TargetLowering.h revision 561e8c80f58b71414270105c6794dc18a5d68d79
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <vector>
31
32namespace llvm {
33  class Value;
34  class Function;
35  class TargetMachine;
36  class TargetData;
37  class TargetRegisterClass;
38  class SDNode;
39  class SDOperand;
40  class SelectionDAG;
41  class MachineBasicBlock;
42  class MachineInstr;
43  class VectorType;
44  class TargetSubtarget;
45
46//===----------------------------------------------------------------------===//
47/// TargetLowering - This class defines information used to lower LLVM code to
48/// legal SelectionDAG operators that the target instruction selector can accept
49/// natively.
50///
51/// This class also defines callbacks that targets must implement to lower
52/// target-specific constructs to SelectionDAG operators.
53///
54class TargetLowering {
55public:
56  /// LegalizeAction - This enum indicates whether operations are valid for a
57  /// target, and if not, what action should be used to make them valid.
58  enum LegalizeAction {
59    Legal,      // The target natively supports this operation.
60    Promote,    // This operation should be executed in a larger type.
61    Expand,     // Try to expand this to other ops, otherwise use a libcall.
62    Custom      // Use the LowerOperation hook to implement custom lowering.
63  };
64
65  enum OutOfRangeShiftAmount {
66    Undefined,  // Oversized shift amounts are undefined (default).
67    Mask,       // Shift amounts are auto masked (anded) to value size.
68    Extend      // Oversized shift pulls in zeros or sign bits.
69  };
70
71  enum SetCCResultValue {
72    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
73    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
74    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
75  };
76
77  enum SchedPreference {
78    SchedulingForLatency,          // Scheduling for shortest total latency.
79    SchedulingForRegPressure       // Scheduling for lowest register pressure.
80  };
81
82  explicit TargetLowering(TargetMachine &TM);
83  virtual ~TargetLowering();
84
85  TargetMachine &getTargetMachine() const { return TM; }
86  const TargetData *getTargetData() const { return TD; }
87
88  bool isLittleEndian() const { return IsLittleEndian; }
89  MVT::ValueType getPointerTy() const { return PointerTy; }
90  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
91  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
92
93  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
94  /// codegen.
95  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
96
97  /// isSelectExpensive - Return true if the select operation is expensive for
98  /// this target.
99  bool isSelectExpensive() const { return SelectIsExpensive; }
100
101  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
102  /// a sequence of several shifts, adds, and multiplies for this target.
103  bool isIntDivCheap() const { return IntDivIsCheap; }
104
105  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
106  /// srl/add/sra.
107  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
108
109  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
110  ///
111  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
112
113  /// getSetCCResultContents - For targets without boolean registers, this flag
114  /// returns information about the contents of the high-bits in the setcc
115  /// result register.
116  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
117
118  /// getSchedulingPreference - Return target scheduling preference.
119  SchedPreference getSchedulingPreference() const {
120    return SchedPreferenceInfo;
121  }
122
123  /// getRegClassFor - Return the register class that should be used for the
124  /// specified value type.  This may only be called on legal types.
125  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
126    assert(!MVT::isExtendedVT(VT));
127    TargetRegisterClass *RC = RegClassForVT[VT];
128    assert(RC && "This value type is not natively supported!");
129    return RC;
130  }
131
132  /// isTypeLegal - Return true if the target has native support for the
133  /// specified value type.  This means that it has a register that directly
134  /// holds it without promotions or expansions.
135  bool isTypeLegal(MVT::ValueType VT) const {
136    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
137  }
138
139  class ValueTypeActionImpl {
140    /// ValueTypeActions - This is a bitvector that contains two bits for each
141    /// value type, where the two bits correspond to the LegalizeAction enum.
142    /// This can be queried with "getTypeAction(VT)".
143    uint32_t ValueTypeActions[2];
144  public:
145    ValueTypeActionImpl() {
146      ValueTypeActions[0] = ValueTypeActions[1] = 0;
147    }
148    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
149      ValueTypeActions[0] = RHS.ValueTypeActions[0];
150      ValueTypeActions[1] = RHS.ValueTypeActions[1];
151    }
152
153    LegalizeAction getTypeAction(MVT::ValueType VT) const {
154      if (MVT::isExtendedVT(VT)) {
155        if (MVT::isVector(VT)) return Expand;
156        if (MVT::isInteger(VT))
157          // First promote to a power-of-two size, then expand if necessary.
158          return VT == MVT::RoundIntegerType(VT) ? Expand : Promote;
159        assert(0 && "Unsupported extended type!");
160      }
161      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
162    }
163    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
164      assert(!MVT::isExtendedVT(VT));
165      assert(unsigned(VT >> 4) < array_lengthof(ValueTypeActions));
166      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
167    }
168  };
169
170  const ValueTypeActionImpl &getValueTypeActions() const {
171    return ValueTypeActions;
172  }
173
174  /// getTypeAction - Return how we should legalize values of this type, either
175  /// it is already legal (return 'Legal') or we need to promote it to a larger
176  /// type (return 'Promote'), or we need to expand it into multiple registers
177  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
178  LegalizeAction getTypeAction(MVT::ValueType VT) const {
179    return ValueTypeActions.getTypeAction(VT);
180  }
181
182  /// getTypeToTransformTo - For types supported by the target, this is an
183  /// identity function.  For types that must be promoted to larger types, this
184  /// returns the larger type to promote to.  For integer types that are larger
185  /// than the largest integer register, this contains one step in the expansion
186  /// to get to the smaller register. For illegal floating point types, this
187  /// returns the integer type to transform to.
188  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
189    if (!MVT::isExtendedVT(VT)) {
190      MVT::ValueType NVT = TransformToType[VT];
191      assert(getTypeAction(NVT) != Promote &&
192             "Promote may not follow Expand or Promote");
193      return NVT;
194    }
195
196    if (MVT::isVector(VT))
197      return MVT::getVectorType(MVT::getVectorElementType(VT),
198                                MVT::getVectorNumElements(VT) / 2);
199    if (MVT::isInteger(VT)) {
200      MVT::ValueType NVT = MVT::RoundIntegerType(VT);
201      if (NVT == VT)
202        // Size is a power of two - expand to half the size.
203        return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2);
204      else
205        // Promote to a power of two size, avoiding multi-step promotion.
206        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
207    }
208    assert(0 && "Unsupported extended type!");
209  }
210
211  /// getTypeToExpandTo - For types supported by the target, this is an
212  /// identity function.  For types that must be expanded (i.e. integer types
213  /// that are larger than the largest integer register or illegal floating
214  /// point types), this returns the largest legal type it will be expanded to.
215  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
216    assert(!MVT::isVector(VT));
217    while (true) {
218      switch (getTypeAction(VT)) {
219      case Legal:
220        return VT;
221      case Expand:
222        VT = getTypeToTransformTo(VT);
223        break;
224      default:
225        assert(false && "Type is not legal nor is it to be expanded!");
226        return VT;
227      }
228    }
229    return VT;
230  }
231
232  /// getVectorTypeBreakdown - Vector types are broken down into some number of
233  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
234  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
235  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
236  ///
237  /// This method returns the number of registers needed, and the VT for each
238  /// register.  It also returns the VT and quantity of the intermediate values
239  /// before they are promoted/expanded.
240  ///
241  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
242                                  MVT::ValueType &IntermediateVT,
243                                  unsigned &NumIntermediates,
244                                  MVT::ValueType &RegisterVT) const;
245
246  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
247  legal_fpimm_iterator legal_fpimm_begin() const {
248    return LegalFPImmediates.begin();
249  }
250  legal_fpimm_iterator legal_fpimm_end() const {
251    return LegalFPImmediates.end();
252  }
253
254  /// isShuffleMaskLegal - Targets can use this to indicate that they only
255  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
256  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
257  /// are assumed to be legal.
258  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
259    return true;
260  }
261
262  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
263  /// used by Targets can use this to indicate if there is a suitable
264  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
265  /// pool entry.
266  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
267                                      MVT::ValueType EVT,
268                                      SelectionDAG &DAG) const {
269    return false;
270  }
271
272  /// getOperationAction - Return how this operation should be treated: either
273  /// it is legal, needs to be promoted to a larger size, needs to be
274  /// expanded to some other code sequence, or the target has a custom expander
275  /// for it.
276  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
277    if (MVT::isExtendedVT(VT)) return Expand;
278    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
279  }
280
281  /// isOperationLegal - Return true if the specified operation is legal on this
282  /// target.
283  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
284    return getOperationAction(Op, VT) == Legal ||
285           getOperationAction(Op, VT) == Custom;
286  }
287
288  /// getLoadXAction - Return how this load with extension should be treated:
289  /// either it is legal, needs to be promoted to a larger size, needs to be
290  /// expanded to some other code sequence, or the target has a custom expander
291  /// for it.
292  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
293    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
294    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
295  }
296
297  /// isLoadXLegal - Return true if the specified load with extension is legal
298  /// on this target.
299  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
300    return getLoadXAction(LType, VT) == Legal ||
301           getLoadXAction(LType, VT) == Custom;
302  }
303
304  /// getTruncStoreAction - Return how this store with truncation should be
305  /// treated: either it is legal, needs to be promoted to a larger size, needs
306  /// to be expanded to some other code sequence, or the target has a custom
307  /// expander for it.
308  LegalizeAction getTruncStoreAction(MVT::ValueType ValVT,
309                                     MVT::ValueType MemVT) const {
310    assert(ValVT < array_lengthof(TruncStoreActions) &&
311           MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
312    return (LegalizeAction)((TruncStoreActions[ValVT] >> (2*MemVT)) & 3);
313  }
314
315  /// isTruncStoreLegal - Return true if the specified store with truncation is
316  /// legal on this target.
317  bool isTruncStoreLegal(MVT::ValueType ValVT, MVT::ValueType MemVT) const {
318    return getTruncStoreAction(ValVT, MemVT) == Legal ||
319           getTruncStoreAction(ValVT, MemVT) == Custom;
320  }
321
322  /// getIndexedLoadAction - Return how the indexed load should be treated:
323  /// either it is legal, needs to be promoted to a larger size, needs to be
324  /// expanded to some other code sequence, or the target has a custom expander
325  /// for it.
326  LegalizeAction
327  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
328    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
329    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
330  }
331
332  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
333  /// on this target.
334  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
335    return getIndexedLoadAction(IdxMode, VT) == Legal ||
336           getIndexedLoadAction(IdxMode, VT) == Custom;
337  }
338
339  /// getIndexedStoreAction - Return how the indexed store should be treated:
340  /// either it is legal, needs to be promoted to a larger size, needs to be
341  /// expanded to some other code sequence, or the target has a custom expander
342  /// for it.
343  LegalizeAction
344  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
345    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
346    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
347  }
348
349  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
350  /// on this target.
351  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
352    return getIndexedStoreAction(IdxMode, VT) == Legal ||
353           getIndexedStoreAction(IdxMode, VT) == Custom;
354  }
355
356  /// getConvertAction - Return how the conversion should be treated:
357  /// either it is legal, needs to be promoted to a larger size, needs to be
358  /// expanded to some other code sequence, or the target has a custom expander
359  /// for it.
360  LegalizeAction
361  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
362    assert(FromVT < array_lengthof(ConvertActions) &&
363           ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
364    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
365  }
366
367  /// isConvertLegal - Return true if the specified conversion is legal
368  /// on this target.
369  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
370    return getConvertAction(FromVT, ToVT) == Legal ||
371           getConvertAction(FromVT, ToVT) == Custom;
372  }
373
374  /// getTypeToPromoteTo - If the action for this operation is to promote, this
375  /// method returns the ValueType to promote to.
376  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
377    assert(getOperationAction(Op, VT) == Promote &&
378           "This operation isn't promoted!");
379
380    // See if this has an explicit type specified.
381    std::map<std::pair<unsigned, MVT::ValueType>,
382             MVT::ValueType>::const_iterator PTTI =
383      PromoteToType.find(std::make_pair(Op, VT));
384    if (PTTI != PromoteToType.end()) return PTTI->second;
385
386    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
387           "Cannot autopromote this type, add it with AddPromotedToType.");
388
389    MVT::ValueType NVT = VT;
390    do {
391      NVT = (MVT::ValueType)(NVT+1);
392      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
393             "Didn't find type to promote to!");
394    } while (!isTypeLegal(NVT) ||
395              getOperationAction(Op, NVT) == Promote);
396    return NVT;
397  }
398
399  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
400  /// This is fixed by the LLVM operations except for the pointer size.  If
401  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
402  /// counterpart (e.g. structs), otherwise it will assert.
403  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
404    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
405    return VT == MVT::iPTR ? PointerTy : VT;
406  }
407
408  /// getRegisterType - Return the type of registers that this ValueType will
409  /// eventually require.
410  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
411    if (!MVT::isExtendedVT(VT))
412      return RegisterTypeForVT[VT];
413    if (MVT::isVector(VT)) {
414      MVT::ValueType VT1, RegisterVT;
415      unsigned NumIntermediates;
416      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
417      return RegisterVT;
418    }
419    assert(0 && "Unsupported extended type!");
420  }
421
422  /// getNumRegisters - Return the number of registers that this ValueType will
423  /// eventually require.  This is one for any types promoted to live in larger
424  /// registers, but may be more than one for types (like i64) that are split
425  /// into pieces.
426  unsigned getNumRegisters(MVT::ValueType VT) const {
427    if (!MVT::isExtendedVT(VT))
428      return NumRegistersForVT[VT];
429    if (MVT::isVector(VT)) {
430      MVT::ValueType VT1, VT2;
431      unsigned NumIntermediates;
432      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
433    }
434    assert(0 && "Unsupported extended type!");
435  }
436
437  /// hasTargetDAGCombine - If true, the target has custom DAG combine
438  /// transformations that it can perform for the specified node.
439  bool hasTargetDAGCombine(ISD::NodeType NT) const {
440    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
441  }
442
443  /// This function returns the maximum number of store operations permitted
444  /// to replace a call to llvm.memset. The value is set by the target at the
445  /// performance threshold for such a replacement.
446  /// @brief Get maximum # of store operations permitted for llvm.memset
447  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
448
449  /// This function returns the maximum number of store operations permitted
450  /// to replace a call to llvm.memcpy. The value is set by the target at the
451  /// performance threshold for such a replacement.
452  /// @brief Get maximum # of store operations permitted for llvm.memcpy
453  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
454
455  /// This function returns the maximum number of store operations permitted
456  /// to replace a call to llvm.memmove. The value is set by the target at the
457  /// performance threshold for such a replacement.
458  /// @brief Get maximum # of store operations permitted for llvm.memmove
459  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
460
461  /// This function returns true if the target allows unaligned memory accesses.
462  /// This is used, for example, in situations where an array copy/move/set is
463  /// converted to a sequence of store operations. It's use helps to ensure that
464  /// such replacements don't generate code that causes an alignment error
465  /// (trap) on the target machine.
466  /// @brief Determine if the target supports unaligned memory accesses.
467  bool allowsUnalignedMemoryAccesses() const {
468    return allowUnalignedMemoryAccesses;
469  }
470
471  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
472  /// to implement llvm.setjmp.
473  bool usesUnderscoreSetJmp() const {
474    return UseUnderscoreSetJmp;
475  }
476
477  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
478  /// to implement llvm.longjmp.
479  bool usesUnderscoreLongJmp() const {
480    return UseUnderscoreLongJmp;
481  }
482
483  /// getStackPointerRegisterToSaveRestore - If a physical register, this
484  /// specifies the register that llvm.savestack/llvm.restorestack should save
485  /// and restore.
486  unsigned getStackPointerRegisterToSaveRestore() const {
487    return StackPointerRegisterToSaveRestore;
488  }
489
490  /// getExceptionAddressRegister - If a physical register, this returns
491  /// the register that receives the exception address on entry to a landing
492  /// pad.
493  unsigned getExceptionAddressRegister() const {
494    return ExceptionPointerRegister;
495  }
496
497  /// getExceptionSelectorRegister - If a physical register, this returns
498  /// the register that receives the exception typeid on entry to a landing
499  /// pad.
500  unsigned getExceptionSelectorRegister() const {
501    return ExceptionSelectorRegister;
502  }
503
504  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
505  /// set, the default is 200)
506  unsigned getJumpBufSize() const {
507    return JumpBufSize;
508  }
509
510  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
511  /// (if never set, the default is 0)
512  unsigned getJumpBufAlignment() const {
513    return JumpBufAlignment;
514  }
515
516  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
517  /// limit. Any block whose size is greater should not be predicated.
518  virtual unsigned getIfCvtBlockSizeLimit() const {
519    return IfCvtBlockSizeLimit;
520  }
521
522  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
523  /// block to be considered for duplication. Any block whose size is greater
524  /// should not be duplicated to facilitate its predication.
525  virtual unsigned getIfCvtDupBlockSizeLimit() const {
526    return IfCvtDupBlockSizeLimit;
527  }
528
529  /// getPreIndexedAddressParts - returns true by value, base pointer and
530  /// offset pointer and addressing mode by reference if the node's address
531  /// can be legally represented as pre-indexed load / store address.
532  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
533                                         SDOperand &Offset,
534                                         ISD::MemIndexedMode &AM,
535                                         SelectionDAG &DAG) {
536    return false;
537  }
538
539  /// getPostIndexedAddressParts - returns true by value, base pointer and
540  /// offset pointer and addressing mode by reference if this node can be
541  /// combined with a load / store to form a post-indexed load / store.
542  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
543                                          SDOperand &Base, SDOperand &Offset,
544                                          ISD::MemIndexedMode &AM,
545                                          SelectionDAG &DAG) {
546    return false;
547  }
548
549  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
550  /// jumptable.
551  virtual SDOperand getPICJumpTableRelocBase(SDOperand Table,
552                                             SelectionDAG &DAG) const;
553
554  //===--------------------------------------------------------------------===//
555  // TargetLowering Optimization Methods
556  //
557
558  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
559  /// SDOperands for returning information from TargetLowering to its clients
560  /// that want to combine
561  struct TargetLoweringOpt {
562    SelectionDAG &DAG;
563    bool AfterLegalize;
564    SDOperand Old;
565    SDOperand New;
566
567    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
568      : DAG(InDAG), AfterLegalize(afterLegalize) {}
569
570    bool CombineTo(SDOperand O, SDOperand N) {
571      Old = O;
572      New = N;
573      return true;
574    }
575
576    /// ShrinkDemandedConstant - Check to see if the specified operand of the
577    /// specified instruction is a constant integer.  If so, check to see if
578    /// there are any bits set in the constant that are not demanded.  If so,
579    /// shrink the constant and return true.
580    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
581  };
582
583  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
584  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
585  /// use this information to simplify Op, create a new simplified DAG node and
586  /// return true, returning the original and new nodes in Old and New.
587  /// Otherwise, analyze the expression and return a mask of KnownOne and
588  /// KnownZero bits for the expression (used to simplify the caller).
589  /// The KnownZero/One bits may only be accurate for those bits in the
590  /// DemandedMask.
591  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
592                            uint64_t &KnownZero, uint64_t &KnownOne,
593                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
594
595  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
596  /// Mask are known to be either zero or one and return them in the
597  /// KnownZero/KnownOne bitsets.
598  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
599                                              uint64_t Mask,
600                                              uint64_t &KnownZero,
601                                              uint64_t &KnownOne,
602                                              const SelectionDAG &DAG,
603                                              unsigned Depth = 0) const;
604
605  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
606  /// targets that want to expose additional information about sign bits to the
607  /// DAG Combiner.
608  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
609                                                   unsigned Depth = 0) const;
610
611  struct DAGCombinerInfo {
612    void *DC;  // The DAG Combiner object.
613    bool BeforeLegalize;
614    bool CalledByLegalizer;
615  public:
616    SelectionDAG &DAG;
617
618    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
619      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
620
621    bool isBeforeLegalize() const { return BeforeLegalize; }
622    bool isCalledByLegalizer() const { return CalledByLegalizer; }
623
624    void AddToWorklist(SDNode *N);
625    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
626    SDOperand CombineTo(SDNode *N, SDOperand Res);
627    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
628  };
629
630  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
631  /// and cc. If it is unable to simplify it, return a null SDOperand.
632  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
633                          ISD::CondCode Cond, bool foldBooleans,
634                          DAGCombinerInfo &DCI) const;
635
636  /// PerformDAGCombine - This method will be invoked for all target nodes and
637  /// for any target-independent nodes that the target has registered with
638  /// invoke it for.
639  ///
640  /// The semantics are as follows:
641  /// Return Value:
642  ///   SDOperand.Val == 0   - No change was made
643  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
644  ///   otherwise            - N should be replaced by the returned Operand.
645  ///
646  /// In addition, methods provided by DAGCombinerInfo may be used to perform
647  /// more complex transformations.
648  ///
649  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
650
651  //===--------------------------------------------------------------------===//
652  // TargetLowering Configuration Methods - These methods should be invoked by
653  // the derived class constructor to configure this object for the target.
654  //
655
656protected:
657  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
658  /// GOT for PC-relative code.
659  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
660
661  /// setShiftAmountType - Describe the type that should be used for shift
662  /// amounts.  This type defaults to the pointer type.
663  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
664
665  /// setSetCCResultType - Describe the type that shoudl be used as the result
666  /// of a setcc operation.  This defaults to the pointer type.
667  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
668
669  /// setSetCCResultContents - Specify how the target extends the result of a
670  /// setcc operation in a register.
671  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
672
673  /// setSchedulingPreference - Specify the target scheduling preference.
674  void setSchedulingPreference(SchedPreference Pref) {
675    SchedPreferenceInfo = Pref;
676  }
677
678  /// setShiftAmountFlavor - Describe how the target handles out of range shift
679  /// amounts.
680  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
681    ShiftAmtHandling = OORSA;
682  }
683
684  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
685  /// use _setjmp to implement llvm.setjmp or the non _ version.
686  /// Defaults to false.
687  void setUseUnderscoreSetJmp(bool Val) {
688    UseUnderscoreSetJmp = Val;
689  }
690
691  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
692  /// use _longjmp to implement llvm.longjmp or the non _ version.
693  /// Defaults to false.
694  void setUseUnderscoreLongJmp(bool Val) {
695    UseUnderscoreLongJmp = Val;
696  }
697
698  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
699  /// specifies the register that llvm.savestack/llvm.restorestack should save
700  /// and restore.
701  void setStackPointerRegisterToSaveRestore(unsigned R) {
702    StackPointerRegisterToSaveRestore = R;
703  }
704
705  /// setExceptionPointerRegister - If set to a physical register, this sets
706  /// the register that receives the exception address on entry to a landing
707  /// pad.
708  void setExceptionPointerRegister(unsigned R) {
709    ExceptionPointerRegister = R;
710  }
711
712  /// setExceptionSelectorRegister - If set to a physical register, this sets
713  /// the register that receives the exception typeid on entry to a landing
714  /// pad.
715  void setExceptionSelectorRegister(unsigned R) {
716    ExceptionSelectorRegister = R;
717  }
718
719  /// SelectIsExpensive - Tells the code generator not to expand operations
720  /// into sequences that use the select operations if possible.
721  void setSelectIsExpensive() { SelectIsExpensive = true; }
722
723  /// setIntDivIsCheap - Tells the code generator that integer divide is
724  /// expensive, and if possible, should be replaced by an alternate sequence
725  /// of instructions not containing an integer divide.
726  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
727
728  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
729  /// srl/add/sra for a signed divide by power of two, and let the target handle
730  /// it.
731  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
732
733  /// addRegisterClass - Add the specified register class as an available
734  /// regclass for the specified value type.  This indicates the selector can
735  /// handle values of that class natively.
736  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
737    assert(!MVT::isExtendedVT(VT));
738    AvailableRegClasses.push_back(std::make_pair(VT, RC));
739    RegClassForVT[VT] = RC;
740  }
741
742  /// computeRegisterProperties - Once all of the register classes are added,
743  /// this allows us to compute derived properties we expose.
744  void computeRegisterProperties();
745
746  /// setOperationAction - Indicate that the specified operation does not work
747  /// with the specified type and indicate what to do about it.
748  void setOperationAction(unsigned Op, MVT::ValueType VT,
749                          LegalizeAction Action) {
750    assert(VT < sizeof(OpActions[0])*4 && Op < array_lengthof(OpActions) &&
751           "Table isn't big enough!");
752    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
753    OpActions[Op] |= (uint64_t)Action << VT*2;
754  }
755
756  /// setLoadXAction - Indicate that the specified load with extension does not
757  /// work with the with specified type and indicate what to do about it.
758  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
759                      LegalizeAction Action) {
760    assert(VT < sizeof(LoadXActions[0])*4 &&
761           ExtType < array_lengthof(LoadXActions) &&
762           "Table isn't big enough!");
763    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
764    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
765  }
766
767  /// setTruncStoreAction - Indicate that the specified truncating store does
768  /// not work with the with specified type and indicate what to do about it.
769  void setTruncStoreAction(MVT::ValueType ValVT, MVT::ValueType MemVT,
770                           LegalizeAction Action) {
771    assert(ValVT < array_lengthof(TruncStoreActions) &&
772           MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
773    TruncStoreActions[ValVT] &= ~(uint64_t(3UL) << MemVT*2);
774    TruncStoreActions[ValVT] |= (uint64_t)Action << MemVT*2;
775  }
776
777  /// setIndexedLoadAction - Indicate that the specified indexed load does or
778  /// does not work with the with specified type and indicate what to do abort
779  /// it. NOTE: All indexed mode loads are initialized to Expand in
780  /// TargetLowering.cpp
781  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
782                            LegalizeAction Action) {
783    assert(VT < sizeof(IndexedModeActions[0])*4 && IdxMode <
784           array_lengthof(IndexedModeActions[0]) &&
785           "Table isn't big enough!");
786    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
787    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
788  }
789
790  /// setIndexedStoreAction - Indicate that the specified indexed store does or
791  /// does not work with the with specified type and indicate what to do about
792  /// it. NOTE: All indexed mode stores are initialized to Expand in
793  /// TargetLowering.cpp
794  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
795                             LegalizeAction Action) {
796    assert(VT < sizeof(IndexedModeActions[1][0])*4 &&
797           IdxMode < array_lengthof(IndexedModeActions[1]) &&
798           "Table isn't big enough!");
799    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
800    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
801  }
802
803  /// setConvertAction - Indicate that the specified conversion does or does
804  /// not work with the with specified type and indicate what to do about it.
805  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
806                        LegalizeAction Action) {
807    assert(FromVT < array_lengthof(ConvertActions) &&
808           ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
809    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
810    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
811  }
812
813  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
814  /// promotion code defaults to trying a larger integer/fp until it can find
815  /// one that works.  If that default is insufficient, this method can be used
816  /// by the target to override the default.
817  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
818                         MVT::ValueType DestVT) {
819    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
820  }
821
822  /// addLegalFPImmediate - Indicate that this target can instruction select
823  /// the specified FP immediate natively.
824  void addLegalFPImmediate(const APFloat& Imm) {
825    LegalFPImmediates.push_back(Imm);
826  }
827
828  /// setTargetDAGCombine - Targets should invoke this method for each target
829  /// independent node that they want to provide a custom DAG combiner for by
830  /// implementing the PerformDAGCombine virtual method.
831  void setTargetDAGCombine(ISD::NodeType NT) {
832    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
833  }
834
835  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
836  /// bytes); default is 200
837  void setJumpBufSize(unsigned Size) {
838    JumpBufSize = Size;
839  }
840
841  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
842  /// alignment (in bytes); default is 0
843  void setJumpBufAlignment(unsigned Align) {
844    JumpBufAlignment = Align;
845  }
846
847  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
848  /// limit (in number of instructions); default is 2.
849  void setIfCvtBlockSizeLimit(unsigned Limit) {
850    IfCvtBlockSizeLimit = Limit;
851  }
852
853  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
854  /// of instructions) to be considered for code duplication during
855  /// if-conversion; default is 2.
856  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
857    IfCvtDupBlockSizeLimit = Limit;
858  }
859
860public:
861
862  virtual const TargetSubtarget *getSubtarget() {
863    assert(0 && "Not Implemented");
864    return NULL;    // this is here to silence compiler errors
865  }
866  //===--------------------------------------------------------------------===//
867  // Lowering methods - These methods must be implemented by targets so that
868  // the SelectionDAGLowering code knows how to lower these.
869  //
870
871  /// LowerArguments - This hook must be implemented to indicate how we should
872  /// lower the arguments for the specified function, into the specified DAG.
873  virtual std::vector<SDOperand>
874  LowerArguments(Function &F, SelectionDAG &DAG);
875
876  /// LowerCallTo - This hook lowers an abstract call to a function into an
877  /// actual call.  This returns a pair of operands.  The first element is the
878  /// return value for the function (if RetTy is not VoidTy).  The second
879  /// element is the outgoing token chain.
880  struct ArgListEntry {
881    SDOperand Node;
882    const Type* Ty;
883    bool isSExt;
884    bool isZExt;
885    bool isInReg;
886    bool isSRet;
887    bool isNest;
888    bool isByVal;
889
890    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
891      isSRet(false), isNest(false), isByVal(false) { }
892  };
893  typedef std::vector<ArgListEntry> ArgListTy;
894  virtual std::pair<SDOperand, SDOperand>
895  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
896              bool isVarArg, unsigned CallingConv, bool isTailCall,
897              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
898
899
900  virtual SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
901  virtual SDOperand LowerMEMCPYCall(SDOperand Chain, SDOperand Dest,
902                                    SDOperand Source, SDOperand Count,
903                                    SelectionDAG &DAG);
904  virtual SDOperand LowerMEMCPYInline(SDOperand Chain, SDOperand Dest,
905                                      SDOperand Source, unsigned Size,
906                                      unsigned Align, SelectionDAG &DAG) {
907    assert(0 && "Not Implemented");
908    return SDOperand();   // this is here to silence compiler errors
909  }
910
911
912  /// LowerOperation - This callback is invoked for operations that are
913  /// unsupported by the target, which are registered to use 'custom' lowering,
914  /// and whose defined values are all legal.
915  /// If the target has no operations that require custom lowering, it need not
916  /// implement this.  The default implementation of this aborts.
917  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
918
919  /// ExpandOperationResult - This callback is invoked for operations that are
920  /// unsupported by the target, which are registered to use 'custom' lowering,
921  /// and whose result type needs to be expanded.  This must return a node whose
922  /// results precisely match the results of the input node.  This typically
923  /// involves a MERGE_VALUES node and/or BUILD_PAIR.
924  ///
925  /// If the target has no operations that require custom lowering, it need not
926  /// implement this.  The default implementation of this aborts.
927  virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
928    assert(0 && "ExpandOperationResult not implemented for this target!");
929    return 0;
930  }
931
932  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
933  /// tail call optimization. Targets which want to do tail call optimization
934  /// should override this function.
935  virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
936                                                 SDOperand Ret,
937                                                 SelectionDAG &DAG) const {
938    return false;
939  }
940
941  /// CustomPromoteOperation - This callback is invoked for operations that are
942  /// unsupported by the target, are registered to use 'custom' lowering, and
943  /// whose type needs to be promoted.
944  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
945
946  /// getTargetNodeName() - This method returns the name of a target specific
947  /// DAG node.
948  virtual const char *getTargetNodeName(unsigned Opcode) const;
949
950  //===--------------------------------------------------------------------===//
951  // Inline Asm Support hooks
952  //
953
954  enum ConstraintType {
955    C_Register,            // Constraint represents a single register.
956    C_RegisterClass,       // Constraint represents one or more registers.
957    C_Memory,              // Memory constraint.
958    C_Other,               // Something else.
959    C_Unknown              // Unsupported constraint.
960  };
961
962  /// getConstraintType - Given a constraint, return the type of constraint it
963  /// is for this target.
964  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
965
966
967  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
968  /// return a list of registers that can be used to satisfy the constraint.
969  /// This should only be used for C_RegisterClass constraints.
970  virtual std::vector<unsigned>
971  getRegClassForInlineAsmConstraint(const std::string &Constraint,
972                                    MVT::ValueType VT) const;
973
974  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
975  /// {edx}), return the register number and the register class for the
976  /// register.
977  ///
978  /// Given a register class constraint, like 'r', if this corresponds directly
979  /// to an LLVM register class, return a register of 0 and the register class
980  /// pointer.
981  ///
982  /// This should only be used for C_Register constraints.  On error,
983  /// this returns a register number of 0 and a null register class pointer..
984  virtual std::pair<unsigned, const TargetRegisterClass*>
985    getRegForInlineAsmConstraint(const std::string &Constraint,
986                                 MVT::ValueType VT) const;
987
988
989  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
990  /// vector.  If it is invalid, don't add anything to Ops.
991  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
992                                            std::vector<SDOperand> &Ops,
993                                            SelectionDAG &DAG);
994
995  //===--------------------------------------------------------------------===//
996  // Scheduler hooks
997  //
998
999  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
1000  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1001  // instructions are special in various ways, which require special support to
1002  // insert.  The specified MachineInstr is created but not inserted into any
1003  // basic blocks, and the scheduler passes ownership of it to this method.
1004  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
1005                                                     MachineBasicBlock *MBB);
1006
1007  //===--------------------------------------------------------------------===//
1008  // Addressing mode description hooks (used by LSR etc).
1009  //
1010
1011  /// AddrMode - This represents an addressing mode of:
1012  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1013  /// If BaseGV is null,  there is no BaseGV.
1014  /// If BaseOffs is zero, there is no base offset.
1015  /// If HasBaseReg is false, there is no base register.
1016  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1017  /// no scale.
1018  ///
1019  struct AddrMode {
1020    GlobalValue *BaseGV;
1021    int64_t      BaseOffs;
1022    bool         HasBaseReg;
1023    int64_t      Scale;
1024    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1025  };
1026
1027  /// isLegalAddressingMode - Return true if the addressing mode represented by
1028  /// AM is legal for this target, for a load/store of the specified type.
1029  /// TODO: Handle pre/postinc as well.
1030  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1031
1032  /// isTruncateFree - Return true if it's free to truncate a value of
1033  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1034  /// register EAX to i16 by referencing its sub-register AX.
1035  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1036    return false;
1037  }
1038
1039  virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const {
1040    return false;
1041  }
1042
1043  //===--------------------------------------------------------------------===//
1044  // Div utility functions
1045  //
1046  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
1047                      std::vector<SDNode*>* Created) const;
1048  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
1049                      std::vector<SDNode*>* Created) const;
1050
1051
1052  //===--------------------------------------------------------------------===//
1053  // Runtime Library hooks
1054  //
1055
1056  /// setLibcallName - Rename the default libcall routine name for the specified
1057  /// libcall.
1058  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1059    LibcallRoutineNames[Call] = Name;
1060  }
1061
1062  /// getLibcallName - Get the libcall routine name for the specified libcall.
1063  ///
1064  const char *getLibcallName(RTLIB::Libcall Call) const {
1065    return LibcallRoutineNames[Call];
1066  }
1067
1068  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1069  /// result of the comparison libcall against zero.
1070  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1071    CmpLibcallCCs[Call] = CC;
1072  }
1073
1074  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1075  /// the comparison libcall against zero.
1076  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1077    return CmpLibcallCCs[Call];
1078  }
1079
1080private:
1081  TargetMachine &TM;
1082  const TargetData *TD;
1083
1084  /// IsLittleEndian - True if this is a little endian target.
1085  ///
1086  bool IsLittleEndian;
1087
1088  /// PointerTy - The type to use for pointers, usually i32 or i64.
1089  ///
1090  MVT::ValueType PointerTy;
1091
1092  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1093  ///
1094  bool UsesGlobalOffsetTable;
1095
1096  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1097  /// PointerTy is.
1098  MVT::ValueType ShiftAmountTy;
1099
1100  OutOfRangeShiftAmount ShiftAmtHandling;
1101
1102  /// SelectIsExpensive - Tells the code generator not to expand operations
1103  /// into sequences that use the select operations if possible.
1104  bool SelectIsExpensive;
1105
1106  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1107  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1108  /// a real cost model is in place.  If we ever optimize for size, this will be
1109  /// set to true unconditionally.
1110  bool IntDivIsCheap;
1111
1112  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1113  /// srl/add/sra for a signed divide by power of two, and let the target handle
1114  /// it.
1115  bool Pow2DivIsCheap;
1116
1117  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1118  /// PointerTy.
1119  MVT::ValueType SetCCResultTy;
1120
1121  /// SetCCResultContents - Information about the contents of the high-bits in
1122  /// the result of a setcc comparison operation.
1123  SetCCResultValue SetCCResultContents;
1124
1125  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1126  /// total cycles or lowest register usage.
1127  SchedPreference SchedPreferenceInfo;
1128
1129  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1130  /// llvm.setjmp.  Defaults to false.
1131  bool UseUnderscoreSetJmp;
1132
1133  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1134  /// llvm.longjmp.  Defaults to false.
1135  bool UseUnderscoreLongJmp;
1136
1137  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1138  unsigned JumpBufSize;
1139
1140  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1141  /// buffers
1142  unsigned JumpBufAlignment;
1143
1144  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1145  /// if-converted.
1146  unsigned IfCvtBlockSizeLimit;
1147
1148  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1149  /// duplicated during if-conversion.
1150  unsigned IfCvtDupBlockSizeLimit;
1151
1152  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1153  /// specifies the register that llvm.savestack/llvm.restorestack should save
1154  /// and restore.
1155  unsigned StackPointerRegisterToSaveRestore;
1156
1157  /// ExceptionPointerRegister - If set to a physical register, this specifies
1158  /// the register that receives the exception address on entry to a landing
1159  /// pad.
1160  unsigned ExceptionPointerRegister;
1161
1162  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1163  /// the register that receives the exception typeid on entry to a landing
1164  /// pad.
1165  unsigned ExceptionSelectorRegister;
1166
1167  /// RegClassForVT - This indicates the default register class to use for
1168  /// each ValueType the target supports natively.
1169  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1170  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1171  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1172
1173  /// TransformToType - For any value types we are promoting or expanding, this
1174  /// contains the value type that we are changing to.  For Expanded types, this
1175  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1176  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1177  /// by the system, this holds the same type (e.g. i32 -> i32).
1178  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1179
1180  /// OpActions - For each operation and each value type, keep a LegalizeAction
1181  /// that indicates how instruction selection should deal with the operation.
1182  /// Most operations are Legal (aka, supported natively by the target), but
1183  /// operations that are not should be described.  Note that operations on
1184  /// non-legal value types are not described here.
1185  uint64_t OpActions[156];
1186
1187  /// LoadXActions - For each load of load extension type and each value type,
1188  /// keep a LegalizeAction that indicates how instruction selection should deal
1189  /// with the load.
1190  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1191
1192  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1193  /// indicates how instruction selection should deal with the store.
1194  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1195
1196  /// IndexedModeActions - For each indexed mode and each value type, keep a
1197  /// pair of LegalizeAction that indicates how instruction selection should
1198  /// deal with the load / store.
1199  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1200
1201  /// ConvertActions - For each conversion from source type to destination type,
1202  /// keep a LegalizeAction that indicates how instruction selection should
1203  /// deal with the conversion.
1204  /// Currently, this is used only for floating->floating conversions
1205  /// (FP_EXTEND and FP_ROUND).
1206  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1207
1208  ValueTypeActionImpl ValueTypeActions;
1209
1210  std::vector<APFloat> LegalFPImmediates;
1211
1212  std::vector<std::pair<MVT::ValueType,
1213                        TargetRegisterClass*> > AvailableRegClasses;
1214
1215  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1216  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1217  /// which sets a bit in this array.
1218  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1219
1220  /// PromoteToType - For operations that must be promoted to a specific type,
1221  /// this holds the destination type.  This map should be sparse, so don't hold
1222  /// it as an array.
1223  ///
1224  /// Targets add entries to this map with AddPromotedToType(..), clients access
1225  /// this with getTypeToPromoteTo(..).
1226  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1227
1228  /// LibcallRoutineNames - Stores the name each libcall.
1229  ///
1230  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1231
1232  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1233  /// of each of the comparison libcall against zero.
1234  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1235
1236protected:
1237  /// When lowering %llvm.memset this field specifies the maximum number of
1238  /// store operations that may be substituted for the call to memset. Targets
1239  /// must set this value based on the cost threshold for that target. Targets
1240  /// should assume that the memset will be done using as many of the largest
1241  /// store operations first, followed by smaller ones, if necessary, per
1242  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1243  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1244  /// store.  This only applies to setting a constant array of a constant size.
1245  /// @brief Specify maximum number of store instructions per memset call.
1246  unsigned maxStoresPerMemset;
1247
1248  /// When lowering %llvm.memcpy this field specifies the maximum number of
1249  /// store operations that may be substituted for a call to memcpy. Targets
1250  /// must set this value based on the cost threshold for that target. Targets
1251  /// should assume that the memcpy will be done using as many of the largest
1252  /// store operations first, followed by smaller ones, if necessary, per
1253  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1254  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1255  /// and one 1-byte store. This only applies to copying a constant array of
1256  /// constant size.
1257  /// @brief Specify maximum bytes of store instructions per memcpy call.
1258  unsigned maxStoresPerMemcpy;
1259
1260  /// When lowering %llvm.memmove this field specifies the maximum number of
1261  /// store instructions that may be substituted for a call to memmove. Targets
1262  /// must set this value based on the cost threshold for that target. Targets
1263  /// should assume that the memmove will be done using as many of the largest
1264  /// store operations first, followed by smaller ones, if necessary, per
1265  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1266  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1267  /// applies to copying a constant array of constant size.
1268  /// @brief Specify maximum bytes of store instructions per memmove call.
1269  unsigned maxStoresPerMemmove;
1270
1271  /// This field specifies whether the target machine permits unaligned memory
1272  /// accesses.  This is used, for example, to determine the size of store
1273  /// operations when copying small arrays and other similar tasks.
1274  /// @brief Indicate whether the target permits unaligned memory accesses.
1275  bool allowUnalignedMemoryAccesses;
1276};
1277} // end llvm namespace
1278
1279#endif
1280