TargetLowering.h revision 6a648614e88586e85a36ceb5c1d3b84e4f55b458
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include <vector>
28
29namespace llvm {
30  class Value;
31  class Function;
32  class TargetMachine;
33  class TargetData;
34  class TargetRegisterClass;
35  class SDNode;
36  class SDOperand;
37  class SelectionDAG;
38  class MachineBasicBlock;
39  class MachineInstr;
40
41//===----------------------------------------------------------------------===//
42/// TargetLowering - This class defines information used to lower LLVM code to
43/// legal SelectionDAG operators that the target instruction selector can accept
44/// natively.
45///
46/// This class also defines callbacks that targets must implement to lower
47/// target-specific constructs to SelectionDAG operators.
48///
49class TargetLowering {
50public:
51  /// LegalizeAction - This enum indicates whether operations are valid for a
52  /// target, and if not, what action should be used to make them valid.
53  enum LegalizeAction {
54    Legal,      // The target natively supports this operation.
55    Promote,    // This operation should be executed in a larger type.
56    Expand,     // Try to expand this to other ops, otherwise use a libcall.
57    Custom,     // Use the LowerOperation hook to implement custom lowering.
58  };
59
60  enum OutOfRangeShiftAmount {
61    Undefined,  // Oversized shift amounts are undefined (default).
62    Mask,       // Shift amounts are auto masked (anded) to value size.
63    Extend,     // Oversized shift pulls in zeros or sign bits.
64  };
65
66  enum SetCCResultValue {
67    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
68    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
69    ZeroOrNegativeOneSetCCResult,  // SetCC returns a sign extended result.
70  };
71
72  TargetLowering(TargetMachine &TM);
73  virtual ~TargetLowering();
74
75  TargetMachine &getTargetMachine() const { return TM; }
76  const TargetData &getTargetData() const { return TD; }
77
78  bool isLittleEndian() const { return IsLittleEndian; }
79  MVT::ValueType getPointerTy() const { return PointerTy; }
80  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
81  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
82
83  /// isSetCCExpensive - Return true if the setcc operation is expensive for
84  /// this target.
85  bool isSetCCExpensive() const { return SetCCIsExpensive; }
86
87  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
88  /// a sequence of several shifts, adds, and multiplies for this target.
89  bool isIntDivCheap() const { return IntDivIsCheap; }
90
91  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
92  /// srl/add/sra.
93  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
94
95  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
96  ///
97  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
98
99  /// getSetCCResultContents - For targets without boolean registers, this flag
100  /// returns information about the contents of the high-bits in the setcc
101  /// result register.
102  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
103
104  /// getRegClassFor - Return the register class that should be used for the
105  /// specified value type.  This may only be called on legal types.
106  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
107    TargetRegisterClass *RC = RegClassForVT[VT];
108    assert(RC && "This value type is not natively supported!");
109    return RC;
110  }
111
112  /// isTypeLegal - Return true if the target has native support for the
113  /// specified value type.  This means that it has a register that directly
114  /// holds it without promotions or expansions.
115  bool isTypeLegal(MVT::ValueType VT) const {
116    return RegClassForVT[VT] != 0;
117  }
118
119  /// getTypeAction - Return how we should legalize values of this type, either
120  /// it is already legal (return 'Legal') or we need to promote it to a larger
121  /// type (return 'Promote'), or we need to expand it into multiple registers
122  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
123  LegalizeAction getTypeAction(MVT::ValueType VT) const {
124    return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
125  }
126  unsigned long long getValueTypeActions() const { return ValueTypeActions; }
127
128  /// getTypeToTransformTo - For types supported by the target, this is an
129  /// identity function.  For types that must be promoted to larger types, this
130  /// returns the larger type to promote to.  For types that are larger than the
131  /// largest integer register, this contains one step in the expansion to get
132  /// to the smaller register.
133  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
134    return TransformToType[VT];
135  }
136
137  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
138  legal_fpimm_iterator legal_fpimm_begin() const {
139    return LegalFPImmediates.begin();
140  }
141  legal_fpimm_iterator legal_fpimm_end() const {
142    return LegalFPImmediates.end();
143  }
144
145  /// getOperationAction - Return how this operation should be treated: either
146  /// it is legal, needs to be promoted to a larger size, needs to be
147  /// expanded to some other code sequence, or the target has a custom expander
148  /// for it.
149  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
150    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
151  }
152
153  /// isOperationLegal - Return true if the specified operation is legal on this
154  /// target.
155  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
156    return getOperationAction(Op, VT) == Legal;
157  }
158
159  /// getTypeToPromoteTo - If the action for this operation is to promote, this
160  /// method returns the ValueType to promote to.
161  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
162    assert(getOperationAction(Op, VT) == Promote &&
163           "This operation isn't promoted!");
164    MVT::ValueType NVT = VT;
165    do {
166      NVT = (MVT::ValueType)(NVT+1);
167      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
168             "Didn't find type to promote to!");
169    } while (!isTypeLegal(NVT) ||
170              getOperationAction(Op, NVT) == Promote);
171    return NVT;
172  }
173
174  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
175  /// This is fixed by the LLVM operations except for the pointer size.
176  MVT::ValueType getValueType(const Type *Ty) const {
177    switch (Ty->getTypeID()) {
178    default: assert(0 && "Unknown type!");
179    case Type::VoidTyID:    return MVT::isVoid;
180    case Type::BoolTyID:    return MVT::i1;
181    case Type::UByteTyID:
182    case Type::SByteTyID:   return MVT::i8;
183    case Type::ShortTyID:
184    case Type::UShortTyID:  return MVT::i16;
185    case Type::IntTyID:
186    case Type::UIntTyID:    return MVT::i32;
187    case Type::LongTyID:
188    case Type::ULongTyID:   return MVT::i64;
189    case Type::FloatTyID:   return MVT::f32;
190    case Type::DoubleTyID:  return MVT::f64;
191    case Type::PointerTyID: return PointerTy;
192    case Type::PackedTyID:  return MVT::Vector;
193    }
194  }
195
196  /// getNumElements - Return the number of registers that this ValueType will
197  /// eventually require.  This is always one for all non-integer types, is
198  /// one for any types promoted to live in larger registers, but may be more
199  /// than one for types (like i64) that are split into pieces.
200  unsigned getNumElements(MVT::ValueType VT) const {
201    return NumElementsForVT[VT];
202  }
203
204  /// This function returns the maximum number of store operations permitted
205  /// to replace a call to llvm.memset. The value is set by the target at the
206  /// performance threshold for such a replacement.
207  /// @brief Get maximum # of store operations permitted for llvm.memset
208  unsigned getMaxStoresPerMemSet() const { return maxStoresPerMemSet; }
209
210  /// This function returns the maximum number of store operations permitted
211  /// to replace a call to llvm.memcpy. The value is set by the target at the
212  /// performance threshold for such a replacement.
213  /// @brief Get maximum # of store operations permitted for llvm.memcpy
214  unsigned getMaxStoresPerMemCpy() const { return maxStoresPerMemCpy; }
215
216  /// This function returns the maximum number of store operations permitted
217  /// to replace a call to llvm.memmove. The value is set by the target at the
218  /// performance threshold for such a replacement.
219  /// @brief Get maximum # of store operations permitted for llvm.memmove
220  unsigned getMaxStoresPerMemMove() const { return maxStoresPerMemMove; }
221
222  /// This function returns true if the target allows unaligned memory accesses.
223  /// This is used, for example, in situations where an array copy/move/set is
224  /// converted to a sequence of store operations. It's use helps to ensure that
225  /// such replacements don't generate code that causes an alignment error
226  /// (trap) on the target machine.
227  /// @brief Determine if the target supports unaligned memory accesses.
228  bool allowsUnalignedMemoryAccesses() const
229    { return allowUnalignedMemoryAccesses; }
230
231  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
232  /// to implement llvm.setjmp.
233  bool usesUnderscoreSetJmpLongJmp() const {
234    return UseUnderscoreSetJmpLongJmp;
235  }
236
237  //===--------------------------------------------------------------------===//
238  // TargetLowering Configuration Methods - These methods should be invoked by
239  // the derived class constructor to configure this object for the target.
240  //
241
242protected:
243
244  /// setShiftAmountType - Describe the type that should be used for shift
245  /// amounts.  This type defaults to the pointer type.
246  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
247
248  /// setSetCCResultType - Describe the type that shoudl be used as the result
249  /// of a setcc operation.  This defaults to the pointer type.
250  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
251
252  /// setSetCCResultContents - Specify how the target extends the result of a
253  /// setcc operation in a register.
254  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
255
256  /// setShiftAmountFlavor - Describe how the target handles out of range shift
257  /// amounts.
258  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
259    ShiftAmtHandling = OORSA;
260  }
261
262  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
263  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
264  /// the non _ versions.  Defaults to false.
265  void setUseUnderscoreSetJmpLongJmp(bool Val) {
266    UseUnderscoreSetJmpLongJmp = Val;
267  }
268
269  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
270  /// setcc as a conditional branch.  This encourages the code generator to fold
271  /// setcc operations into other operations if possible.
272  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
273
274  /// setIntDivIsCheap - Tells the code generator that integer divide is
275  /// expensive, and if possible, should be replaced by an alternate sequence
276  /// of instructions not containing an integer divide.
277  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
278
279  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
280  /// srl/add/sra for a signed divide by power of two, and let the target handle
281  /// it.
282  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
283
284  /// addRegisterClass - Add the specified register class as an available
285  /// regclass for the specified value type.  This indicates the selector can
286  /// handle values of that class natively.
287  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
288    AvailableRegClasses.push_back(std::make_pair(VT, RC));
289    RegClassForVT[VT] = RC;
290  }
291
292  /// computeRegisterProperties - Once all of the register classes are added,
293  /// this allows us to compute derived properties we expose.
294  void computeRegisterProperties();
295
296  /// setOperationAction - Indicate that the specified operation does not work
297  /// with the specified type and indicate what to do about it.
298  void setOperationAction(unsigned Op, MVT::ValueType VT,
299                          LegalizeAction Action) {
300    assert(VT < 16 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
301           "Table isn't big enough!");
302    OpActions[Op] |= Action << VT*2;
303  }
304
305  /// addLegalFPImmediate - Indicate that this target can instruction select
306  /// the specified FP immediate natively.
307  void addLegalFPImmediate(double Imm) {
308    LegalFPImmediates.push_back(Imm);
309  }
310
311public:
312
313  //===--------------------------------------------------------------------===//
314  // Lowering methods - These methods must be implemented by targets so that
315  // the SelectionDAGLowering code knows how to lower these.
316  //
317
318  /// LowerArguments - This hook must be implemented to indicate how we should
319  /// lower the arguments for the specified function, into the specified DAG.
320  virtual std::vector<SDOperand>
321  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
322
323  /// LowerCallTo - This hook lowers an abstract call to a function into an
324  /// actual call.  This returns a pair of operands.  The first element is the
325  /// return value for the function (if RetTy is not VoidTy).  The second
326  /// element is the outgoing token chain.
327  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
328  virtual std::pair<SDOperand, SDOperand>
329  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
330              unsigned CallingConv, bool isTailCall, SDOperand Callee,
331              ArgListTy &Args, SelectionDAG &DAG) = 0;
332
333  /// LowerReturnTo - This hook lowers a return instruction into the appropriate
334  /// legal ISD::RET node for the target's current ABI.  This method is optional
335  /// and is intended for targets that need non-standard behavior.
336  virtual SDOperand LowerReturnTo(SDOperand Chain, SDOperand Op,
337                                  SelectionDAG &DAG);
338
339  /// LowerVAStart - This lowers the llvm.va_start intrinsic.  If not
340  /// implemented, this method prints a message and aborts.  This method should
341  /// return the modified chain value.  Note that VAListPtr* correspond to the
342  /// llvm.va_start operand.
343  virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
344                                 Value *VAListV, SelectionDAG &DAG);
345
346  /// LowerVAEnd - This lowers llvm.va_end and returns the resultant chain.  If
347  /// not implemented, this defaults to a noop.
348  virtual SDOperand LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
349                               SelectionDAG &DAG);
350
351  /// LowerVACopy - This lowers llvm.va_copy and returns the resultant chain.
352  /// If not implemented, this defaults to loading a pointer from the input and
353  /// storing it to the output.
354  virtual SDOperand LowerVACopy(SDOperand Chain, SDOperand SrcP, Value *SrcV,
355                                SDOperand DestP, Value *DestV,
356                                SelectionDAG &DAG);
357
358  /// LowerVAArg - This lowers the vaarg instruction.  If not implemented, this
359  /// prints a message and aborts.
360  virtual std::pair<SDOperand,SDOperand>
361  LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
362             const Type *ArgTy, SelectionDAG &DAG);
363
364  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
365  /// llvm.frameaddress (depending on the value of the first argument).  The
366  /// return values are the result pointer and the resultant token chain.  If
367  /// not implemented, both of these intrinsics will return null.
368  virtual std::pair<SDOperand, SDOperand>
369  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
370                          SelectionDAG &DAG);
371
372  /// LowerOperation - For operations that are unsupported by the target, and
373  /// which are registered to use 'custom' lowering.  This callback is invoked.
374  /// If the target has no operations that require custom lowering, it need not
375  /// implement this.  The default implementation of this aborts.
376  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
377
378  //===--------------------------------------------------------------------===//
379  // Scheduler hooks
380  //
381
382  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
383  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
384  // instructions are special in various ways, which require special support to
385  // insert.  The specified MachineInstr is created but not inserted into any
386  // basic blocks, and the scheduler passes ownership of it to this method.
387  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
388                                                     MachineBasicBlock *MBB);
389
390private:
391  TargetMachine &TM;
392  const TargetData &TD;
393
394  /// IsLittleEndian - True if this is a little endian target.
395  ///
396  bool IsLittleEndian;
397
398  /// PointerTy - The type to use for pointers, usually i32 or i64.
399  ///
400  MVT::ValueType PointerTy;
401
402  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
403  /// PointerTy is.
404  MVT::ValueType ShiftAmountTy;
405
406  OutOfRangeShiftAmount ShiftAmtHandling;
407
408  /// SetCCIsExpensive - This is a short term hack for targets that codegen
409  /// setcc as a conditional branch.  This encourages the code generator to fold
410  /// setcc operations into other operations if possible.
411  bool SetCCIsExpensive;
412
413  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
414  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
415  /// a real cost model is in place.  If we ever optimize for size, this will be
416  /// set to true unconditionally.
417  bool IntDivIsCheap;
418
419  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
420  /// srl/add/sra for a signed divide by power of two, and let the target handle
421  /// it.
422  bool Pow2DivIsCheap;
423
424  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
425  /// PointerTy.
426  MVT::ValueType SetCCResultTy;
427
428  /// SetCCResultContents - Information about the contents of the high-bits in
429  /// the result of a setcc comparison operation.
430  SetCCResultValue SetCCResultContents;
431
432  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
433  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
434  bool UseUnderscoreSetJmpLongJmp;
435
436  /// RegClassForVT - This indicates the default register class to use for
437  /// each ValueType the target supports natively.
438  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
439  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
440
441  /// ValueTypeActions - This is a bitvector that contains two bits for each
442  /// value type, where the two bits correspond to the LegalizeAction enum.
443  /// This can be queried with "getTypeAction(VT)".
444  unsigned long long ValueTypeActions;
445
446  /// TransformToType - For any value types we are promoting or expanding, this
447  /// contains the value type that we are changing to.  For Expanded types, this
448  /// contains one step of the expand (e.g. i64 -> i32), even if there are
449  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
450  /// by the system, this holds the same type (e.g. i32 -> i32).
451  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
452
453  /// OpActions - For each operation and each value type, keep a LegalizeAction
454  /// that indicates how instruction selection should deal with the operation.
455  /// Most operations are Legal (aka, supported natively by the target), but
456  /// operations that are not should be described.  Note that operations on
457  /// non-legal value types are not described here.
458  unsigned OpActions[128];
459
460  std::vector<double> LegalFPImmediates;
461
462  std::vector<std::pair<MVT::ValueType,
463                        TargetRegisterClass*> > AvailableRegClasses;
464
465protected:
466  /// When lowering %llvm.memset this field specifies the maximum number of
467  /// store operations that may be substituted for the call to memset. Targets
468  /// must set this value based on the cost threshold for that target. Targets
469  /// should assume that the memset will be done using as many of the largest
470  /// store operations first, followed by smaller ones, if necessary, per
471  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
472  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
473  /// store.  This only applies to setting a constant array of a constant size.
474  /// @brief Specify maximum number of store instructions per memset call.
475  unsigned maxStoresPerMemSet;
476
477  /// When lowering %llvm.memcpy this field specifies the maximum number of
478  /// store operations that may be substituted for a call to memcpy. Targets
479  /// must set this value based on the cost threshold for that target. Targets
480  /// should assume that the memcpy will be done using as many of the largest
481  /// store operations first, followed by smaller ones, if necessary, per
482  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
483  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
484  /// and one 1-byte store. This only applies to copying a constant array of
485  /// constant size.
486  /// @brief Specify maximum bytes of store instructions per memcpy call.
487  unsigned maxStoresPerMemCpy;
488
489  /// When lowering %llvm.memmove this field specifies the maximum number of
490  /// store instructions that may be substituted for a call to memmove. Targets
491  /// must set this value based on the cost threshold for that target. Targets
492  /// should assume that the memmove will be done using as many of the largest
493  /// store operations first, followed by smaller ones, if necessary, per
494  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
495  /// with 8-bit alignment would result in nine 1-byte stores.  This only
496  /// applies to copying a constant array of constant size.
497  /// @brief Specify maximum bytes of store instructions per memmove call.
498  unsigned maxStoresPerMemMove;
499
500  /// This field specifies whether the target machine permits unaligned memory
501  /// accesses.  This is used, for example, to determine the size of store
502  /// operations when copying small arrays and other similar tasks.
503  /// @brief Indicate whether the target permits unaligned memory accesses.
504  bool allowUnalignedMemoryAccesses;
505};
506} // end llvm namespace
507
508#endif
509