  /// operations that are not should be described.  Note that operations on
1792  /// non-legal value types are not described here.
1793  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1794
1795  /// LoadExtActions - For each load extension type and each value type,
1796  /// keep a LegalizeAction that indicates how instruction selection should deal
1797  /// with a load of a specific value type and extension type.
1798  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1799
1800  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1801  /// indicates whether a truncating store of a specific value type and
1802  /// truncating type is legal.
1803  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1804
1805  /// IndexedModeActions - For each indexed mode and each value type,
1806  /// keep a pair of LegalizeAction that indicates how instruction
1807  /// selection should deal with the load / store.  The first dimension is the
1808  /// value_type for the reference. The second dimension represents the various
1809  /// modes for load store.
1810  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1811
1812  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1813  /// LegalizeAction that indicates how instruction selection should
1814  /// deal with the condition code.
1815  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1816
1817  ValueTypeActionImpl ValueTypeActions;
1818
1819  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1820
1821  LegalizeKind
1822  getTypeConversion(LLVMContext &Context, EVT VT) const {
1823    // If this is a simple type, use the ComputeRegisterProp mechanism.
1824    if (VT.isSimple()) {
1825      assert((unsigned)VT.getSimpleVT().SimpleTy <
1826             array_lengthof(TransformToType));
1827      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1828      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1829
1830      assert(
1831        (!(NVT.isSimple() && LA != TypeLegal) ||
1832         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1833         && "Promote may not follow Expand or Promote");
1834
1835      return LegalizeKind(LA, NVT);
1836    }
1837
1838    // Handle Extended Scalar Types.
1839    if (!VT.isVector()) {
1840      assert(VT.isInteger() && "Float types must be simple");
1841      unsigned BitSize = VT.getSizeInBits();
1842      // First promote to a power-of-two size, then expand if necessary.
1843      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1844        EVT NVT = VT.getRoundIntegerType(Context);
1845        assert(NVT != VT && "Unable to round integer VT");
1846        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1847        // Avoid multi-step promotion.
1848        if (NextStep.first == TypePromoteInteger) return NextStep;
1849        // Return rounded integer type.
1850        return LegalizeKind(TypePromoteInteger, NVT);
1851      }
1852
1853      return LegalizeKind(TypeExpandInteger,
1854                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1855    }
1856
1857    // Handle vector types.
1858    unsigned NumElts = VT.getVectorNumElements();
1859    EVT EltVT = VT.getVectorElementType();
1860
1861    // Vectors with only one element are always scalarized.
1862    if (NumElts == 1)
1863      return LegalizeKind(TypeScalarizeVector, EltVT);
1864
1865    // If we allow the promotion of vector elements using a flag,
1866    // then try to widen vector elements until a legal type is found.
1867    if (mayPromoteElements && EltVT.isInteger()) {
1868      // Vectors with a number of elements that is not a power of two are always
1869      // widened, for example <3 x float> -> <4 x float>.
1870      if (!VT.isPow2VectorType()) {
1871        NumElts = (unsigned)NextPowerOf2(NumElts);
1872        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1873        return LegalizeKind(TypeWidenVector, NVT);
1874      }
1875
1876      // Examine the element type.
1877      LegalizeKind LK = getTypeConversion(Context, EltVT);
1878
1879      // If type is to be expanded, split the vector.
1880      //  <4 x i140> -> <2 x i140>
1881      if (LK.first == TypeExpandInteger)
1882        return LegalizeKind(TypeSplitVector,
1883                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1884
1885      // Promote the integer element types until a legal vector type is found
1886      // or until the element integer type is too big. If a legal type was not
1887      // found, fallback to the usual mechanism of widening/splitting the
1888      // vector.
1889      while (1) {
1890        // Increase the bitwidth of the element to the next pow-of-two
1891        // (which is greater than 8 bits).
1892        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1893                                 ).getRoundIntegerType(Context);
1894
1895        // Stop trying when getting a non-simple element type.
1896        // Note that vector elements may be greater than legal vector element
1897        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1898        if (!EltVT.isSimple()) break;
1899
1900        // Build a new vector type and check if it is legal.
1901        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1902        // Found a legal promoted vector type.
1903        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1904          return LegalizeKind(TypePromoteInteger,
1905                              EVT::getVectorVT(Context, EltVT, NumElts));
1906      }
1907    }
1908
1909    // Try to widen the vector until a legal type is found.
1910    // If there is no wider legal type, split the vector.
1911    while (1) {
1912      // Round up to the next power of 2.
1913      NumElts = (unsigned)NextPowerOf2(NumElts);
1914
1915      // If there is no simple vector type with this many elements then there
1916      // cannot be a larger legal vector type.  Note that this assumes that
1917      // there are no skipped intermediate vector types in the simple types.
1918      if (!EltVT.isSimple()) break;
1919      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1920      if (LargerVector == MVT()) break;
1921
1922      // If this type is legal then widen the vector.
1923      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1924        return LegalizeKind(TypeWidenVector, LargerVector);
1925    }
1926
1927    // Widen odd vectors to next power of two.
1928    if (!VT.isPow2VectorType()) {
1929      EVT NVT = VT.getPow2VectorType(Context);
1930      return LegalizeKind(TypeWidenVector, NVT);
1931    }
1932
1933    // Vectors with illegal element types are expanded.
1934    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1935    return LegalizeKind(TypeSplitVector, NVT);
1936  }
1937
1938  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
1939
1940  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1941  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1942  /// which sets a bit in this array.
1943  unsigned char
1944  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1945
1946  /// PromoteToType - For operations that must be promoted to a specific type,
1947  /// this holds the destination type.  This map should be sparse, so don't hold
1948  /// it as an array.
1949  ///
1950  /// Targets add entries to this map with AddPromotedToType(..), clients access
1951  /// this with getTypeToPromoteTo(..).
1952  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1953    PromoteToType;
1954
1955  /// LibcallRoutineNames - Stores the name each libcall.
1956  ///
1957  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1958
1959  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1960  /// of each of the comparison libcall against zero.
1961  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1962
1963  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1964  /// libcall.
1965  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1966
1967protected:
1968  /// When lowering \@llvm.memset this field specifies the maximum number of
1969  /// store operations that may be substituted for the call to memset. Targets
1970  /// must set this value based on the cost threshold for that target. Targets
1971  /// should assume that the memset will be done using as many of the largest
1972  /// store operations first, followed by smaller ones, if necessary, per
1973  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1974  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1975  /// store.  This only applies to setting a constant array of a constant size.
1976  /// @brief Specify maximum number of store instructions per memset call.
1977  unsigned maxStoresPerMemset;
1978
1979  /// Maximum number of stores operations that may be substituted for the call
1980  /// to memset, used for functions with OptSize attribute.
1981  unsigned maxStoresPerMemsetOptSize;
1982
1983  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1984  /// store operations that may be substituted for a call to memcpy. Targets
1985  /// must set this value based on the cost threshold for that target. Targets
1986  /// should assume that the memcpy will be done using as many of the largest
1987  /// store operations first, followed by smaller ones, if necessary, per
1988  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1989  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1990  /// and one 1-byte store. This only applies to copying a constant array of
1991  /// constant size.
1992  /// @brief Specify maximum bytes of store instructions per memcpy call.
1993  unsigned maxStoresPerMemcpy;
1994
1995  /// Maximum number of store operations that may be substituted for a call
1996  /// to memcpy, used for functions with OptSize attribute.
1997  unsigned maxStoresPerMemcpyOptSize;
1998
1999  /// When lowering \@llvm.memmove this field specifies the maximum number of
2000  /// store instructions that may be substituted for a call to memmove. Targets
2001  /// must set this value based on the cost threshold for that target. Targets
2002  /// should assume that the memmove will be done using as many of the largest
2003  /// store operations first, followed by smaller ones, if necessary, per
2004  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2005  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2006  /// applies to copying a constant array of constant size.
2007  /// @brief Specify maximum bytes of store instructions per memmove call.
2008  unsigned maxStoresPerMemmove;
2009
2010  /// Maximum number of store instructions that may be substituted for a call
2011  /// to memmove, used for functions with OpSize attribute.
2012  unsigned maxStoresPerMemmoveOptSize;
2013
2014  /// This field specifies whether the target can benefit from code placement
2015  /// optimization.
2016  bool benefitFromCodePlacementOpt;
2017
2018private:
2019  /// isLegalRC - Return true if the value types that can be represented by the
2020  /// specified register class are all legal.
2021  bool isLegalRC(const TargetRegisterClass *RC) const;
2022
2023  /// hasLegalSuperRegRegClasses - Return true if the specified register class
2024  /// has one or more super-reg register classes that are legal.
2025  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2026};
2027
2028/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2029/// compute the return value EVTs and flags, and optionally also
2030/// the offsets, if the return value is being lowered to memory.
2031void GetReturnInfo(Type* ReturnType, Attributes attr,
2032                   SmallVectorImpl<ISD::OutputArg> &Outs,
2033                   const TargetLowering &TLI,
2034                   SmallVectorImpl<uint64_t> *Offsets = 0);
2035
2036} // end llvm namespace
2037
2038#endif
2039