TargetLowering.h revision 6b61cd185eeb90bec93f042535594132ae1f0f41
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class Value;
58
59  // FIXME: should this be here?
60  namespace TLSModel {
61    enum Model {
62      GeneralDynamic,
63      LocalDynamic,
64      InitialExec,
65      LocalExec
66    };
67  }
68  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
69
70
71//===----------------------------------------------------------------------===//
72/// TargetLowering - This class defines information used to lower LLVM code to
73/// legal SelectionDAG operators that the target instruction selector can accept
74/// natively.
75///
76/// This class also defines callbacks that targets must implement to lower
77/// target-specific constructs to SelectionDAG operators.
78///
79class TargetLowering {
80public:
81  /// LegalizeAction - This enum indicates whether operations are valid for a
82  /// target, and if not, what action should be used to make them valid.
83  enum LegalizeAction {
84    Legal,      // The target natively supports this operation.
85    Promote,    // This operation should be executed in a larger type.
86    Expand,     // Try to expand this to other ops, otherwise use a libcall.
87    Custom      // Use the LowerOperation hook to implement custom lowering.
88  };
89
90  enum OutOfRangeShiftAmount {
91    Undefined,  // Oversized shift amounts are undefined (default).
92    Mask,       // Shift amounts are auto masked (anded) to value size.
93    Extend      // Oversized shift pulls in zeros or sign bits.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  enum SchedPreference {
103    SchedulingForLatency,          // Scheduling for shortest total latency.
104    SchedulingForRegPressure       // Scheduling for lowest register pressure.
105  };
106
107  explicit TargetLowering(TargetMachine &TM);
108  virtual ~TargetLowering();
109
110  TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
118
119  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
120  /// codegen.
121  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
122
123  /// isSelectExpensive - Return true if the select operation is expensive for
124  /// this target.
125  bool isSelectExpensive() const { return SelectIsExpensive; }
126
127  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
128  /// a sequence of several shifts, adds, and multiplies for this target.
129  bool isIntDivCheap() const { return IntDivIsCheap; }
130
131  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
132  /// srl/add/sra.
133  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
134
135  /// getSetCCResultType - Return the ValueType of the result of SETCC
136  /// operations.  Also used to obtain the target's preferred type for
137  /// the condition operand of SELECT and BRCOND nodes.  In the case of
138  /// BRCOND the argument passed is MVT::Other since there are no other
139  /// operands to get a type hint from.
140  virtual MVT getSetCCResultType(MVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(MVT VT) const {
157    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(MVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
177    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
178  public:
179    ValueTypeActionImpl() {
180      ValueTypeActions[0] = ValueTypeActions[1] = 0;
181      ValueTypeActions[2] = ValueTypeActions[3] = 0;
182    }
183    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
184      ValueTypeActions[0] = RHS.ValueTypeActions[0];
185      ValueTypeActions[1] = RHS.ValueTypeActions[1];
186      ValueTypeActions[2] = RHS.ValueTypeActions[2];
187      ValueTypeActions[3] = RHS.ValueTypeActions[3];
188    }
189
190    LegalizeAction getTypeAction(MVT VT) const {
191      if (VT.isExtended()) {
192        if (VT.isVector()) {
193          return VT.isPow2VectorType() ? Expand : Promote;
194        }
195        if (VT.isInteger())
196          // First promote to a power-of-two size, then expand if necessary.
197          return VT == VT.getRoundIntegerType() ? Expand : Promote;
198        assert(0 && "Unsupported extended type!");
199        return Legal;
200      }
201      unsigned I = VT.getSimpleVT();
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
204    }
205    void setTypeAction(MVT VT, LegalizeAction Action) {
206      unsigned I = VT.getSimpleVT();
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(MVT VT) const {
221    return ValueTypeActions.getTypeAction(VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  MVT getTypeToTransformTo(MVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
233      MVT NVT = TransformToType[VT.getSimpleVT()];
234      assert(getTypeAction(NVT) != Promote &&
235             "Promote may not follow Expand or Promote");
236      return NVT;
237    }
238
239    if (VT.isVector()) {
240      MVT NVT = VT.getPow2VectorType();
241      if (NVT == VT) {
242        // Vector length is a power of 2 - split to half the size.
243        unsigned NumElts = VT.getVectorNumElements();
244        MVT EltVT = VT.getVectorElementType();
245        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
246      }
247      // Promote to a power of two size, avoiding multi-step promotion.
248      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
249    } else if (VT.isInteger()) {
250      MVT NVT = VT.getRoundIntegerType();
251      if (NVT == VT)
252        // Size is a power of two - expand to half the size.
253        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
254      else
255        // Promote to a power of two size, avoiding multi-step promotion.
256        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
257    }
258    assert(0 && "Unsupported extended type!");
259    return MVT(); // Not reached
260  }
261
262  /// getTypeToExpandTo - For types supported by the target, this is an
263  /// identity function.  For types that must be expanded (i.e. integer types
264  /// that are larger than the largest integer register or illegal floating
265  /// point types), this returns the largest legal type it will be expanded to.
266  MVT getTypeToExpandTo(MVT VT) const {
267    assert(!VT.isVector());
268    while (true) {
269      switch (getTypeAction(VT)) {
270      case Legal:
271        return VT;
272      case Expand:
273        VT = getTypeToTransformTo(VT);
274        break;
275      default:
276        assert(false && "Type is not legal nor is it to be expanded!");
277        return VT;
278      }
279    }
280    return VT;
281  }
282
283  /// getVectorTypeBreakdown - Vector types are broken down into some number of
284  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
285  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
286  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
287  ///
288  /// This method returns the number of registers needed, and the VT for each
289  /// register.  It also returns the VT and quantity of the intermediate values
290  /// before they are promoted/expanded.
291  ///
292  unsigned getVectorTypeBreakdown(MVT VT,
293                                  MVT &IntermediateVT,
294                                  unsigned &NumIntermediates,
295                                  MVT &RegisterVT) const;
296
297  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
298  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
299  /// this is the case, it returns true and store the intrinsic
300  /// information into the IntrinsicInfo that was passed to the function.
301  typedef struct IntrinsicInfo {
302    unsigned     opc;         // target opcode
303    MVT          memVT;       // memory VT
304    const Value* ptrVal;      // value representing memory location
305    int          offset;      // offset off of ptrVal
306    unsigned     align;       // alignment
307    bool         vol;         // is volatile?
308    bool         readMem;     // reads memory?
309    bool         writeMem;    // writes memory?
310  } IntrinisicInfo;
311
312  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
313                                  CallInst &I, unsigned Intrinsic) {
314    return false;
315  }
316
317  /// getWidenVectorType: given a vector type, returns the type to widen to
318  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
319  /// If there is no vector type that we want to widen to, returns MVT::Other
320  /// When and were to widen is target dependent based on the cost of
321  /// scalarizing vs using the wider vector type.
322  virtual MVT getWidenVectorType(MVT VT) const;
323
324  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
325  legal_fpimm_iterator legal_fpimm_begin() const {
326    return LegalFPImmediates.begin();
327  }
328  legal_fpimm_iterator legal_fpimm_end() const {
329    return LegalFPImmediates.end();
330  }
331
332  /// isShuffleMaskLegal - Targets can use this to indicate that they only
333  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
334  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
335  /// are assumed to be legal.
336  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
337                                  MVT VT) const {
338    return true;
339  }
340
341  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
342  /// used by Targets can use this to indicate if there is a suitable
343  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
344  /// pool entry.
345  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
346                                      MVT VT) const {
347    return false;
348  }
349
350  /// getOperationAction - Return how this operation should be treated: either
351  /// it is legal, needs to be promoted to a larger size, needs to be
352  /// expanded to some other code sequence, or the target has a custom expander
353  /// for it.
354  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
355    if (VT.isExtended()) return Expand;
356    assert(Op < array_lengthof(OpActions[0]) &&
357           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0][0])*8 &&
358           "Table isn't big enough!");
359    unsigned I = (unsigned) VT.getSimpleVT();
360    unsigned J = I & 31;
361    I = I >> 5;
362    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
363  }
364
365  /// isOperationLegalOrCustom - Return true if the specified operation is
366  /// legal on this target or can be made legal with custom lowering. This
367  /// is used to help guide high-level lowering decisions.
368  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
369    return (VT == MVT::Other || isTypeLegal(VT)) &&
370      (getOperationAction(Op, VT) == Legal ||
371       getOperationAction(Op, VT) == Custom);
372  }
373
374  /// isOperationLegal - Return true if the specified operation is legal on this
375  /// target.
376  bool isOperationLegal(unsigned Op, MVT VT) const {
377    return (VT == MVT::Other || isTypeLegal(VT)) &&
378           getOperationAction(Op, VT) == Legal;
379  }
380
381  /// getLoadExtAction - Return how this load with extension should be treated:
382  /// either it is legal, needs to be promoted to a larger size, needs to be
383  /// expanded to some other code sequence, or the target has a custom expander
384  /// for it.
385  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
386    assert(LType < array_lengthof(LoadExtActions) &&
387           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
388           "Table isn't big enough!");
389    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
390  }
391
392  /// isLoadExtLegal - Return true if the specified load with extension is legal
393  /// on this target.
394  bool isLoadExtLegal(unsigned LType, MVT VT) const {
395    return VT.isSimple() &&
396      (getLoadExtAction(LType, VT) == Legal ||
397       getLoadExtAction(LType, VT) == Custom);
398  }
399
400  /// getTruncStoreAction - Return how this store with truncation should be
401  /// treated: either it is legal, needs to be promoted to a larger size, needs
402  /// to be expanded to some other code sequence, or the target has a custom
403  /// expander for it.
404  LegalizeAction getTruncStoreAction(MVT ValVT,
405                                     MVT MemVT) const {
406    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
407           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
408           "Table isn't big enough!");
409    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
410                             (2*MemVT.getSimpleVT())) & 3);
411  }
412
413  /// isTruncStoreLegal - Return true if the specified store with truncation is
414  /// legal on this target.
415  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
416    return isTypeLegal(ValVT) && MemVT.isSimple() &&
417      (getTruncStoreAction(ValVT, MemVT) == Legal ||
418       getTruncStoreAction(ValVT, MemVT) == Custom);
419  }
420
421  /// getIndexedLoadAction - Return how the indexed load should be treated:
422  /// either it is legal, needs to be promoted to a larger size, needs to be
423  /// expanded to some other code sequence, or the target has a custom expander
424  /// for it.
425  LegalizeAction
426  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
427    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
428           ((unsigned)VT.getSimpleVT()) < MVT::LAST_VALUETYPE &&
429           "Table isn't big enough!");
430    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode]));
431  }
432
433  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
434  /// on this target.
435  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
436    return VT.isSimple() &&
437      (getIndexedLoadAction(IdxMode, VT) == Legal ||
438       getIndexedLoadAction(IdxMode, VT) == Custom);
439  }
440
441  /// getIndexedStoreAction - Return how the indexed store should be treated:
442  /// either it is legal, needs to be promoted to a larger size, needs to be
443  /// expanded to some other code sequence, or the target has a custom expander
444  /// for it.
445  LegalizeAction
446  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
447    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
448           (unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
449           "Table isn't big enough!");
450    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode]));
451  }
452
453  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
454  /// on this target.
455  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
456    return VT.isSimple() &&
457      (getIndexedStoreAction(IdxMode, VT) == Legal ||
458       getIndexedStoreAction(IdxMode, VT) == Custom);
459  }
460
461  /// getConvertAction - Return how the conversion should be treated:
462  /// either it is legal, needs to be promoted to a larger size, needs to be
463  /// expanded to some other code sequence, or the target has a custom expander
464  /// for it.
465  LegalizeAction
466  getConvertAction(MVT FromVT, MVT ToVT) const {
467    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
468           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
469           "Table isn't big enough!");
470    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
471                             (2*ToVT.getSimpleVT())) & 3);
472  }
473
474  /// isConvertLegal - Return true if the specified conversion is legal
475  /// on this target.
476  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
477    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
478      (getConvertAction(FromVT, ToVT) == Legal ||
479       getConvertAction(FromVT, ToVT) == Custom);
480  }
481
482  /// getCondCodeAction - Return how the condition code should be treated:
483  /// either it is legal, needs to be expanded to some other code sequence,
484  /// or the target has a custom expander for it.
485  LegalizeAction
486  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
487    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
488           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
489           "Table isn't big enough!");
490    LegalizeAction Action = (LegalizeAction)
491      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
492    assert(Action != Promote && "Can't promote condition code!");
493    return Action;
494  }
495
496  /// isCondCodeLegal - Return true if the specified condition code is legal
497  /// on this target.
498  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
499    return getCondCodeAction(CC, VT) == Legal ||
500           getCondCodeAction(CC, VT) == Custom;
501  }
502
503
504  /// getTypeToPromoteTo - If the action for this operation is to promote, this
505  /// method returns the ValueType to promote to.
506  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
507    assert(getOperationAction(Op, VT) == Promote &&
508           "This operation isn't promoted!");
509
510    // See if this has an explicit type specified.
511    std::map<std::pair<unsigned, MVT::SimpleValueType>,
512             MVT::SimpleValueType>::const_iterator PTTI =
513      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
514    if (PTTI != PromoteToType.end()) return PTTI->second;
515
516    assert((VT.isInteger() || VT.isFloatingPoint()) &&
517           "Cannot autopromote this type, add it with AddPromotedToType.");
518
519    MVT NVT = VT;
520    do {
521      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
522      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
523             "Didn't find type to promote to!");
524    } while (!isTypeLegal(NVT) ||
525              getOperationAction(Op, NVT) == Promote);
526    return NVT;
527  }
528
529  /// getValueType - Return the MVT corresponding to this LLVM type.
530  /// This is fixed by the LLVM operations except for the pointer size.  If
531  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
532  /// counterpart (e.g. structs), otherwise it will assert.
533  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
534    MVT VT = MVT::getMVT(Ty, AllowUnknown);
535    return VT == MVT::iPTR ? PointerTy : VT;
536  }
537
538  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
539  /// function arguments in the caller parameter area.  This is the actual
540  /// alignment, not its logarithm.
541  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
542
543  /// getRegisterType - Return the type of registers that this ValueType will
544  /// eventually require.
545  MVT getRegisterType(MVT VT) const {
546    if (VT.isSimple()) {
547      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
548      return RegisterTypeForVT[VT.getSimpleVT()];
549    }
550    if (VT.isVector()) {
551      MVT VT1, RegisterVT;
552      unsigned NumIntermediates;
553      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
554      return RegisterVT;
555    }
556    if (VT.isInteger()) {
557      return getRegisterType(getTypeToTransformTo(VT));
558    }
559    assert(0 && "Unsupported extended type!");
560    return MVT(); // Not reached
561  }
562
563  /// getNumRegisters - Return the number of registers that this ValueType will
564  /// eventually require.  This is one for any types promoted to live in larger
565  /// registers, but may be more than one for types (like i64) that are split
566  /// into pieces.  For types like i140, which are first promoted then expanded,
567  /// it is the number of registers needed to hold all the bits of the original
568  /// type.  For an i140 on a 32 bit machine this means 5 registers.
569  unsigned getNumRegisters(MVT VT) const {
570    if (VT.isSimple()) {
571      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
572      return NumRegistersForVT[VT.getSimpleVT()];
573    }
574    if (VT.isVector()) {
575      MVT VT1, VT2;
576      unsigned NumIntermediates;
577      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
578    }
579    if (VT.isInteger()) {
580      unsigned BitWidth = VT.getSizeInBits();
581      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
582      return (BitWidth + RegWidth - 1) / RegWidth;
583    }
584    assert(0 && "Unsupported extended type!");
585    return 0; // Not reached
586  }
587
588  /// ShouldShrinkFPConstant - If true, then instruction selection should
589  /// seek to shrink the FP constant of the specified type to a smaller type
590  /// in order to save space and / or reduce runtime.
591  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
592
593  /// hasTargetDAGCombine - If true, the target has custom DAG combine
594  /// transformations that it can perform for the specified node.
595  bool hasTargetDAGCombine(ISD::NodeType NT) const {
596    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
597    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
598  }
599
600  /// This function returns the maximum number of store operations permitted
601  /// to replace a call to llvm.memset. The value is set by the target at the
602  /// performance threshold for such a replacement.
603  /// @brief Get maximum # of store operations permitted for llvm.memset
604  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
605
606  /// This function returns the maximum number of store operations permitted
607  /// to replace a call to llvm.memcpy. The value is set by the target at the
608  /// performance threshold for such a replacement.
609  /// @brief Get maximum # of store operations permitted for llvm.memcpy
610  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
611
612  /// This function returns the maximum number of store operations permitted
613  /// to replace a call to llvm.memmove. The value is set by the target at the
614  /// performance threshold for such a replacement.
615  /// @brief Get maximum # of store operations permitted for llvm.memmove
616  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
617
618  /// This function returns true if the target allows unaligned memory accesses.
619  /// This is used, for example, in situations where an array copy/move/set is
620  /// converted to a sequence of store operations. It's use helps to ensure that
621  /// such replacements don't generate code that causes an alignment error
622  /// (trap) on the target machine.
623  /// @brief Determine if the target supports unaligned memory accesses.
624  bool allowsUnalignedMemoryAccesses() const {
625    return allowUnalignedMemoryAccesses;
626  }
627
628  /// This function returns true if the target would benefit from code placement
629  /// optimization.
630  /// @brief Determine if the target should perform code placement optimization.
631  bool shouldOptimizeCodePlacement() const {
632    return benefitFromCodePlacementOpt;
633  }
634
635  /// getOptimalMemOpType - Returns the target specific optimal type for load
636  /// and store operations as a result of memset, memcpy, and memmove lowering.
637  /// It returns MVT::iAny if SelectionDAG should be responsible for
638  /// determining it.
639  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
640                                  bool isSrcConst, bool isSrcStr,
641                                  SelectionDAG &DAG) const {
642    return MVT::iAny;
643  }
644
645  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
646  /// to implement llvm.setjmp.
647  bool usesUnderscoreSetJmp() const {
648    return UseUnderscoreSetJmp;
649  }
650
651  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
652  /// to implement llvm.longjmp.
653  bool usesUnderscoreLongJmp() const {
654    return UseUnderscoreLongJmp;
655  }
656
657  /// getStackPointerRegisterToSaveRestore - If a physical register, this
658  /// specifies the register that llvm.savestack/llvm.restorestack should save
659  /// and restore.
660  unsigned getStackPointerRegisterToSaveRestore() const {
661    return StackPointerRegisterToSaveRestore;
662  }
663
664  /// getExceptionAddressRegister - If a physical register, this returns
665  /// the register that receives the exception address on entry to a landing
666  /// pad.
667  unsigned getExceptionAddressRegister() const {
668    return ExceptionPointerRegister;
669  }
670
671  /// getExceptionSelectorRegister - If a physical register, this returns
672  /// the register that receives the exception typeid on entry to a landing
673  /// pad.
674  unsigned getExceptionSelectorRegister() const {
675    return ExceptionSelectorRegister;
676  }
677
678  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
679  /// set, the default is 200)
680  unsigned getJumpBufSize() const {
681    return JumpBufSize;
682  }
683
684  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
685  /// (if never set, the default is 0)
686  unsigned getJumpBufAlignment() const {
687    return JumpBufAlignment;
688  }
689
690  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
691  /// limit. Any block whose size is greater should not be predicated.
692  unsigned getIfCvtBlockSizeLimit() const {
693    return IfCvtBlockSizeLimit;
694  }
695
696  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
697  /// block to be considered for duplication. Any block whose size is greater
698  /// should not be duplicated to facilitate its predication.
699  unsigned getIfCvtDupBlockSizeLimit() const {
700    return IfCvtDupBlockSizeLimit;
701  }
702
703  /// getPrefLoopAlignment - return the preferred loop alignment.
704  ///
705  unsigned getPrefLoopAlignment() const {
706    return PrefLoopAlignment;
707  }
708
709  /// getPreIndexedAddressParts - returns true by value, base pointer and
710  /// offset pointer and addressing mode by reference if the node's address
711  /// can be legally represented as pre-indexed load / store address.
712  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
713                                         SDValue &Offset,
714                                         ISD::MemIndexedMode &AM,
715                                         SelectionDAG &DAG) const {
716    return false;
717  }
718
719  /// getPostIndexedAddressParts - returns true by value, base pointer and
720  /// offset pointer and addressing mode by reference if this node can be
721  /// combined with a load / store to form a post-indexed load / store.
722  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
723                                          SDValue &Base, SDValue &Offset,
724                                          ISD::MemIndexedMode &AM,
725                                          SelectionDAG &DAG) const {
726    return false;
727  }
728
729  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
730  /// jumptable.
731  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
732                                             SelectionDAG &DAG) const;
733
734  /// isOffsetFoldingLegal - Return true if folding a constant offset
735  /// with the given GlobalAddress is legal.  It is frequently not legal in
736  /// PIC relocation models.
737  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
738
739  /// getFunctionAlignment - Return the Log2 alignment of this function.
740  virtual unsigned getFunctionAlignment(const Function *) const = 0;
741
742  //===--------------------------------------------------------------------===//
743  // TargetLowering Optimization Methods
744  //
745
746  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
747  /// SDValues for returning information from TargetLowering to its clients
748  /// that want to combine
749  struct TargetLoweringOpt {
750    SelectionDAG &DAG;
751    SDValue Old;
752    SDValue New;
753
754    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
755
756    bool CombineTo(SDValue O, SDValue N) {
757      Old = O;
758      New = N;
759      return true;
760    }
761
762    /// ShrinkDemandedConstant - Check to see if the specified operand of the
763    /// specified instruction is a constant integer.  If so, check to see if
764    /// there are any bits set in the constant that are not demanded.  If so,
765    /// shrink the constant and return true.
766    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
767
768    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
769    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
770    /// cast, but it could be generalized for targets with other types of
771    /// implicit widening casts.
772    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
773                          DebugLoc dl);
774  };
775
776  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
777  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
778  /// use this information to simplify Op, create a new simplified DAG node and
779  /// return true, returning the original and new nodes in Old and New.
780  /// Otherwise, analyze the expression and return a mask of KnownOne and
781  /// KnownZero bits for the expression (used to simplify the caller).
782  /// The KnownZero/One bits may only be accurate for those bits in the
783  /// DemandedMask.
784  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
785                            APInt &KnownZero, APInt &KnownOne,
786                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
787
788  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
789  /// Mask are known to be either zero or one and return them in the
790  /// KnownZero/KnownOne bitsets.
791  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
792                                              const APInt &Mask,
793                                              APInt &KnownZero,
794                                              APInt &KnownOne,
795                                              const SelectionDAG &DAG,
796                                              unsigned Depth = 0) const;
797
798  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
799  /// targets that want to expose additional information about sign bits to the
800  /// DAG Combiner.
801  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
802                                                   unsigned Depth = 0) const;
803
804  struct DAGCombinerInfo {
805    void *DC;  // The DAG Combiner object.
806    bool BeforeLegalize;
807    bool CalledByLegalizer;
808  public:
809    SelectionDAG &DAG;
810
811    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
812      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
813
814    bool isBeforeLegalize() const { return BeforeLegalize; }
815    bool isCalledByLegalizer() const { return CalledByLegalizer; }
816
817    void AddToWorklist(SDNode *N);
818    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
819                      bool AddTo = true);
820    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
821    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
822
823    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
824  };
825
826  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
827  /// and cc. If it is unable to simplify it, return a null SDValue.
828  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
829                          ISD::CondCode Cond, bool foldBooleans,
830                          DAGCombinerInfo &DCI, DebugLoc dl) const;
831
832  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
833  /// node is a GlobalAddress + offset.
834  virtual bool
835  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
836
837  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
838  /// location that is 'Dist' units away from the location that the 'Base' load
839  /// is loading from.
840  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
841                         int Dist, const MachineFrameInfo *MFI) const;
842
843  /// PerformDAGCombine - This method will be invoked for all target nodes and
844  /// for any target-independent nodes that the target has registered with
845  /// invoke it for.
846  ///
847  /// The semantics are as follows:
848  /// Return Value:
849  ///   SDValue.Val == 0   - No change was made
850  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
851  ///   otherwise          - N should be replaced by the returned Operand.
852  ///
853  /// In addition, methods provided by DAGCombinerInfo may be used to perform
854  /// more complex transformations.
855  ///
856  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
857
858  //===--------------------------------------------------------------------===//
859  // TargetLowering Configuration Methods - These methods should be invoked by
860  // the derived class constructor to configure this object for the target.
861  //
862
863protected:
864  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
865  /// GOT for PC-relative code.
866  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
867
868  /// setShiftAmountType - Describe the type that should be used for shift
869  /// amounts.  This type defaults to the pointer type.
870  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
871
872  /// setBooleanContents - Specify how the target extends the result of a
873  /// boolean value from i1 to a wider type.  See getBooleanContents.
874  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
875
876  /// setSchedulingPreference - Specify the target scheduling preference.
877  void setSchedulingPreference(SchedPreference Pref) {
878    SchedPreferenceInfo = Pref;
879  }
880
881  /// setShiftAmountFlavor - Describe how the target handles out of range shift
882  /// amounts.
883  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
884    ShiftAmtHandling = OORSA;
885  }
886
887  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
888  /// use _setjmp to implement llvm.setjmp or the non _ version.
889  /// Defaults to false.
890  void setUseUnderscoreSetJmp(bool Val) {
891    UseUnderscoreSetJmp = Val;
892  }
893
894  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
895  /// use _longjmp to implement llvm.longjmp or the non _ version.
896  /// Defaults to false.
897  void setUseUnderscoreLongJmp(bool Val) {
898    UseUnderscoreLongJmp = Val;
899  }
900
901  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
902  /// specifies the register that llvm.savestack/llvm.restorestack should save
903  /// and restore.
904  void setStackPointerRegisterToSaveRestore(unsigned R) {
905    StackPointerRegisterToSaveRestore = R;
906  }
907
908  /// setExceptionPointerRegister - If set to a physical register, this sets
909  /// the register that receives the exception address on entry to a landing
910  /// pad.
911  void setExceptionPointerRegister(unsigned R) {
912    ExceptionPointerRegister = R;
913  }
914
915  /// setExceptionSelectorRegister - If set to a physical register, this sets
916  /// the register that receives the exception typeid on entry to a landing
917  /// pad.
918  void setExceptionSelectorRegister(unsigned R) {
919    ExceptionSelectorRegister = R;
920  }
921
922  /// SelectIsExpensive - Tells the code generator not to expand operations
923  /// into sequences that use the select operations if possible.
924  void setSelectIsExpensive() { SelectIsExpensive = true; }
925
926  /// setIntDivIsCheap - Tells the code generator that integer divide is
927  /// expensive, and if possible, should be replaced by an alternate sequence
928  /// of instructions not containing an integer divide.
929  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
930
931  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
932  /// srl/add/sra for a signed divide by power of two, and let the target handle
933  /// it.
934  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
935
936  /// addRegisterClass - Add the specified register class as an available
937  /// regclass for the specified value type.  This indicates the selector can
938  /// handle values of that class natively.
939  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
940    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
941    AvailableRegClasses.push_back(std::make_pair(VT, RC));
942    RegClassForVT[VT.getSimpleVT()] = RC;
943  }
944
945  /// computeRegisterProperties - Once all of the register classes are added,
946  /// this allows us to compute derived properties we expose.
947  void computeRegisterProperties();
948
949  /// setOperationAction - Indicate that the specified operation does not work
950  /// with the specified type and indicate what to do about it.
951  void setOperationAction(unsigned Op, MVT VT,
952                          LegalizeAction Action) {
953    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0][0])*8 &&
954           Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
955    unsigned I = (unsigned) VT.getSimpleVT();
956    unsigned J = I & 31;
957    I = I >> 5;
958    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
959    OpActions[I][Op] |= (uint64_t)Action << (J*2);
960  }
961
962  /// setLoadExtAction - Indicate that the specified load with extension does
963  /// not work with the with specified type and indicate what to do about it.
964  void setLoadExtAction(unsigned ExtType, MVT VT,
965                      LegalizeAction Action) {
966    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
967           ExtType < array_lengthof(LoadExtActions) &&
968           "Table isn't big enough!");
969    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
970    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
971  }
972
973  /// setTruncStoreAction - Indicate that the specified truncating store does
974  /// not work with the with specified type and indicate what to do about it.
975  void setTruncStoreAction(MVT ValVT, MVT MemVT,
976                           LegalizeAction Action) {
977    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
978           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
979           "Table isn't big enough!");
980    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
981                                                MemVT.getSimpleVT()*2);
982    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
983      MemVT.getSimpleVT()*2;
984  }
985
986  /// setIndexedLoadAction - Indicate that the specified indexed load does or
987  /// does not work with the with specified type and indicate what to do abort
988  /// it. NOTE: All indexed mode loads are initialized to Expand in
989  /// TargetLowering.cpp
990  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
991                            LegalizeAction Action) {
992    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
993           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
994           "Table isn't big enough!");
995    IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode] = (uint8_t)Action;
996  }
997
998  /// setIndexedStoreAction - Indicate that the specified indexed store does or
999  /// does not work with the with specified type and indicate what to do about
1000  /// it. NOTE: All indexed mode stores are initialized to Expand in
1001  /// TargetLowering.cpp
1002  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1003                             LegalizeAction Action) {
1004    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
1005           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1006           "Table isn't big enough!");
1007    IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode] = (uint8_t)Action;
1008  }
1009
1010  /// setConvertAction - Indicate that the specified conversion does or does
1011  /// not work with the with specified type and indicate what to do about it.
1012  void setConvertAction(MVT FromVT, MVT ToVT,
1013                        LegalizeAction Action) {
1014    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
1015           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
1016           "Table isn't big enough!");
1017    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
1018                                              ToVT.getSimpleVT()*2);
1019    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
1020      ToVT.getSimpleVT()*2;
1021  }
1022
1023  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1024  /// supported on the target and indicate what to do about it.
1025  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
1026    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
1027           (unsigned)CC < array_lengthof(CondCodeActions) &&
1028           "Table isn't big enough!");
1029    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
1030    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
1031  }
1032
1033  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1034  /// promotion code defaults to trying a larger integer/fp until it can find
1035  /// one that works.  If that default is insufficient, this method can be used
1036  /// by the target to override the default.
1037  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1038    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
1039      DestVT.getSimpleVT();
1040  }
1041
1042  /// addLegalFPImmediate - Indicate that this target can instruction select
1043  /// the specified FP immediate natively.
1044  void addLegalFPImmediate(const APFloat& Imm) {
1045    LegalFPImmediates.push_back(Imm);
1046  }
1047
1048  /// setTargetDAGCombine - Targets should invoke this method for each target
1049  /// independent node that they want to provide a custom DAG combiner for by
1050  /// implementing the PerformDAGCombine virtual method.
1051  void setTargetDAGCombine(ISD::NodeType NT) {
1052    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1053    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1054  }
1055
1056  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1057  /// bytes); default is 200
1058  void setJumpBufSize(unsigned Size) {
1059    JumpBufSize = Size;
1060  }
1061
1062  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1063  /// alignment (in bytes); default is 0
1064  void setJumpBufAlignment(unsigned Align) {
1065    JumpBufAlignment = Align;
1066  }
1067
1068  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1069  /// limit (in number of instructions); default is 2.
1070  void setIfCvtBlockSizeLimit(unsigned Limit) {
1071    IfCvtBlockSizeLimit = Limit;
1072  }
1073
1074  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1075  /// of instructions) to be considered for code duplication during
1076  /// if-conversion; default is 2.
1077  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1078    IfCvtDupBlockSizeLimit = Limit;
1079  }
1080
1081  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1082  /// alignment is zero, it means the target does not care about loop alignment.
1083  void setPrefLoopAlignment(unsigned Align) {
1084    PrefLoopAlignment = Align;
1085  }
1086
1087public:
1088
1089  virtual const TargetSubtarget *getSubtarget() {
1090    assert(0 && "Not Implemented");
1091    return NULL;    // this is here to silence compiler errors
1092  }
1093  //===--------------------------------------------------------------------===//
1094  // Lowering methods - These methods must be implemented by targets so that
1095  // the SelectionDAGLowering code knows how to lower these.
1096  //
1097
1098  /// LowerArguments - This hook must be implemented to indicate how we should
1099  /// lower the arguments for the specified function, into the specified DAG.
1100  virtual void
1101  LowerArguments(Function &F, SelectionDAG &DAG,
1102                 SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
1103
1104  /// LowerCallTo - This hook lowers an abstract call to a function into an
1105  /// actual call.  This returns a pair of operands.  The first element is the
1106  /// return value for the function (if RetTy is not VoidTy).  The second
1107  /// element is the outgoing token chain.
1108  struct ArgListEntry {
1109    SDValue Node;
1110    const Type* Ty;
1111    bool isSExt  : 1;
1112    bool isZExt  : 1;
1113    bool isInReg : 1;
1114    bool isSRet  : 1;
1115    bool isNest  : 1;
1116    bool isByVal : 1;
1117    uint16_t Alignment;
1118
1119    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1120      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1121  };
1122  typedef std::vector<ArgListEntry> ArgListTy;
1123  virtual std::pair<SDValue, SDValue>
1124  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1125              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1126              unsigned CallingConv, bool isTailCall, SDValue Callee,
1127              ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl);
1128
1129  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1130  /// memcpy. This can be used by targets to provide code sequences for cases
1131  /// that don't fit the target's parameters for simple loads/stores and can be
1132  /// more efficient than using a library call. This function can return a null
1133  /// SDValue if the target declines to use custom code and a different
1134  /// lowering strategy should be used.
1135  ///
1136  /// If AlwaysInline is true, the size is constant and the target should not
1137  /// emit any calls and is strongly encouraged to attempt to emit inline code
1138  /// even if it is beyond the usual threshold because this intrinsic is being
1139  /// expanded in a place where calls are not feasible (e.g. within the prologue
1140  /// for another call). If the target chooses to decline an AlwaysInline
1141  /// request here, legalize will resort to using simple loads and stores.
1142  virtual SDValue
1143  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1144                          SDValue Chain,
1145                          SDValue Op1, SDValue Op2,
1146                          SDValue Op3, unsigned Align,
1147                          bool AlwaysInline,
1148                          const Value *DstSV, uint64_t DstOff,
1149                          const Value *SrcSV, uint64_t SrcOff) {
1150    return SDValue();
1151  }
1152
1153  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1154  /// memmove. This can be used by targets to provide code sequences for cases
1155  /// that don't fit the target's parameters for simple loads/stores and can be
1156  /// more efficient than using a library call. This function can return a null
1157  /// SDValue if the target declines to use custom code and a different
1158  /// lowering strategy should be used.
1159  virtual SDValue
1160  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1161                           SDValue Chain,
1162                           SDValue Op1, SDValue Op2,
1163                           SDValue Op3, unsigned Align,
1164                           const Value *DstSV, uint64_t DstOff,
1165                           const Value *SrcSV, uint64_t SrcOff) {
1166    return SDValue();
1167  }
1168
1169  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1170  /// memset. This can be used by targets to provide code sequences for cases
1171  /// that don't fit the target's parameters for simple stores and can be more
1172  /// efficient than using a library call. This function can return a null
1173  /// SDValue if the target declines to use custom code and a different
1174  /// lowering strategy should be used.
1175  virtual SDValue
1176  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1177                          SDValue Chain,
1178                          SDValue Op1, SDValue Op2,
1179                          SDValue Op3, unsigned Align,
1180                          const Value *DstSV, uint64_t DstOff) {
1181    return SDValue();
1182  }
1183
1184  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1185  /// to legalize nodes with an illegal operand type but legal result types.
1186  /// It replaces the LowerOperation callback in the type Legalizer.
1187  /// The reason we can not do away with LowerOperation entirely is that
1188  /// LegalizeDAG isn't yet ready to use this callback.
1189  /// TODO: Consider merging with ReplaceNodeResults.
1190
1191  /// The target places new result values for the node in Results (their number
1192  /// and types must exactly match those of the original return values of
1193  /// the node), or leaves Results empty, which indicates that the node is not
1194  /// to be custom lowered after all.
1195  /// The default implementation calls LowerOperation.
1196  virtual void LowerOperationWrapper(SDNode *N,
1197                                     SmallVectorImpl<SDValue> &Results,
1198                                     SelectionDAG &DAG);
1199
1200  /// LowerOperation - This callback is invoked for operations that are
1201  /// unsupported by the target, which are registered to use 'custom' lowering,
1202  /// and whose defined values are all legal.
1203  /// If the target has no operations that require custom lowering, it need not
1204  /// implement this.  The default implementation of this aborts.
1205  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1206
1207  /// ReplaceNodeResults - This callback is invoked when a node result type is
1208  /// illegal for the target, and the operation was registered to use 'custom'
1209  /// lowering for that result type.  The target places new result values for
1210  /// the node in Results (their number and types must exactly match those of
1211  /// the original return values of the node), or leaves Results empty, which
1212  /// indicates that the node is not to be custom lowered after all.
1213  ///
1214  /// If the target has no operations that require custom lowering, it need not
1215  /// implement this.  The default implementation aborts.
1216  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1217                                  SelectionDAG &DAG) {
1218    assert(0 && "ReplaceNodeResults not implemented for this target!");
1219  }
1220
1221  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1222  /// tail call optimization. Targets which want to do tail call optimization
1223  /// should override this function.
1224  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1225                                                 SDValue Ret,
1226                                                 SelectionDAG &DAG) const {
1227    return false;
1228  }
1229
1230  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1231  /// preceeds the RET node and whether the return uses the result of the node
1232  /// or is a void return. This function can be used by the target to determine
1233  /// eligiblity of tail call optimization.
1234  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret);
1235
1236  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1237  /// it exists. Skip a possible ISD::TokenFactor.
1238  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1239                                                 unsigned TailCallNodeOpCode) {
1240    if (Chain.getOpcode() == TailCallNodeOpCode) {
1241      return Chain;
1242    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1243      if (Chain.getNumOperands() &&
1244          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1245        return Chain.getOperand(0);
1246    }
1247    return Chain;
1248  }
1249
1250  /// getTargetNodeName() - This method returns the name of a target specific
1251  /// DAG node.
1252  virtual const char *getTargetNodeName(unsigned Opcode) const;
1253
1254  /// createFastISel - This method returns a target specific FastISel object,
1255  /// or null if the target does not support "fast" ISel.
1256  virtual FastISel *
1257  createFastISel(MachineFunction &,
1258                 MachineModuleInfo *, DwarfWriter *,
1259                 DenseMap<const Value *, unsigned> &,
1260                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1261                 DenseMap<const AllocaInst *, int> &
1262#ifndef NDEBUG
1263                 , SmallSet<Instruction*, 8> &CatchInfoLost
1264#endif
1265                 ) {
1266    return 0;
1267  }
1268
1269  //===--------------------------------------------------------------------===//
1270  // Inline Asm Support hooks
1271  //
1272
1273  enum ConstraintType {
1274    C_Register,            // Constraint represents specific register(s).
1275    C_RegisterClass,       // Constraint represents any of register(s) in class.
1276    C_Memory,              // Memory constraint.
1277    C_Other,               // Something else.
1278    C_Unknown              // Unsupported constraint.
1279  };
1280
1281  /// AsmOperandInfo - This contains information for each constraint that we are
1282  /// lowering.
1283  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1284    /// ConstraintCode - This contains the actual string for the code, like "m".
1285    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1286    /// most closely matches the operand.
1287    std::string ConstraintCode;
1288
1289    /// ConstraintType - Information about the constraint code, e.g. Register,
1290    /// RegisterClass, Memory, Other, Unknown.
1291    TargetLowering::ConstraintType ConstraintType;
1292
1293    /// CallOperandval - If this is the result output operand or a
1294    /// clobber, this is null, otherwise it is the incoming operand to the
1295    /// CallInst.  This gets modified as the asm is processed.
1296    Value *CallOperandVal;
1297
1298    /// ConstraintVT - The ValueType for the operand value.
1299    MVT ConstraintVT;
1300
1301    /// isMatchingInputConstraint - Return true of this is an input operand that
1302    /// is a matching constraint like "4".
1303    bool isMatchingInputConstraint() const;
1304
1305    /// getMatchedOperand - If this is an input matching constraint, this method
1306    /// returns the output operand it matches.
1307    unsigned getMatchedOperand() const;
1308
1309    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1310      : InlineAsm::ConstraintInfo(info),
1311        ConstraintType(TargetLowering::C_Unknown),
1312        CallOperandVal(0), ConstraintVT(MVT::Other) {
1313    }
1314  };
1315
1316  /// ComputeConstraintToUse - Determines the constraint code and constraint
1317  /// type to use for the specific AsmOperandInfo, setting
1318  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1319  /// being passed in is available, it can be passed in as Op, otherwise an
1320  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1321  /// constraint of the inline asm instruction being processed is 'm'.
1322  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1323                                      SDValue Op,
1324                                      bool hasMemory,
1325                                      SelectionDAG *DAG = 0) const;
1326
1327  /// getConstraintType - Given a constraint, return the type of constraint it
1328  /// is for this target.
1329  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1330
1331  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1332  /// return a list of registers that can be used to satisfy the constraint.
1333  /// This should only be used for C_RegisterClass constraints.
1334  virtual std::vector<unsigned>
1335  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1336                                    MVT VT) const;
1337
1338  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1339  /// {edx}), return the register number and the register class for the
1340  /// register.
1341  ///
1342  /// Given a register class constraint, like 'r', if this corresponds directly
1343  /// to an LLVM register class, return a register of 0 and the register class
1344  /// pointer.
1345  ///
1346  /// This should only be used for C_Register constraints.  On error,
1347  /// this returns a register number of 0 and a null register class pointer..
1348  virtual std::pair<unsigned, const TargetRegisterClass*>
1349    getRegForInlineAsmConstraint(const std::string &Constraint,
1350                                 MVT VT) const;
1351
1352  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1353  /// with another that has more specific requirements based on the type of the
1354  /// corresponding operand.  This returns null if there is no replacement to
1355  /// make.
1356  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1357
1358  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1359  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1360  /// it means one of the asm constraint of the inline asm instruction being
1361  /// processed is 'm'.
1362  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1363                                            bool hasMemory,
1364                                            std::vector<SDValue> &Ops,
1365                                            SelectionDAG &DAG) const;
1366
1367  //===--------------------------------------------------------------------===//
1368  // Scheduler hooks
1369  //
1370
1371  // EmitInstrWithCustomInserter - This method should be implemented by targets
1372  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1373  // instructions are special in various ways, which require special support to
1374  // insert.  The specified MachineInstr is created but not inserted into any
1375  // basic blocks, and the scheduler passes ownership of it to this method.
1376  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1377                                                  MachineBasicBlock *MBB) const;
1378
1379  //===--------------------------------------------------------------------===//
1380  // Addressing mode description hooks (used by LSR etc).
1381  //
1382
1383  /// AddrMode - This represents an addressing mode of:
1384  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1385  /// If BaseGV is null,  there is no BaseGV.
1386  /// If BaseOffs is zero, there is no base offset.
1387  /// If HasBaseReg is false, there is no base register.
1388  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1389  /// no scale.
1390  ///
1391  struct AddrMode {
1392    GlobalValue *BaseGV;
1393    int64_t      BaseOffs;
1394    bool         HasBaseReg;
1395    int64_t      Scale;
1396    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1397  };
1398
1399  /// isLegalAddressingMode - Return true if the addressing mode represented by
1400  /// AM is legal for this target, for a load/store of the specified type.
1401  /// The type may be VoidTy, in which case only return true if the addressing
1402  /// mode is legal for a load/store of any legal type.
1403  /// TODO: Handle pre/postinc as well.
1404  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1405
1406  /// isTruncateFree - Return true if it's free to truncate a value of
1407  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1408  /// register EAX to i16 by referencing its sub-register AX.
1409  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1410    return false;
1411  }
1412
1413  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1414    return false;
1415  }
1416
1417  /// isZExtFree - Return true if any actual instruction that defines a
1418  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1419  /// register. This does not necessarily include registers defined in
1420  /// unknown ways, such as incoming arguments, or copies from unknown
1421  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1422  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1423  /// all instructions that define 32-bit values implicit zero-extend the
1424  /// result out to 64 bits.
1425  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1426    return false;
1427  }
1428
1429  virtual bool isZExtFree(MVT VT1, MVT VT2) const {
1430    return false;
1431  }
1432
1433  /// isNarrowingProfitable - Return true if it's profitable to narrow
1434  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1435  /// from i32 to i8 but not from i32 to i16.
1436  virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
1437    return false;
1438  }
1439
1440  //===--------------------------------------------------------------------===//
1441  // Div utility functions
1442  //
1443  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1444                      std::vector<SDNode*>* Created) const;
1445  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1446                      std::vector<SDNode*>* Created) const;
1447
1448
1449  //===--------------------------------------------------------------------===//
1450  // Runtime Library hooks
1451  //
1452
1453  /// setLibcallName - Rename the default libcall routine name for the specified
1454  /// libcall.
1455  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1456    LibcallRoutineNames[Call] = Name;
1457  }
1458
1459  /// getLibcallName - Get the libcall routine name for the specified libcall.
1460  ///
1461  const char *getLibcallName(RTLIB::Libcall Call) const {
1462    return LibcallRoutineNames[Call];
1463  }
1464
1465  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1466  /// result of the comparison libcall against zero.
1467  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1468    CmpLibcallCCs[Call] = CC;
1469  }
1470
1471  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1472  /// the comparison libcall against zero.
1473  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1474    return CmpLibcallCCs[Call];
1475  }
1476
1477private:
1478  TargetMachine &TM;
1479  const TargetData *TD;
1480
1481  /// PointerTy - The type to use for pointers, usually i32 or i64.
1482  ///
1483  MVT PointerTy;
1484
1485  /// IsLittleEndian - True if this is a little endian target.
1486  ///
1487  bool IsLittleEndian;
1488
1489  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1490  ///
1491  bool UsesGlobalOffsetTable;
1492
1493  /// SelectIsExpensive - Tells the code generator not to expand operations
1494  /// into sequences that use the select operations if possible.
1495  bool SelectIsExpensive;
1496
1497  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1498  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1499  /// a real cost model is in place.  If we ever optimize for size, this will be
1500  /// set to true unconditionally.
1501  bool IntDivIsCheap;
1502
1503  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1504  /// srl/add/sra for a signed divide by power of two, and let the target handle
1505  /// it.
1506  bool Pow2DivIsCheap;
1507
1508  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1509  /// llvm.setjmp.  Defaults to false.
1510  bool UseUnderscoreSetJmp;
1511
1512  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1513  /// llvm.longjmp.  Defaults to false.
1514  bool UseUnderscoreLongJmp;
1515
1516  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1517  /// PointerTy is.
1518  MVT ShiftAmountTy;
1519
1520  OutOfRangeShiftAmount ShiftAmtHandling;
1521
1522  /// BooleanContents - Information about the contents of the high-bits in
1523  /// boolean values held in a type wider than i1.  See getBooleanContents.
1524  BooleanContent BooleanContents;
1525
1526  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1527  /// total cycles or lowest register usage.
1528  SchedPreference SchedPreferenceInfo;
1529
1530  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1531  unsigned JumpBufSize;
1532
1533  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1534  /// buffers
1535  unsigned JumpBufAlignment;
1536
1537  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1538  /// if-converted.
1539  unsigned IfCvtBlockSizeLimit;
1540
1541  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1542  /// duplicated during if-conversion.
1543  unsigned IfCvtDupBlockSizeLimit;
1544
1545  /// PrefLoopAlignment - The perferred loop alignment.
1546  ///
1547  unsigned PrefLoopAlignment;
1548
1549  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1550  /// specifies the register that llvm.savestack/llvm.restorestack should save
1551  /// and restore.
1552  unsigned StackPointerRegisterToSaveRestore;
1553
1554  /// ExceptionPointerRegister - If set to a physical register, this specifies
1555  /// the register that receives the exception address on entry to a landing
1556  /// pad.
1557  unsigned ExceptionPointerRegister;
1558
1559  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1560  /// the register that receives the exception typeid on entry to a landing
1561  /// pad.
1562  unsigned ExceptionSelectorRegister;
1563
1564  /// RegClassForVT - This indicates the default register class to use for
1565  /// each ValueType the target supports natively.
1566  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1567  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1568  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1569
1570  /// TransformToType - For any value types we are promoting or expanding, this
1571  /// contains the value type that we are changing to.  For Expanded types, this
1572  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1573  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1574  /// by the system, this holds the same type (e.g. i32 -> i32).
1575  MVT TransformToType[MVT::LAST_VALUETYPE];
1576
1577  /// OpActions - For each operation and each value type, keep a LegalizeAction
1578  /// that indicates how instruction selection should deal with the operation.
1579  /// Most operations are Legal (aka, supported natively by the target), but
1580  /// operations that are not should be described.  Note that operations on
1581  /// non-legal value types are not described here.
1582  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1583  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1584  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1585
1586  /// LoadExtActions - For each load of load extension type and each value type,
1587  /// keep a LegalizeAction that indicates how instruction selection should deal
1588  /// with the load.
1589  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1590
1591  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1592  /// indicates how instruction selection should deal with the store.
1593  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1594
1595  /// IndexedModeActions - For each indexed mode and each value type,
1596  /// keep a pair of LegalizeAction that indicates how instruction
1597  /// selection should deal with the load / store.  The first
1598  /// dimension is now the value_type for the reference.  The second
1599  /// dimension is the load [0] vs. store[1].  The third dimension
1600  /// represents the various modes for load store.
1601  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1602
1603  /// ConvertActions - For each conversion from source type to destination type,
1604  /// keep a LegalizeAction that indicates how instruction selection should
1605  /// deal with the conversion.
1606  /// Currently, this is used only for floating->floating conversions
1607  /// (FP_EXTEND and FP_ROUND).
1608  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1609
1610  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1611  /// LegalizeAction that indicates how instruction selection should
1612  /// deal with the condition code.
1613  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1614
1615  ValueTypeActionImpl ValueTypeActions;
1616
1617  std::vector<APFloat> LegalFPImmediates;
1618
1619  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1620
1621  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1622  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1623  /// which sets a bit in this array.
1624  unsigned char
1625  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1626
1627  /// PromoteToType - For operations that must be promoted to a specific type,
1628  /// this holds the destination type.  This map should be sparse, so don't hold
1629  /// it as an array.
1630  ///
1631  /// Targets add entries to this map with AddPromotedToType(..), clients access
1632  /// this with getTypeToPromoteTo(..).
1633  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1634    PromoteToType;
1635
1636  /// LibcallRoutineNames - Stores the name each libcall.
1637  ///
1638  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1639
1640  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1641  /// of each of the comparison libcall against zero.
1642  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1643
1644protected:
1645  /// When lowering \@llvm.memset this field specifies the maximum number of
1646  /// store operations that may be substituted for the call to memset. Targets
1647  /// must set this value based on the cost threshold for that target. Targets
1648  /// should assume that the memset will be done using as many of the largest
1649  /// store operations first, followed by smaller ones, if necessary, per
1650  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1651  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1652  /// store.  This only applies to setting a constant array of a constant size.
1653  /// @brief Specify maximum number of store instructions per memset call.
1654  unsigned maxStoresPerMemset;
1655
1656  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1657  /// store operations that may be substituted for a call to memcpy. Targets
1658  /// must set this value based on the cost threshold for that target. Targets
1659  /// should assume that the memcpy will be done using as many of the largest
1660  /// store operations first, followed by smaller ones, if necessary, per
1661  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1662  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1663  /// and one 1-byte store. This only applies to copying a constant array of
1664  /// constant size.
1665  /// @brief Specify maximum bytes of store instructions per memcpy call.
1666  unsigned maxStoresPerMemcpy;
1667
1668  /// When lowering \@llvm.memmove this field specifies the maximum number of
1669  /// store instructions that may be substituted for a call to memmove. Targets
1670  /// must set this value based on the cost threshold for that target. Targets
1671  /// should assume that the memmove will be done using as many of the largest
1672  /// store operations first, followed by smaller ones, if necessary, per
1673  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1674  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1675  /// applies to copying a constant array of constant size.
1676  /// @brief Specify maximum bytes of store instructions per memmove call.
1677  unsigned maxStoresPerMemmove;
1678
1679  /// This field specifies whether the target machine permits unaligned memory
1680  /// accesses.  This is used, for example, to determine the size of store
1681  /// operations when copying small arrays and other similar tasks.
1682  /// @brief Indicate whether the target permits unaligned memory accesses.
1683  bool allowUnalignedMemoryAccesses;
1684
1685  /// This field specifies whether the target can benefit from code placement
1686  /// optimization.
1687  bool benefitFromCodePlacementOpt;
1688};
1689} // end llvm namespace
1690
1691#endif
1692