TargetLowering.h revision 6f3d81a92919954d156c863d3aeb4ff09f701480
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/AddressingMode.h"
27#include "llvm/Attributes.h"
28#include "llvm/CallingConv.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
82  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
94  /// target, and if not, what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector      // This vector should be widened into a larger vector.
104  };
105
106  /// LegalizeKind holds the legalization kind that needs to happen to EVT
107  /// in order to type-legalize it.
108  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  enum SelectSupportKind {
117    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
118    ScalarCondVectorVal,  // The target supports selects with a scalar condition
119                          // and vector values (ex: cmov).
120    VectorMaskSelect      // The target supports vector selects with a vector
121                          // mask (ex: x86 blends).
122  };
123
124  static ISD::NodeType getExtendForContent(BooleanContent Content) {
125    switch (Content) {
126    case UndefinedBooleanContent:
127      // Extend by adding rubbish bits.
128      return ISD::ANY_EXTEND;
129    case ZeroOrOneBooleanContent:
130      // Extend by adding zero bits.
131      return ISD::ZERO_EXTEND;
132    case ZeroOrNegativeOneBooleanContent:
133      // Extend by copying the sign bit.
134      return ISD::SIGN_EXTEND;
135    }
136    llvm_unreachable("Invalid content kind");
137  }
138
139  /// NOTE: The constructor takes ownership of TLOF.
140  explicit TargetLowering(const TargetMachine &TM,
141                          const TargetLoweringObjectFile *TLOF);
142  virtual ~TargetLowering();
143
144  const TargetMachine &getTargetMachine() const { return TM; }
145  const DataLayout *getDataLayout() const { return TD; }
146  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
147
148  bool isBigEndian() const { return !IsLittleEndian; }
149  bool isLittleEndian() const { return IsLittleEndian; }
150  // Return the pointer type for the given address space, defaults to
151  // the pointer type from the data layout.
152  // FIXME: The default needs to be removed once all the code is updated.
153  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
154  virtual MVT getShiftAmountTy(EVT LHSTy) const;
155
156  /// isSelectExpensive - Return true if the select operation is expensive for
157  /// this target.
158  bool isSelectExpensive() const { return SelectIsExpensive; }
159
160  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
161
162  /// shouldSplitVectorElementType - Return true if a vector of the given type
163  /// should be split (TypeSplitVector) instead of promoted
164  /// (TypePromoteInteger) during type legalization.
165  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
166
167  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
168  /// a sequence of several shifts, adds, and multiplies for this target.
169  bool isIntDivCheap() const { return IntDivIsCheap; }
170
171  /// isSlowDivBypassed - Returns true if target has indicated at least one
172  /// type should be bypassed.
173  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
174
175  /// getBypassSlowDivTypes - Returns map of slow types for division or
176  /// remainder with corresponding fast types
177  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
178    return BypassSlowDivWidths;
179  }
180
181  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
182  /// srl/add/sra.
183  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
184
185  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
186  /// that should be avoided.
187  bool isJumpExpensive() const { return JumpIsExpensive; }
188
189  /// isPredictableSelectExpensive - Return true if selects are only cheaper
190  /// than branches if the branch is unlikely to be predicted right.
191  bool isPredictableSelectExpensive() const {
192    return predictableSelectIsExpensive;
193  }
194
195  /// getSetCCResultType - Return the ValueType of the result of SETCC
196  /// operations.  Also used to obtain the target's preferred type for
197  /// the condition operand of SELECT and BRCOND nodes.  In the case of
198  /// BRCOND the argument passed is MVT::Other since there are no other
199  /// operands to get a type hint from.
200  virtual EVT getSetCCResultType(EVT VT) const;
201
202  /// getCmpLibcallReturnType - Return the ValueType for comparison
203  /// libcalls. Comparions libcalls include floating point comparion calls,
204  /// and Ordered/Unordered check calls on floating point numbers.
205  virtual
206  MVT::SimpleValueType getCmpLibcallReturnType() const;
207
208  /// getBooleanContents - For targets without i1 registers, this gives the
209  /// nature of the high-bits of boolean values held in types wider than i1.
210  /// "Boolean values" are special true/false values produced by nodes like
211  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
212  /// Not to be confused with general values promoted from i1.
213  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
214  /// parameter selects between the two kinds.  For example on X86 a scalar
215  /// boolean should be zero extended from i1, while the elements of a vector
216  /// of booleans should be sign extended from i1.
217  BooleanContent getBooleanContents(bool isVec) const {
218    return isVec ? BooleanVectorContents : BooleanContents;
219  }
220
221  /// getSchedulingPreference - Return target scheduling preference.
222  Sched::Preference getSchedulingPreference() const {
223    return SchedPreferenceInfo;
224  }
225
226  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
227  /// different scheduling heuristics for different nodes. This function returns
228  /// the preference (or none) for the given node.
229  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
230    return Sched::None;
231  }
232
233  /// getRegClassFor - Return the register class that should be used for the
234  /// specified value type.
235  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
236    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
237    assert(RC && "This value type is not natively supported!");
238    return RC;
239  }
240
241  /// getRepRegClassFor - Return the 'representative' register class for the
242  /// specified value type. The 'representative' register class is the largest
243  /// legal super-reg register class for the register class of the value type.
244  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
245  /// while the rep register class is GR64 on x86_64.
246  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
247    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
248    return RC;
249  }
250
251  /// getRepRegClassCostFor - Return the cost of the 'representative' register
252  /// class for the specified value type.
253  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
254    return RepRegClassCostForVT[VT.SimpleTy];
255  }
256
257  /// isTypeLegal - Return true if the target has native support for the
258  /// specified value type.  This means that it has a register that directly
259  /// holds it without promotions or expansions.
260  bool isTypeLegal(EVT VT) const {
261    assert(!VT.isSimple() ||
262           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
263    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
264  }
265
266  class ValueTypeActionImpl {
267    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
268    /// that indicates how instruction selection should deal with the type.
269    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
270
271  public:
272    ValueTypeActionImpl() {
273      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
274    }
275
276    LegalizeTypeAction getTypeAction(MVT VT) const {
277      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
278    }
279
280    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
281      unsigned I = VT.SimpleTy;
282      ValueTypeActions[I] = Action;
283    }
284  };
285
286  const ValueTypeActionImpl &getValueTypeActions() const {
287    return ValueTypeActions;
288  }
289
290  /// getTypeAction - Return how we should legalize values of this type, either
291  /// it is already legal (return 'Legal') or we need to promote it to a larger
292  /// type (return 'Promote'), or we need to expand it into multiple registers
293  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
294  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
295    return getTypeConversion(Context, VT).first;
296  }
297  LegalizeTypeAction getTypeAction(MVT VT) const {
298    return ValueTypeActions.getTypeAction(VT);
299  }
300
301  /// getTypeToTransformTo - For types supported by the target, this is an
302  /// identity function.  For types that must be promoted to larger types, this
303  /// returns the larger type to promote to.  For integer types that are larger
304  /// than the largest integer register, this contains one step in the expansion
305  /// to get to the smaller register. For illegal floating point types, this
306  /// returns the integer type to transform to.
307  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
308    return getTypeConversion(Context, VT).second;
309  }
310
311  /// getTypeToExpandTo - For types supported by the target, this is an
312  /// identity function.  For types that must be expanded (i.e. integer types
313  /// that are larger than the largest integer register or illegal floating
314  /// point types), this returns the largest legal type it will be expanded to.
315  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
316    assert(!VT.isVector());
317    while (true) {
318      switch (getTypeAction(Context, VT)) {
319      case TypeLegal:
320        return VT;
321      case TypeExpandInteger:
322        VT = getTypeToTransformTo(Context, VT);
323        break;
324      default:
325        llvm_unreachable("Type is not legal nor is it to be expanded!");
326      }
327    }
328  }
329
330  /// getVectorTypeBreakdown - Vector types are broken down into some number of
331  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
332  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
333  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
334  ///
335  /// This method returns the number of registers needed, and the VT for each
336  /// register.  It also returns the VT and quantity of the intermediate values
337  /// before they are promoted/expanded.
338  ///
339  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
340                                  EVT &IntermediateVT,
341                                  unsigned &NumIntermediates,
342                                  MVT &RegisterVT) const;
343
344  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
345  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
346  /// this is the case, it returns true and store the intrinsic
347  /// information into the IntrinsicInfo that was passed to the function.
348  struct IntrinsicInfo {
349    unsigned     opc;         // target opcode
350    EVT          memVT;       // memory VT
351    const Value* ptrVal;      // value representing memory location
352    int          offset;      // offset off of ptrVal
353    unsigned     align;       // alignment
354    bool         vol;         // is volatile?
355    bool         readMem;     // reads memory?
356    bool         writeMem;    // writes memory?
357  };
358
359  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
360                                  unsigned /*Intrinsic*/) const {
361    return false;
362  }
363
364  /// isFPImmLegal - Returns true if the target can instruction select the
365  /// specified FP immediate natively. If false, the legalizer will materialize
366  /// the FP immediate as a load from a constant pool.
367  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
368    return false;
369  }
370
371  /// isShuffleMaskLegal - Targets can use this to indicate that they only
372  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
373  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
374  /// are assumed to be legal.
375  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
376                                  EVT /*VT*/) const {
377    return true;
378  }
379
380  /// canOpTrap - Returns true if the operation can trap for the value type.
381  /// VT must be a legal type. By default, we optimistically assume most
382  /// operations don't trap except for divide and remainder.
383  virtual bool canOpTrap(unsigned Op, EVT VT) const;
384
385  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
386  /// used by Targets can use this to indicate if there is a suitable
387  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
388  /// pool entry.
389  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
390                                      EVT /*VT*/) const {
391    return false;
392  }
393
394  /// getOperationAction - Return how this operation should be treated: either
395  /// it is legal, needs to be promoted to a larger size, needs to be
396  /// expanded to some other code sequence, or the target has a custom expander
397  /// for it.
398  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
399    if (VT.isExtended()) return Expand;
400    // If a target-specific SDNode requires legalization, require the target
401    // to provide custom legalization for it.
402    if (Op > array_lengthof(OpActions[0])) return Custom;
403    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
404    return (LegalizeAction)OpActions[I][Op];
405  }
406
407  /// isOperationLegalOrCustom - Return true if the specified operation is
408  /// legal on this target or can be made legal with custom lowering. This
409  /// is used to help guide high-level lowering decisions.
410  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
411    return (VT == MVT::Other || isTypeLegal(VT)) &&
412      (getOperationAction(Op, VT) == Legal ||
413       getOperationAction(Op, VT) == Custom);
414  }
415
416  /// isOperationLegalOrPromote - Return true if the specified operation is
417  /// legal on this target or can be made legal using promotion. This
418  /// is used to help guide high-level lowering decisions.
419  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
420    return (VT == MVT::Other || isTypeLegal(VT)) &&
421      (getOperationAction(Op, VT) == Legal ||
422       getOperationAction(Op, VT) == Promote);
423  }
424
425  /// isOperationExpand - Return true if the specified operation is illegal on
426  /// this target or unlikely to be made legal with custom lowering. This is
427  /// used to help guide high-level lowering decisions.
428  bool isOperationExpand(unsigned Op, EVT VT) const {
429    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
430  }
431
432  /// isOperationLegal - Return true if the specified operation is legal on this
433  /// target.
434  bool isOperationLegal(unsigned Op, EVT VT) const {
435    return (VT == MVT::Other || isTypeLegal(VT)) &&
436           getOperationAction(Op, VT) == Legal;
437  }
438
439  /// getLoadExtAction - Return how this load with extension should be treated:
440  /// either it is legal, needs to be promoted to a larger size, needs to be
441  /// expanded to some other code sequence, or the target has a custom expander
442  /// for it.
443  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
444    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
445           "Table isn't big enough!");
446    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
447  }
448
449  /// isLoadExtLegal - Return true if the specified load with extension is legal
450  /// on this target.
451  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
452    return VT.isSimple() &&
453      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
454  }
455
456  /// getTruncStoreAction - Return how this store with truncation should be
457  /// treated: either it is legal, needs to be promoted to a larger size, needs
458  /// to be expanded to some other code sequence, or the target has a custom
459  /// expander for it.
460  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
461    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
462           "Table isn't big enough!");
463    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
464                                            [MemVT.SimpleTy];
465  }
466
467  /// isTruncStoreLegal - Return true if the specified store with truncation is
468  /// legal on this target.
469  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
470    return isTypeLegal(ValVT) && MemVT.isSimple() &&
471      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
472  }
473
474  /// getIndexedLoadAction - Return how the indexed load should be treated:
475  /// either it is legal, needs to be promoted to a larger size, needs to be
476  /// expanded to some other code sequence, or the target has a custom expander
477  /// for it.
478  LegalizeAction
479  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
480    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
481           "Table isn't big enough!");
482    unsigned Ty = (unsigned)VT.SimpleTy;
483    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
484  }
485
486  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
487  /// on this target.
488  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
489    return VT.isSimple() &&
490      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
491       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
492  }
493
494  /// getIndexedStoreAction - Return how the indexed store should be treated:
495  /// either it is legal, needs to be promoted to a larger size, needs to be
496  /// expanded to some other code sequence, or the target has a custom expander
497  /// for it.
498  LegalizeAction
499  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
500    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
501           "Table isn't big enough!");
502    unsigned Ty = (unsigned)VT.SimpleTy;
503    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
504  }
505
506  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
507  /// on this target.
508  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
509    return VT.isSimple() &&
510      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
511       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
512  }
513
514  /// getCondCodeAction - Return how the condition code should be treated:
515  /// either it is legal, needs to be expanded to some other code sequence,
516  /// or the target has a custom expander for it.
517  LegalizeAction
518  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
519    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
520           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
521           "Table isn't big enough!");
522    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
523    /// value and the upper 27 bits index into the second dimension of the
524    /// array to select what 64bit value to use.
525    LegalizeAction Action = (LegalizeAction)
526      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
527    assert(Action != Promote && "Can't promote condition code!");
528    return Action;
529  }
530
531  /// isCondCodeLegal - Return true if the specified condition code is legal
532  /// on this target.
533  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
534    return
535      getCondCodeAction(CC, VT) == Legal ||
536      getCondCodeAction(CC, VT) == Custom;
537  }
538
539
540  /// getTypeToPromoteTo - If the action for this operation is to promote, this
541  /// method returns the ValueType to promote to.
542  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
543    assert(getOperationAction(Op, VT) == Promote &&
544           "This operation isn't promoted!");
545
546    // See if this has an explicit type specified.
547    std::map<std::pair<unsigned, MVT::SimpleValueType>,
548             MVT::SimpleValueType>::const_iterator PTTI =
549      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
550    if (PTTI != PromoteToType.end()) return PTTI->second;
551
552    assert((VT.isInteger() || VT.isFloatingPoint()) &&
553           "Cannot autopromote this type, add it with AddPromotedToType.");
554
555    MVT NVT = VT;
556    do {
557      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
558      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
559             "Didn't find type to promote to!");
560    } while (!isTypeLegal(NVT) ||
561              getOperationAction(Op, NVT) == Promote);
562    return NVT;
563  }
564
565  /// getValueType - Return the EVT corresponding to this LLVM type.
566  /// This is fixed by the LLVM operations except for the pointer size.  If
567  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
568  /// counterpart (e.g. structs), otherwise it will assert.
569  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
570    // Lower scalar pointers to native pointer types.
571    if (Ty->isPointerTy()) return PointerTy;
572
573    if (Ty->isVectorTy()) {
574      VectorType *VTy = cast<VectorType>(Ty);
575      Type *Elm = VTy->getElementType();
576      // Lower vectors of pointers to native pointer types.
577      if (Elm->isPointerTy())
578        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
579      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
580                       VTy->getNumElements());
581    }
582    return EVT::getEVT(Ty, AllowUnknown);
583  }
584
585  /// Return the MVT corresponding to this LLVM type. See getValueType.
586  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
587    return getValueType(Ty, AllowUnknown).getSimpleVT();
588  }
589
590  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
591  /// function arguments in the caller parameter area.  This is the actual
592  /// alignment, not its logarithm.
593  virtual unsigned getByValTypeAlignment(Type *Ty) const;
594
595  /// getRegisterType - Return the type of registers that this ValueType will
596  /// eventually require.
597  MVT getRegisterType(MVT VT) const {
598    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
599    return RegisterTypeForVT[VT.SimpleTy];
600  }
601
602  /// getRegisterType - Return the type of registers that this ValueType will
603  /// eventually require.
604  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
605    if (VT.isSimple()) {
606      assert((unsigned)VT.getSimpleVT().SimpleTy <
607                array_lengthof(RegisterTypeForVT));
608      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
609    }
610    if (VT.isVector()) {
611      EVT VT1;
612      MVT RegisterVT;
613      unsigned NumIntermediates;
614      (void)getVectorTypeBreakdown(Context, VT, VT1,
615                                   NumIntermediates, RegisterVT);
616      return RegisterVT;
617    }
618    if (VT.isInteger()) {
619      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
620    }
621    llvm_unreachable("Unsupported extended type!");
622  }
623
624  /// getNumRegisters - Return the number of registers that this ValueType will
625  /// eventually require.  This is one for any types promoted to live in larger
626  /// registers, but may be more than one for types (like i64) that are split
627  /// into pieces.  For types like i140, which are first promoted then expanded,
628  /// it is the number of registers needed to hold all the bits of the original
629  /// type.  For an i140 on a 32 bit machine this means 5 registers.
630  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
631    if (VT.isSimple()) {
632      assert((unsigned)VT.getSimpleVT().SimpleTy <
633                array_lengthof(NumRegistersForVT));
634      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
635    }
636    if (VT.isVector()) {
637      EVT VT1;
638      MVT VT2;
639      unsigned NumIntermediates;
640      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
641    }
642    if (VT.isInteger()) {
643      unsigned BitWidth = VT.getSizeInBits();
644      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
645      return (BitWidth + RegWidth - 1) / RegWidth;
646    }
647    llvm_unreachable("Unsupported extended type!");
648  }
649
650  /// ShouldShrinkFPConstant - If true, then instruction selection should
651  /// seek to shrink the FP constant of the specified type to a smaller type
652  /// in order to save space and / or reduce runtime.
653  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
654
655  /// hasTargetDAGCombine - If true, the target has custom DAG combine
656  /// transformations that it can perform for the specified node.
657  bool hasTargetDAGCombine(ISD::NodeType NT) const {
658    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
659    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
660  }
661
662  /// This function returns the maximum number of store operations permitted
663  /// to replace a call to llvm.memset. The value is set by the target at the
664  /// performance threshold for such a replacement. If OptSize is true,
665  /// return the limit for functions that have OptSize attribute.
666  /// @brief Get maximum # of store operations permitted for llvm.memset
667  unsigned getMaxStoresPerMemset(bool OptSize) const {
668    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
669  }
670
671  /// This function returns the maximum number of store operations permitted
672  /// to replace a call to llvm.memcpy. The value is set by the target at the
673  /// performance threshold for such a replacement. If OptSize is true,
674  /// return the limit for functions that have OptSize attribute.
675  /// @brief Get maximum # of store operations permitted for llvm.memcpy
676  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
677    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
678  }
679
680  /// This function returns the maximum number of store operations permitted
681  /// to replace a call to llvm.memmove. The value is set by the target at the
682  /// performance threshold for such a replacement. If OptSize is true,
683  /// return the limit for functions that have OptSize attribute.
684  /// @brief Get maximum # of store operations permitted for llvm.memmove
685  unsigned getMaxStoresPerMemmove(bool OptSize) const {
686    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
687  }
688
689  /// This function returns true if the target allows unaligned memory accesses.
690  /// of the specified type. If true, it also returns whether the unaligned
691  /// memory access is "fast" in the second argument by reference. This is used,
692  /// for example, in situations where an array copy/move/set is  converted to a
693  /// sequence of store operations. It's use helps to ensure that such
694  /// replacements don't generate code that causes an alignment error  (trap) on
695  /// the target machine.
696  /// @brief Determine if the target supports unaligned memory accesses.
697  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
698    return false;
699  }
700
701  /// This function returns true if the target would benefit from code placement
702  /// optimization.
703  /// @brief Determine if the target should perform code placement optimization.
704  bool shouldOptimizeCodePlacement() const {
705    return benefitFromCodePlacementOpt;
706  }
707
708  /// getOptimalMemOpType - Returns the target specific optimal type for load
709  /// and store operations as a result of memset, memcpy, and memmove
710  /// lowering. If DstAlign is zero that means it's safe to destination
711  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
712  /// means there isn't a need to check it against alignment requirement,
713  /// probably because the source does not need to be loaded. If 'IsMemset' is
714  /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
715  /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
716  /// source is constant so it does not need to be loaded.
717  /// It returns EVT::Other if the type should be determined using generic
718  /// target-independent logic.
719  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
720                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
721                                  bool /*IsMemset*/,
722                                  bool /*ZeroMemset*/,
723                                  bool /*MemcpyStrSrc*/,
724                                  MachineFunction &/*MF*/) const {
725    return MVT::Other;
726  }
727
728  /// isSafeMemOpType - Returns true if it's safe to use load / store of the
729  /// specified type to expand memcpy / memset inline. This is mostly true
730  /// for all types except for some special cases. For example, on X86
731  /// targets without SSE2 f64 load / store are done with fldl / fstpl which
732  /// also does type conversion. Note the specified type doesn't have to be
733  /// legal as the hook is used before type legalization.
734  virtual bool isSafeMemOpType(MVT VT) const {
735    return true;
736  }
737
738  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
739  /// to implement llvm.setjmp.
740  bool usesUnderscoreSetJmp() const {
741    return UseUnderscoreSetJmp;
742  }
743
744  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
745  /// to implement llvm.longjmp.
746  bool usesUnderscoreLongJmp() const {
747    return UseUnderscoreLongJmp;
748  }
749
750  /// supportJumpTables - return whether the target can generate code for
751  /// jump tables.
752  bool supportJumpTables() const {
753    return SupportJumpTables;
754  }
755
756  /// getMinimumJumpTableEntries - return integer threshold on number of
757  /// blocks to use jump tables rather than if sequence.
758  int getMinimumJumpTableEntries() const {
759    return MinimumJumpTableEntries;
760  }
761
762  /// getStackPointerRegisterToSaveRestore - If a physical register, this
763  /// specifies the register that llvm.savestack/llvm.restorestack should save
764  /// and restore.
765  unsigned getStackPointerRegisterToSaveRestore() const {
766    return StackPointerRegisterToSaveRestore;
767  }
768
769  /// getExceptionPointerRegister - If a physical register, this returns
770  /// the register that receives the exception address on entry to a landing
771  /// pad.
772  unsigned getExceptionPointerRegister() const {
773    return ExceptionPointerRegister;
774  }
775
776  /// getExceptionSelectorRegister - If a physical register, this returns
777  /// the register that receives the exception typeid on entry to a landing
778  /// pad.
779  unsigned getExceptionSelectorRegister() const {
780    return ExceptionSelectorRegister;
781  }
782
783  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
784  /// set, the default is 200)
785  unsigned getJumpBufSize() const {
786    return JumpBufSize;
787  }
788
789  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
790  /// (if never set, the default is 0)
791  unsigned getJumpBufAlignment() const {
792    return JumpBufAlignment;
793  }
794
795  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
796  /// argument.
797  unsigned getMinStackArgumentAlignment() const {
798    return MinStackArgumentAlignment;
799  }
800
801  /// getMinFunctionAlignment - return the minimum function alignment.
802  ///
803  unsigned getMinFunctionAlignment() const {
804    return MinFunctionAlignment;
805  }
806
807  /// getPrefFunctionAlignment - return the preferred function alignment.
808  ///
809  unsigned getPrefFunctionAlignment() const {
810    return PrefFunctionAlignment;
811  }
812
813  /// getPrefLoopAlignment - return the preferred loop alignment.
814  ///
815  unsigned getPrefLoopAlignment() const {
816    return PrefLoopAlignment;
817  }
818
819  /// getShouldFoldAtomicFences - return whether the combiner should fold
820  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
821  ///
822  bool getShouldFoldAtomicFences() const {
823    return ShouldFoldAtomicFences;
824  }
825
826  /// getInsertFencesFor - return whether the DAG builder should automatically
827  /// insert fences and reduce ordering for atomics.
828  ///
829  bool getInsertFencesForAtomic() const {
830    return InsertFencesForAtomic;
831  }
832
833  /// getPreIndexedAddressParts - returns true by value, base pointer and
834  /// offset pointer and addressing mode by reference if the node's address
835  /// can be legally represented as pre-indexed load / store address.
836  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
837                                         SDValue &/*Offset*/,
838                                         ISD::MemIndexedMode &/*AM*/,
839                                         SelectionDAG &/*DAG*/) const {
840    return false;
841  }
842
843  /// getPostIndexedAddressParts - returns true by value, base pointer and
844  /// offset pointer and addressing mode by reference if this node can be
845  /// combined with a load / store to form a post-indexed load / store.
846  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
847                                          SDValue &/*Base*/, SDValue &/*Offset*/,
848                                          ISD::MemIndexedMode &/*AM*/,
849                                          SelectionDAG &/*DAG*/) const {
850    return false;
851  }
852
853  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
854  /// current function.  The returned value is a member of the
855  /// MachineJumpTableInfo::JTEntryKind enum.
856  virtual unsigned getJumpTableEncoding() const;
857
858  virtual const MCExpr *
859  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
860                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
861                            MCContext &/*Ctx*/) const {
862    llvm_unreachable("Need to implement this hook if target has custom JTIs");
863  }
864
865  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
866  /// jumptable.
867  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
868                                           SelectionDAG &DAG) const;
869
870  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
871  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
872  /// MCExpr.
873  virtual const MCExpr *
874  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
875                               unsigned JTI, MCContext &Ctx) const;
876
877  /// isOffsetFoldingLegal - Return true if folding a constant offset
878  /// with the given GlobalAddress is legal.  It is frequently not legal in
879  /// PIC relocation models.
880  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
881
882  /// getStackCookieLocation - Return true if the target stores stack
883  /// protector cookies at a fixed offset in some non-standard address
884  /// space, and populates the address space and offset as
885  /// appropriate.
886  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
887                                      unsigned &/*Offset*/) const {
888    return false;
889  }
890
891  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
892  /// used for loads / stores from the global.
893  virtual unsigned getMaximalGlobalOffset() const {
894    return 0;
895  }
896
897  //===--------------------------------------------------------------------===//
898  // TargetLowering Optimization Methods
899  //
900
901  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
902  /// SDValues for returning information from TargetLowering to its clients
903  /// that want to combine
904  struct TargetLoweringOpt {
905    SelectionDAG &DAG;
906    bool LegalTys;
907    bool LegalOps;
908    SDValue Old;
909    SDValue New;
910
911    explicit TargetLoweringOpt(SelectionDAG &InDAG,
912                               bool LT, bool LO) :
913      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
914
915    bool LegalTypes() const { return LegalTys; }
916    bool LegalOperations() const { return LegalOps; }
917
918    bool CombineTo(SDValue O, SDValue N) {
919      Old = O;
920      New = N;
921      return true;
922    }
923
924    /// ShrinkDemandedConstant - Check to see if the specified operand of the
925    /// specified instruction is a constant integer.  If so, check to see if
926    /// there are any bits set in the constant that are not demanded.  If so,
927    /// shrink the constant and return true.
928    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
929
930    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
931    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
932    /// cast, but it could be generalized for targets with other types of
933    /// implicit widening casts.
934    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
935                          DebugLoc dl);
936  };
937
938  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
939  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
940  /// use this information to simplify Op, create a new simplified DAG node and
941  /// return true, returning the original and new nodes in Old and New.
942  /// Otherwise, analyze the expression and return a mask of KnownOne and
943  /// KnownZero bits for the expression (used to simplify the caller).
944  /// The KnownZero/One bits may only be accurate for those bits in the
945  /// DemandedMask.
946  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
947                            APInt &KnownZero, APInt &KnownOne,
948                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
949
950  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
951  /// Mask are known to be either zero or one and return them in the
952  /// KnownZero/KnownOne bitsets.
953  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
954                                              APInt &KnownZero,
955                                              APInt &KnownOne,
956                                              const SelectionDAG &DAG,
957                                              unsigned Depth = 0) const;
958
959  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
960  /// targets that want to expose additional information about sign bits to the
961  /// DAG Combiner.
962  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
963                                                   unsigned Depth = 0) const;
964
965  struct DAGCombinerInfo {
966    void *DC;  // The DAG Combiner object.
967    bool BeforeLegalize;
968    bool BeforeLegalizeOps;
969    bool CalledByLegalizer;
970  public:
971    SelectionDAG &DAG;
972
973    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
974      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
975        CalledByLegalizer(cl), DAG(dag) {}
976
977    bool isBeforeLegalize() const { return BeforeLegalize; }
978    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
979    bool isCalledByLegalizer() const { return CalledByLegalizer; }
980
981    void AddToWorklist(SDNode *N);
982    void RemoveFromWorklist(SDNode *N);
983    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
984                      bool AddTo = true);
985    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
986    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
987
988    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
989  };
990
991  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
992  /// and cc. If it is unable to simplify it, return a null SDValue.
993  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
994                          ISD::CondCode Cond, bool foldBooleans,
995                          DAGCombinerInfo &DCI, DebugLoc dl) const;
996
997  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
998  /// node is a GlobalAddress + offset.
999  virtual bool
1000  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1001
1002  /// PerformDAGCombine - This method will be invoked for all target nodes and
1003  /// for any target-independent nodes that the target has registered with
1004  /// invoke it for.
1005  ///
1006  /// The semantics are as follows:
1007  /// Return Value:
1008  ///   SDValue.Val == 0   - No change was made
1009  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1010  ///   otherwise          - N should be replaced by the returned Operand.
1011  ///
1012  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1013  /// more complex transformations.
1014  ///
1015  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1016
1017  /// isTypeDesirableForOp - Return true if the target has native support for
1018  /// the specified value type and it is 'desirable' to use the type for the
1019  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1020  /// instruction encodings are longer and some i16 instructions are slow.
1021  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1022    // By default, assume all legal types are desirable.
1023    return isTypeLegal(VT);
1024  }
1025
1026  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1027  /// to transform a floating point op of specified opcode to a equivalent op of
1028  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1029  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1030                                                 EVT /*VT*/) const {
1031    return false;
1032  }
1033
1034  /// IsDesirableToPromoteOp - This method query the target whether it is
1035  /// beneficial for dag combiner to promote the specified node. If true, it
1036  /// should return the desired promotion type by reference.
1037  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1038    return false;
1039  }
1040
1041  //===--------------------------------------------------------------------===//
1042  // TargetLowering Configuration Methods - These methods should be invoked by
1043  // the derived class constructor to configure this object for the target.
1044  //
1045
1046protected:
1047  /// setBooleanContents - Specify how the target extends the result of a
1048  /// boolean value from i1 to a wider type.  See getBooleanContents.
1049  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1050  /// setBooleanVectorContents - Specify how the target extends the result
1051  /// of a vector boolean value from a vector of i1 to a wider type.  See
1052  /// getBooleanContents.
1053  void setBooleanVectorContents(BooleanContent Ty) {
1054    BooleanVectorContents = Ty;
1055  }
1056
1057  /// setSchedulingPreference - Specify the target scheduling preference.
1058  void setSchedulingPreference(Sched::Preference Pref) {
1059    SchedPreferenceInfo = Pref;
1060  }
1061
1062  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1063  /// use _setjmp to implement llvm.setjmp or the non _ version.
1064  /// Defaults to false.
1065  void setUseUnderscoreSetJmp(bool Val) {
1066    UseUnderscoreSetJmp = Val;
1067  }
1068
1069  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1070  /// use _longjmp to implement llvm.longjmp or the non _ version.
1071  /// Defaults to false.
1072  void setUseUnderscoreLongJmp(bool Val) {
1073    UseUnderscoreLongJmp = Val;
1074  }
1075
1076  /// setSupportJumpTables - Indicate whether the target can generate code for
1077  /// jump tables.
1078  void setSupportJumpTables(bool Val) {
1079    SupportJumpTables = Val;
1080  }
1081
1082  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1083  /// jump tables rather than if sequence.
1084  void setMinimumJumpTableEntries(int Val) {
1085    MinimumJumpTableEntries = Val;
1086  }
1087
1088  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1089  /// specifies the register that llvm.savestack/llvm.restorestack should save
1090  /// and restore.
1091  void setStackPointerRegisterToSaveRestore(unsigned R) {
1092    StackPointerRegisterToSaveRestore = R;
1093  }
1094
1095  /// setExceptionPointerRegister - If set to a physical register, this sets
1096  /// the register that receives the exception address on entry to a landing
1097  /// pad.
1098  void setExceptionPointerRegister(unsigned R) {
1099    ExceptionPointerRegister = R;
1100  }
1101
1102  /// setExceptionSelectorRegister - If set to a physical register, this sets
1103  /// the register that receives the exception typeid on entry to a landing
1104  /// pad.
1105  void setExceptionSelectorRegister(unsigned R) {
1106    ExceptionSelectorRegister = R;
1107  }
1108
1109  /// SelectIsExpensive - Tells the code generator not to expand operations
1110  /// into sequences that use the select operations if possible.
1111  void setSelectIsExpensive(bool isExpensive = true) {
1112    SelectIsExpensive = isExpensive;
1113  }
1114
1115  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1116  /// operations into a separate sequences that increases the amount of
1117  /// flow control.
1118  void setJumpIsExpensive(bool isExpensive = true) {
1119    JumpIsExpensive = isExpensive;
1120  }
1121
1122  /// setIntDivIsCheap - Tells the code generator that integer divide is
1123  /// expensive, and if possible, should be replaced by an alternate sequence
1124  /// of instructions not containing an integer divide.
1125  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1126
1127  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1128  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1129    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1130  }
1131
1132  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1133  /// srl/add/sra for a signed divide by power of two, and let the target handle
1134  /// it.
1135  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1136
1137  /// addRegisterClass - Add the specified register class as an available
1138  /// regclass for the specified value type.  This indicates the selector can
1139  /// handle values of that class natively.
1140  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1141    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1142    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1143    RegClassForVT[VT.SimpleTy] = RC;
1144  }
1145
1146  /// findRepresentativeClass - Return the largest legal super-reg register class
1147  /// of the register class for the specified type and its associated "cost".
1148  virtual std::pair<const TargetRegisterClass*, uint8_t>
1149  findRepresentativeClass(MVT VT) const;
1150
1151  /// computeRegisterProperties - Once all of the register classes are added,
1152  /// this allows us to compute derived properties we expose.
1153  void computeRegisterProperties();
1154
1155  /// setOperationAction - Indicate that the specified operation does not work
1156  /// with the specified type and indicate what to do about it.
1157  void setOperationAction(unsigned Op, MVT VT,
1158                          LegalizeAction Action) {
1159    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1160    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1161  }
1162
1163  /// setLoadExtAction - Indicate that the specified load with extension does
1164  /// not work with the specified type and indicate what to do about it.
1165  void setLoadExtAction(unsigned ExtType, MVT VT,
1166                        LegalizeAction Action) {
1167    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1168           "Table isn't big enough!");
1169    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1170  }
1171
1172  /// setTruncStoreAction - Indicate that the specified truncating store does
1173  /// not work with the specified type and indicate what to do about it.
1174  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1175                           LegalizeAction Action) {
1176    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1177           "Table isn't big enough!");
1178    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1179  }
1180
1181  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1182  /// does not work with the specified type and indicate what to do abort
1183  /// it. NOTE: All indexed mode loads are initialized to Expand in
1184  /// TargetLowering.cpp
1185  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1186                            LegalizeAction Action) {
1187    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1188           (unsigned)Action < 0xf && "Table isn't big enough!");
1189    // Load action are kept in the upper half.
1190    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1191    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1192  }
1193
1194  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1195  /// does not work with the specified type and indicate what to do about
1196  /// it. NOTE: All indexed mode stores are initialized to Expand in
1197  /// TargetLowering.cpp
1198  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1199                             LegalizeAction Action) {
1200    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1201           (unsigned)Action < 0xf && "Table isn't big enough!");
1202    // Store action are kept in the lower half.
1203    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1204    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1205  }
1206
1207  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1208  /// supported on the target and indicate what to do about it.
1209  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1210                         LegalizeAction Action) {
1211    assert(VT < MVT::LAST_VALUETYPE &&
1212           (unsigned)CC < array_lengthof(CondCodeActions) &&
1213           "Table isn't big enough!");
1214    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1215    /// value and the upper 27 bits index into the second dimension of the
1216    /// array to select what 64bit value to use.
1217    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1218      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1219    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1220      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1221  }
1222
1223  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1224  /// promotion code defaults to trying a larger integer/fp until it can find
1225  /// one that works.  If that default is insufficient, this method can be used
1226  /// by the target to override the default.
1227  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1228    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1229  }
1230
1231  /// setTargetDAGCombine - Targets should invoke this method for each target
1232  /// independent node that they want to provide a custom DAG combiner for by
1233  /// implementing the PerformDAGCombine virtual method.
1234  void setTargetDAGCombine(ISD::NodeType NT) {
1235    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1236    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1237  }
1238
1239  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1240  /// bytes); default is 200
1241  void setJumpBufSize(unsigned Size) {
1242    JumpBufSize = Size;
1243  }
1244
1245  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1246  /// alignment (in bytes); default is 0
1247  void setJumpBufAlignment(unsigned Align) {
1248    JumpBufAlignment = Align;
1249  }
1250
1251  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1252  /// log2(bytes))
1253  void setMinFunctionAlignment(unsigned Align) {
1254    MinFunctionAlignment = Align;
1255  }
1256
1257  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1258  /// This should be set if there is a performance benefit to
1259  /// higher-than-minimum alignment (in log2(bytes))
1260  void setPrefFunctionAlignment(unsigned Align) {
1261    PrefFunctionAlignment = Align;
1262  }
1263
1264  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1265  /// alignment is zero, it means the target does not care about loop alignment.
1266  /// The alignment is specified in log2(bytes).
1267  void setPrefLoopAlignment(unsigned Align) {
1268    PrefLoopAlignment = Align;
1269  }
1270
1271  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1272  /// argument (in log2(bytes)).
1273  void setMinStackArgumentAlignment(unsigned Align) {
1274    MinStackArgumentAlignment = Align;
1275  }
1276
1277  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1278  /// atomic operation intrinsics includes locking. Default is false.
1279  void setShouldFoldAtomicFences(bool fold) {
1280    ShouldFoldAtomicFences = fold;
1281  }
1282
1283  /// setInsertFencesForAtomic - Set if the DAG builder should
1284  /// automatically insert fences and reduce the order of atomic memory
1285  /// operations to Monotonic.
1286  void setInsertFencesForAtomic(bool fence) {
1287    InsertFencesForAtomic = fence;
1288  }
1289
1290public:
1291  //===--------------------------------------------------------------------===//
1292  // Lowering methods - These methods must be implemented by targets so that
1293  // the SelectionDAGBuilder code knows how to lower these.
1294  //
1295
1296  /// LowerFormalArguments - This hook must be implemented to lower the
1297  /// incoming (formal) arguments, described by the Ins array, into the
1298  /// specified DAG. The implementation should fill in the InVals array
1299  /// with legal-type argument values, and return the resulting token
1300  /// chain value.
1301  ///
1302  virtual SDValue
1303    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1304                         bool /*isVarArg*/,
1305                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1306                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1307                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1308    llvm_unreachable("Not Implemented");
1309  }
1310
1311  struct ArgListEntry {
1312    SDValue Node;
1313    Type* Ty;
1314    bool isSExt  : 1;
1315    bool isZExt  : 1;
1316    bool isInReg : 1;
1317    bool isSRet  : 1;
1318    bool isNest  : 1;
1319    bool isByVal : 1;
1320    uint16_t Alignment;
1321
1322    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1323      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1324  };
1325  typedef std::vector<ArgListEntry> ArgListTy;
1326
1327  /// CallLoweringInfo - This structure contains all information that is
1328  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1329  /// SelectionDAG builder needs to lower a call, and targets will see this
1330  /// struct in their LowerCall implementation.
1331  struct CallLoweringInfo {
1332    SDValue Chain;
1333    Type *RetTy;
1334    bool RetSExt           : 1;
1335    bool RetZExt           : 1;
1336    bool IsVarArg          : 1;
1337    bool IsInReg           : 1;
1338    bool DoesNotReturn     : 1;
1339    bool IsReturnValueUsed : 1;
1340
1341    // IsTailCall should be modified by implementations of
1342    // TargetLowering::LowerCall that perform tail call conversions.
1343    bool IsTailCall;
1344
1345    unsigned NumFixedArgs;
1346    CallingConv::ID CallConv;
1347    SDValue Callee;
1348    ArgListTy &Args;
1349    SelectionDAG &DAG;
1350    DebugLoc DL;
1351    ImmutableCallSite *CS;
1352    SmallVector<ISD::OutputArg, 32> Outs;
1353    SmallVector<SDValue, 32> OutVals;
1354    SmallVector<ISD::InputArg, 32> Ins;
1355
1356
1357    /// CallLoweringInfo - Constructs a call lowering context based on the
1358    /// ImmutableCallSite \p cs.
1359    CallLoweringInfo(SDValue chain, Type *retTy,
1360                     FunctionType *FTy, bool isTailCall, SDValue callee,
1361                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1362                     ImmutableCallSite &cs)
1363    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1364      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1365      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1366      DoesNotReturn(cs.doesNotReturn()),
1367      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1368      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1369      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1370      DL(dl), CS(&cs) {}
1371
1372    /// CallLoweringInfo - Constructs a call lowering context based on the
1373    /// provided call information.
1374    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1375                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1376                     CallingConv::ID callConv, bool isTailCall,
1377                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1378                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1379    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1380      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1381      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1382      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1383      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1384  };
1385
1386  /// LowerCallTo - This function lowers an abstract call to a function into an
1387  /// actual call.  This returns a pair of operands.  The first element is the
1388  /// return value for the function (if RetTy is not VoidTy).  The second
1389  /// element is the outgoing token chain. It calls LowerCall to do the actual
1390  /// lowering.
1391  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1392
1393  /// LowerCall - This hook must be implemented to lower calls into the
1394  /// the specified DAG. The outgoing arguments to the call are described
1395  /// by the Outs array, and the values to be returned by the call are
1396  /// described by the Ins array. The implementation should fill in the
1397  /// InVals array with legal-type return values from the call, and return
1398  /// the resulting token chain value.
1399  virtual SDValue
1400    LowerCall(CallLoweringInfo &/*CLI*/,
1401              SmallVectorImpl<SDValue> &/*InVals*/) const {
1402    llvm_unreachable("Not Implemented");
1403  }
1404
1405  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1406  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1407
1408  /// CanLowerReturn - This hook should be implemented to check whether the
1409  /// return values described by the Outs array can fit into the return
1410  /// registers.  If false is returned, an sret-demotion is performed.
1411  ///
1412  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1413                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1414               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1415               LLVMContext &/*Context*/) const
1416  {
1417    // Return true by default to get preexisting behavior.
1418    return true;
1419  }
1420
1421  /// LowerReturn - This hook must be implemented to lower outgoing
1422  /// return values, described by the Outs array, into the specified
1423  /// DAG. The implementation should return the resulting token chain
1424  /// value.
1425  ///
1426  virtual SDValue
1427    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1428                bool /*isVarArg*/,
1429                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1430                const SmallVectorImpl<SDValue> &/*OutVals*/,
1431                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1432    llvm_unreachable("Not Implemented");
1433  }
1434
1435  /// isUsedByReturnOnly - Return true if result of the specified node is used
1436  /// by a return node only. It also compute and return the input chain for the
1437  /// tail call.
1438  /// This is used to determine whether it is possible
1439  /// to codegen a libcall as tail call at legalization time.
1440  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1441    return false;
1442  }
1443
1444  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1445  /// call instruction as a tail call. This is used by optimization passes to
1446  /// determine if it's profitable to duplicate return instructions to enable
1447  /// tailcall optimization.
1448  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1449    return false;
1450  }
1451
1452  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1453  /// sign extend a zeroext/signext integer argument or return value.
1454  /// FIXME: Most C calling convention requires the return type to be promoted,
1455  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1456  /// necessary for non-C calling conventions. The frontend should handle this
1457  /// and include all of the necessary information.
1458  virtual MVT getTypeForExtArgOrReturn(MVT VT,
1459                                       ISD::NodeType /*ExtendKind*/) const {
1460    MVT MinVT = getRegisterType(MVT::i32);
1461    return VT.bitsLT(MinVT) ? MinVT : VT;
1462  }
1463
1464  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1465  /// to legalize nodes with an illegal operand type but legal result types.
1466  /// It replaces the LowerOperation callback in the type Legalizer.
1467  /// The reason we can not do away with LowerOperation entirely is that
1468  /// LegalizeDAG isn't yet ready to use this callback.
1469  /// TODO: Consider merging with ReplaceNodeResults.
1470
1471  /// The target places new result values for the node in Results (their number
1472  /// and types must exactly match those of the original return values of
1473  /// the node), or leaves Results empty, which indicates that the node is not
1474  /// to be custom lowered after all.
1475  /// The default implementation calls LowerOperation.
1476  virtual void LowerOperationWrapper(SDNode *N,
1477                                     SmallVectorImpl<SDValue> &Results,
1478                                     SelectionDAG &DAG) const;
1479
1480  /// LowerOperation - This callback is invoked for operations that are
1481  /// unsupported by the target, which are registered to use 'custom' lowering,
1482  /// and whose defined values are all legal.
1483  /// If the target has no operations that require custom lowering, it need not
1484  /// implement this.  The default implementation of this aborts.
1485  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1486
1487  /// ReplaceNodeResults - This callback is invoked when a node result type is
1488  /// illegal for the target, and the operation was registered to use 'custom'
1489  /// lowering for that result type.  The target places new result values for
1490  /// the node in Results (their number and types must exactly match those of
1491  /// the original return values of the node), or leaves Results empty, which
1492  /// indicates that the node is not to be custom lowered after all.
1493  ///
1494  /// If the target has no operations that require custom lowering, it need not
1495  /// implement this.  The default implementation aborts.
1496  virtual void ReplaceNodeResults(SDNode * /*N*/,
1497                                  SmallVectorImpl<SDValue> &/*Results*/,
1498                                  SelectionDAG &/*DAG*/) const {
1499    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1500  }
1501
1502  /// getTargetNodeName() - This method returns the name of a target specific
1503  /// DAG node.
1504  virtual const char *getTargetNodeName(unsigned Opcode) const;
1505
1506  /// createFastISel - This method returns a target specific FastISel object,
1507  /// or null if the target does not support "fast" ISel.
1508  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1509                                   const TargetLibraryInfo *) const {
1510    return 0;
1511  }
1512
1513  //===--------------------------------------------------------------------===//
1514  // Inline Asm Support hooks
1515  //
1516
1517  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1518  /// call to be explicit llvm code if it wants to.  This is useful for
1519  /// turning simple inline asms into LLVM intrinsics, which gives the
1520  /// compiler more information about the behavior of the code.
1521  virtual bool ExpandInlineAsm(CallInst *) const {
1522    return false;
1523  }
1524
1525  enum ConstraintType {
1526    C_Register,            // Constraint represents specific register(s).
1527    C_RegisterClass,       // Constraint represents any of register(s) in class.
1528    C_Memory,              // Memory constraint.
1529    C_Other,               // Something else.
1530    C_Unknown              // Unsupported constraint.
1531  };
1532
1533  enum ConstraintWeight {
1534    // Generic weights.
1535    CW_Invalid  = -1,     // No match.
1536    CW_Okay     = 0,      // Acceptable.
1537    CW_Good     = 1,      // Good weight.
1538    CW_Better   = 2,      // Better weight.
1539    CW_Best     = 3,      // Best weight.
1540
1541    // Well-known weights.
1542    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1543    CW_Register     = CW_Good,    // Register operands.
1544    CW_Memory       = CW_Better,  // Memory operands.
1545    CW_Constant     = CW_Best,    // Constant operand.
1546    CW_Default      = CW_Okay     // Default or don't know type.
1547  };
1548
1549  /// AsmOperandInfo - This contains information for each constraint that we are
1550  /// lowering.
1551  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1552    /// ConstraintCode - This contains the actual string for the code, like "m".
1553    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1554    /// most closely matches the operand.
1555    std::string ConstraintCode;
1556
1557    /// ConstraintType - Information about the constraint code, e.g. Register,
1558    /// RegisterClass, Memory, Other, Unknown.
1559    TargetLowering::ConstraintType ConstraintType;
1560
1561    /// CallOperandval - If this is the result output operand or a
1562    /// clobber, this is null, otherwise it is the incoming operand to the
1563    /// CallInst.  This gets modified as the asm is processed.
1564    Value *CallOperandVal;
1565
1566    /// ConstraintVT - The ValueType for the operand value.
1567    MVT ConstraintVT;
1568
1569    /// isMatchingInputConstraint - Return true of this is an input operand that
1570    /// is a matching constraint like "4".
1571    bool isMatchingInputConstraint() const;
1572
1573    /// getMatchedOperand - If this is an input matching constraint, this method
1574    /// returns the output operand it matches.
1575    unsigned getMatchedOperand() const;
1576
1577    /// Copy constructor for copying from an AsmOperandInfo.
1578    AsmOperandInfo(const AsmOperandInfo &info)
1579      : InlineAsm::ConstraintInfo(info),
1580        ConstraintCode(info.ConstraintCode),
1581        ConstraintType(info.ConstraintType),
1582        CallOperandVal(info.CallOperandVal),
1583        ConstraintVT(info.ConstraintVT) {
1584    }
1585
1586    /// Copy constructor for copying from a ConstraintInfo.
1587    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1588      : InlineAsm::ConstraintInfo(info),
1589        ConstraintType(TargetLowering::C_Unknown),
1590        CallOperandVal(0), ConstraintVT(MVT::Other) {
1591    }
1592  };
1593
1594  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1595
1596  /// ParseConstraints - Split up the constraint string from the inline
1597  /// assembly value into the specific constraints and their prefixes,
1598  /// and also tie in the associated operand values.
1599  /// If this returns an empty vector, and if the constraint string itself
1600  /// isn't empty, there was an error parsing.
1601  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1602
1603  /// Examine constraint type and operand type and determine a weight value.
1604  /// The operand object must already have been set up with the operand type.
1605  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1606      AsmOperandInfo &info, int maIndex) const;
1607
1608  /// Examine constraint string and operand type and determine a weight value.
1609  /// The operand object must already have been set up with the operand type.
1610  virtual ConstraintWeight getSingleConstraintMatchWeight(
1611      AsmOperandInfo &info, const char *constraint) const;
1612
1613  /// ComputeConstraintToUse - Determines the constraint code and constraint
1614  /// type to use for the specific AsmOperandInfo, setting
1615  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1616  /// being passed in is available, it can be passed in as Op, otherwise an
1617  /// empty SDValue can be passed.
1618  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1619                                      SDValue Op,
1620                                      SelectionDAG *DAG = 0) const;
1621
1622  /// getConstraintType - Given a constraint, return the type of constraint it
1623  /// is for this target.
1624  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1625
1626  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1627  /// {edx}), return the register number and the register class for the
1628  /// register.
1629  ///
1630  /// Given a register class constraint, like 'r', if this corresponds directly
1631  /// to an LLVM register class, return a register of 0 and the register class
1632  /// pointer.
1633  ///
1634  /// This should only be used for C_Register constraints.  On error,
1635  /// this returns a register number of 0 and a null register class pointer..
1636  virtual std::pair<unsigned, const TargetRegisterClass*>
1637    getRegForInlineAsmConstraint(const std::string &Constraint,
1638                                 EVT VT) const;
1639
1640  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1641  /// with another that has more specific requirements based on the type of the
1642  /// corresponding operand.  This returns null if there is no replacement to
1643  /// make.
1644  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1645
1646  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1647  /// vector.  If it is invalid, don't add anything to Ops.
1648  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1649                                            std::vector<SDValue> &Ops,
1650                                            SelectionDAG &DAG) const;
1651
1652  //===--------------------------------------------------------------------===//
1653  // Instruction Emitting Hooks
1654  //
1655
1656  // EmitInstrWithCustomInserter - This method should be implemented by targets
1657  // that mark instructions with the 'usesCustomInserter' flag.  These
1658  // instructions are special in various ways, which require special support to
1659  // insert.  The specified MachineInstr is created but not inserted into any
1660  // basic blocks, and this method is called to expand it into a sequence of
1661  // instructions, potentially also creating new basic blocks and control flow.
1662  virtual MachineBasicBlock *
1663    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1664
1665  /// AdjustInstrPostInstrSelection - This method should be implemented by
1666  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1667  /// instructions must be adjusted after instruction selection by target hooks.
1668  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1669  virtual void
1670  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1671
1672  //===--------------------------------------------------------------------===//
1673  // Addressing mode description hooks (used by LSR etc).
1674  //
1675
1676  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1677  /// same BB as Load/Store instructions reading the address.  This allows as
1678  /// much computation as possible to be done in the address mode for that
1679  /// operand.  This hook lets targets also pass back when this should be done
1680  /// on intrinsics which load/store.
1681  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1682                                    SmallVectorImpl<Value*> &Ops,
1683                                    Type *&AccessTy) const {
1684    return false;
1685  }
1686
1687  /// isLegalAddressingMode - Return true if the addressing mode represented by
1688  /// AM is legal for this target, for a load/store of the specified type.
1689  /// The type may be VoidTy, in which case only return true if the addressing
1690  /// mode is legal for a load/store of any legal type.
1691  /// TODO: Handle pre/postinc as well.
1692  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1693
1694  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1695  /// icmp immediate, that is the target has icmp instructions which can compare
1696  /// a register against the immediate without having to materialize the
1697  /// immediate into a register.
1698  virtual bool isLegalICmpImmediate(int64_t) const {
1699    return true;
1700  }
1701
1702  /// isLegalAddImmediate - Return true if the specified immediate is legal
1703  /// add immediate, that is the target has add instructions which can add
1704  /// a register with the immediate without having to materialize the
1705  /// immediate into a register.
1706  virtual bool isLegalAddImmediate(int64_t) const {
1707    return true;
1708  }
1709
1710  /// isTruncateFree - Return true if it's free to truncate a value of
1711  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1712  /// register EAX to i16 by referencing its sub-register AX.
1713  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1714    return false;
1715  }
1716
1717  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1718    return false;
1719  }
1720
1721  /// isZExtFree - Return true if any actual instruction that defines a
1722  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1723  /// register. This does not necessarily include registers defined in
1724  /// unknown ways, such as incoming arguments, or copies from unknown
1725  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1726  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1727  /// all instructions that define 32-bit values implicit zero-extend the
1728  /// result out to 64 bits.
1729  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1730    return false;
1731  }
1732
1733  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1734    return false;
1735  }
1736
1737  /// isZExtFree - Return true if zero-extending the specific node Val to type
1738  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1739  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1740  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1741    return isZExtFree(Val.getValueType(), VT2);
1742  }
1743
1744  /// isFNegFree - Return true if an fneg operation is free to the point where
1745  /// it is never worthwhile to replace it with a bitwise operation.
1746  virtual bool isFNegFree(EVT) const {
1747    return false;
1748  }
1749
1750  /// isFAbsFree - Return true if an fneg operation is free to the point where
1751  /// it is never worthwhile to replace it with a bitwise operation.
1752  virtual bool isFAbsFree(EVT) const {
1753    return false;
1754  }
1755
1756  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1757  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1758  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1759  /// is expanded to mul + add.
1760  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1761    return false;
1762  }
1763
1764  /// isNarrowingProfitable - Return true if it's profitable to narrow
1765  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1766  /// from i32 to i8 but not from i32 to i16.
1767  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1768    return false;
1769  }
1770
1771  //===--------------------------------------------------------------------===//
1772  // Div utility functions
1773  //
1774  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1775                         SelectionDAG &DAG) const;
1776  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1777                      std::vector<SDNode*> *Created) const;
1778  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1779                      std::vector<SDNode*> *Created) const;
1780
1781
1782  //===--------------------------------------------------------------------===//
1783  // Runtime Library hooks
1784  //
1785
1786  /// setLibcallName - Rename the default libcall routine name for the specified
1787  /// libcall.
1788  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1789    LibcallRoutineNames[Call] = Name;
1790  }
1791
1792  /// getLibcallName - Get the libcall routine name for the specified libcall.
1793  ///
1794  const char *getLibcallName(RTLIB::Libcall Call) const {
1795    return LibcallRoutineNames[Call];
1796  }
1797
1798  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1799  /// result of the comparison libcall against zero.
1800  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1801    CmpLibcallCCs[Call] = CC;
1802  }
1803
1804  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1805  /// the comparison libcall against zero.
1806  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1807    return CmpLibcallCCs[Call];
1808  }
1809
1810  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1811  /// specified libcall.
1812  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1813    LibcallCallingConvs[Call] = CC;
1814  }
1815
1816  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1817  /// specified libcall.
1818  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1819    return LibcallCallingConvs[Call];
1820  }
1821
1822private:
1823  const TargetMachine &TM;
1824  const DataLayout *TD;
1825  const TargetLoweringObjectFile &TLOF;
1826
1827  /// PointerTy - The type to use for pointers for the default address space,
1828  /// usually i32 or i64.
1829  ///
1830  MVT PointerTy;
1831
1832  /// IsLittleEndian - True if this is a little endian target.
1833  ///
1834  bool IsLittleEndian;
1835
1836  /// SelectIsExpensive - Tells the code generator not to expand operations
1837  /// into sequences that use the select operations if possible.
1838  bool SelectIsExpensive;
1839
1840  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1841  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1842  /// a real cost model is in place.  If we ever optimize for size, this will be
1843  /// set to true unconditionally.
1844  bool IntDivIsCheap;
1845
1846  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1847  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1848  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1849  /// integer div/rem when the operands are positive and less than 256.
1850  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1851
1852  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1853  /// srl/add/sra for a signed divide by power of two, and let the target handle
1854  /// it.
1855  bool Pow2DivIsCheap;
1856
1857  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1858  /// extra flow control instructions and should attempt to combine flow
1859  /// control instructions via predication.
1860  bool JumpIsExpensive;
1861
1862  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1863  /// llvm.setjmp.  Defaults to false.
1864  bool UseUnderscoreSetJmp;
1865
1866  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1867  /// llvm.longjmp.  Defaults to false.
1868  bool UseUnderscoreLongJmp;
1869
1870  /// SupportJumpTables - Whether the target can generate code for jumptables.
1871  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1872  bool SupportJumpTables;
1873
1874  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1875  int MinimumJumpTableEntries;
1876
1877  /// BooleanContents - Information about the contents of the high-bits in
1878  /// boolean values held in a type wider than i1.  See getBooleanContents.
1879  BooleanContent BooleanContents;
1880  /// BooleanVectorContents - Information about the contents of the high-bits
1881  /// in boolean vector values when the element type is wider than i1.  See
1882  /// getBooleanContents.
1883  BooleanContent BooleanVectorContents;
1884
1885  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1886  /// total cycles or lowest register usage.
1887  Sched::Preference SchedPreferenceInfo;
1888
1889  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1890  unsigned JumpBufSize;
1891
1892  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1893  /// buffers
1894  unsigned JumpBufAlignment;
1895
1896  /// MinStackArgumentAlignment - The minimum alignment that any argument
1897  /// on the stack needs to have.
1898  ///
1899  unsigned MinStackArgumentAlignment;
1900
1901  /// MinFunctionAlignment - The minimum function alignment (used when
1902  /// optimizing for size, and to prevent explicitly provided alignment
1903  /// from leading to incorrect code).
1904  ///
1905  unsigned MinFunctionAlignment;
1906
1907  /// PrefFunctionAlignment - The preferred function alignment (used when
1908  /// alignment unspecified and optimizing for speed).
1909  ///
1910  unsigned PrefFunctionAlignment;
1911
1912  /// PrefLoopAlignment - The preferred loop alignment.
1913  ///
1914  unsigned PrefLoopAlignment;
1915
1916  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1917  /// be folded into the enclosed atomic intrinsic instruction by the
1918  /// combiner.
1919  bool ShouldFoldAtomicFences;
1920
1921  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1922  /// insert fences and reduce ordering for atomics.  (This will be set for
1923  /// for most architectures with weak memory ordering.)
1924  bool InsertFencesForAtomic;
1925
1926  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1927  /// specifies the register that llvm.savestack/llvm.restorestack should save
1928  /// and restore.
1929  unsigned StackPointerRegisterToSaveRestore;
1930
1931  /// ExceptionPointerRegister - If set to a physical register, this specifies
1932  /// the register that receives the exception address on entry to a landing
1933  /// pad.
1934  unsigned ExceptionPointerRegister;
1935
1936  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1937  /// the register that receives the exception typeid on entry to a landing
1938  /// pad.
1939  unsigned ExceptionSelectorRegister;
1940
1941  /// RegClassForVT - This indicates the default register class to use for
1942  /// each ValueType the target supports natively.
1943  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1944  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1945  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1946
1947  /// RepRegClassForVT - This indicates the "representative" register class to
1948  /// use for each ValueType the target supports natively. This information is
1949  /// used by the scheduler to track register pressure. By default, the
1950  /// representative register class is the largest legal super-reg register
1951  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1952  /// and i32's representative class would be GR32.
1953  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1954
1955  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1956  /// register class for each ValueType. The cost is used by the scheduler to
1957  /// approximate register pressure.
1958  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1959
1960  /// TransformToType - For any value types we are promoting or expanding, this
1961  /// contains the value type that we are changing to.  For Expanded types, this
1962  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1963  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1964  /// by the system, this holds the same type (e.g. i32 -> i32).
1965  MVT TransformToType[MVT::LAST_VALUETYPE];
1966
1967  /// OpActions - For each operation and each value type, keep a LegalizeAction
1968  /// that indicates how instruction selection should deal with the operation.
1969  /// Most operations are Legal (aka, supported natively by the target), but
1970  /// operations that are not should be described.  Note that operations on
1971  /// non-legal value types are not described here.
1972  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1973
1974  /// LoadExtActions - For each load extension type and each value type,
1975  /// keep a LegalizeAction that indicates how instruction selection should deal
1976  /// with a load of a specific value type and extension type.
1977  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1978
1979  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1980  /// indicates whether a truncating store of a specific value type and
1981  /// truncating type is legal.
1982  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1983
1984  /// IndexedModeActions - For each indexed mode and each value type,
1985  /// keep a pair of LegalizeAction that indicates how instruction
1986  /// selection should deal with the load / store.  The first dimension is the
1987  /// value_type for the reference. The second dimension represents the various
1988  /// modes for load store.
1989  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1990
1991  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1992  /// LegalizeAction that indicates how instruction selection should
1993  /// deal with the condition code.
1994  /// Because each CC action takes up 2 bits, we need to have the array size
1995  /// be large enough to fit all of the value types. This can be done by
1996  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1997  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1998
1999  ValueTypeActionImpl ValueTypeActions;
2000
2001public:
2002  LegalizeKind
2003  getTypeConversion(LLVMContext &Context, EVT VT) const {
2004    // If this is a simple type, use the ComputeRegisterProp mechanism.
2005    if (VT.isSimple()) {
2006      MVT SVT = VT.getSimpleVT();
2007      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
2008      MVT NVT = TransformToType[SVT.SimpleTy];
2009      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
2010
2011      assert(
2012        (LA == TypeLegal ||
2013         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
2014         && "Promote may not follow Expand or Promote");
2015
2016      if (LA == TypeSplitVector)
2017        return LegalizeKind(LA, EVT::getVectorVT(Context,
2018                                                 SVT.getVectorElementType(),
2019                                                 SVT.getVectorNumElements()/2));
2020      if (LA == TypeScalarizeVector)
2021        return LegalizeKind(LA, SVT.getVectorElementType());
2022      return LegalizeKind(LA, NVT);
2023    }
2024
2025    // Handle Extended Scalar Types.
2026    if (!VT.isVector()) {
2027      assert(VT.isInteger() && "Float types must be simple");
2028      unsigned BitSize = VT.getSizeInBits();
2029      // First promote to a power-of-two size, then expand if necessary.
2030      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
2031        EVT NVT = VT.getRoundIntegerType(Context);
2032        assert(NVT != VT && "Unable to round integer VT");
2033        LegalizeKind NextStep = getTypeConversion(Context, NVT);
2034        // Avoid multi-step promotion.
2035        if (NextStep.first == TypePromoteInteger) return NextStep;
2036        // Return rounded integer type.
2037        return LegalizeKind(TypePromoteInteger, NVT);
2038      }
2039
2040      return LegalizeKind(TypeExpandInteger,
2041                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2042    }
2043
2044    // Handle vector types.
2045    unsigned NumElts = VT.getVectorNumElements();
2046    EVT EltVT = VT.getVectorElementType();
2047
2048    // Vectors with only one element are always scalarized.
2049    if (NumElts == 1)
2050      return LegalizeKind(TypeScalarizeVector, EltVT);
2051
2052    // Try to widen vector elements until a legal type is found.
2053    if (EltVT.isInteger()) {
2054      // Vectors with a number of elements that is not a power of two are always
2055      // widened, for example <3 x float> -> <4 x float>.
2056      if (!VT.isPow2VectorType()) {
2057        NumElts = (unsigned)NextPowerOf2(NumElts);
2058        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2059        return LegalizeKind(TypeWidenVector, NVT);
2060      }
2061
2062      // Examine the element type.
2063      LegalizeKind LK = getTypeConversion(Context, EltVT);
2064
2065      // If type is to be expanded, split the vector.
2066      //  <4 x i140> -> <2 x i140>
2067      if (LK.first == TypeExpandInteger)
2068        return LegalizeKind(TypeSplitVector,
2069                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2070
2071      // Promote the integer element types until a legal vector type is found
2072      // or until the element integer type is too big. If a legal type was not
2073      // found, fallback to the usual mechanism of widening/splitting the
2074      // vector.
2075      while (1) {
2076        // Increase the bitwidth of the element to the next pow-of-two
2077        // (which is greater than 8 bits).
2078        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2079                                 ).getRoundIntegerType(Context);
2080
2081        // Stop trying when getting a non-simple element type.
2082        // Note that vector elements may be greater than legal vector element
2083        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2084        if (!EltVT.isSimple()) break;
2085
2086        // Build a new vector type and check if it is legal.
2087        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2088        // Found a legal promoted vector type.
2089        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2090          return LegalizeKind(TypePromoteInteger,
2091                              EVT::getVectorVT(Context, EltVT, NumElts));
2092      }
2093    }
2094
2095    // Try to widen the vector until a legal type is found.
2096    // If there is no wider legal type, split the vector.
2097    while (1) {
2098      // Round up to the next power of 2.
2099      NumElts = (unsigned)NextPowerOf2(NumElts);
2100
2101      // If there is no simple vector type with this many elements then there
2102      // cannot be a larger legal vector type.  Note that this assumes that
2103      // there are no skipped intermediate vector types in the simple types.
2104      if (!EltVT.isSimple()) break;
2105      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2106      if (LargerVector == MVT()) break;
2107
2108      // If this type is legal then widen the vector.
2109      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2110        return LegalizeKind(TypeWidenVector, LargerVector);
2111    }
2112
2113    // Widen odd vectors to next power of two.
2114    if (!VT.isPow2VectorType()) {
2115      EVT NVT = VT.getPow2VectorType(Context);
2116      return LegalizeKind(TypeWidenVector, NVT);
2117    }
2118
2119    // Vectors with illegal element types are expanded.
2120    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2121    return LegalizeKind(TypeSplitVector, NVT);
2122  }
2123
2124private:
2125  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
2126
2127  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2128  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2129  /// which sets a bit in this array.
2130  unsigned char
2131  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2132
2133  /// PromoteToType - For operations that must be promoted to a specific type,
2134  /// this holds the destination type.  This map should be sparse, so don't hold
2135  /// it as an array.
2136  ///
2137  /// Targets add entries to this map with AddPromotedToType(..), clients access
2138  /// this with getTypeToPromoteTo(..).
2139  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2140    PromoteToType;
2141
2142  /// LibcallRoutineNames - Stores the name each libcall.
2143  ///
2144  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2145
2146  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2147  /// of each of the comparison libcall against zero.
2148  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2149
2150  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2151  /// libcall.
2152  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2153
2154protected:
2155  /// When lowering \@llvm.memset this field specifies the maximum number of
2156  /// store operations that may be substituted for the call to memset. Targets
2157  /// must set this value based on the cost threshold for that target. Targets
2158  /// should assume that the memset will be done using as many of the largest
2159  /// store operations first, followed by smaller ones, if necessary, per
2160  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2161  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2162  /// store.  This only applies to setting a constant array of a constant size.
2163  /// @brief Specify maximum number of store instructions per memset call.
2164  unsigned maxStoresPerMemset;
2165
2166  /// Maximum number of stores operations that may be substituted for the call
2167  /// to memset, used for functions with OptSize attribute.
2168  unsigned maxStoresPerMemsetOptSize;
2169
2170  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2171  /// store operations that may be substituted for a call to memcpy. Targets
2172  /// must set this value based on the cost threshold for that target. Targets
2173  /// should assume that the memcpy will be done using as many of the largest
2174  /// store operations first, followed by smaller ones, if necessary, per
2175  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2176  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2177  /// and one 1-byte store. This only applies to copying a constant array of
2178  /// constant size.
2179  /// @brief Specify maximum bytes of store instructions per memcpy call.
2180  unsigned maxStoresPerMemcpy;
2181
2182  /// Maximum number of store operations that may be substituted for a call
2183  /// to memcpy, used for functions with OptSize attribute.
2184  unsigned maxStoresPerMemcpyOptSize;
2185
2186  /// When lowering \@llvm.memmove this field specifies the maximum number of
2187  /// store instructions that may be substituted for a call to memmove. Targets
2188  /// must set this value based on the cost threshold for that target. Targets
2189  /// should assume that the memmove will be done using as many of the largest
2190  /// store operations first, followed by smaller ones, if necessary, per
2191  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2192  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2193  /// applies to copying a constant array of constant size.
2194  /// @brief Specify maximum bytes of store instructions per memmove call.
2195  unsigned maxStoresPerMemmove;
2196
2197  /// Maximum number of store instructions that may be substituted for a call
2198  /// to memmove, used for functions with OpSize attribute.
2199  unsigned maxStoresPerMemmoveOptSize;
2200
2201  /// This field specifies whether the target can benefit from code placement
2202  /// optimization.
2203  bool benefitFromCodePlacementOpt;
2204
2205  /// predictableSelectIsExpensive - Tells the code generator that select is
2206  /// more expensive than a branch if the branch is usually predicted right.
2207  bool predictableSelectIsExpensive;
2208
2209private:
2210  /// isLegalRC - Return true if the value types that can be represented by the
2211  /// specified register class are all legal.
2212  bool isLegalRC(const TargetRegisterClass *RC) const;
2213};
2214
2215/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2216/// compute the return value EVTs and flags, and optionally also
2217/// the offsets, if the return value is being lowered to memory.
2218void GetReturnInfo(Type* ReturnType, Attribute attr,
2219                   SmallVectorImpl<ISD::OutputArg> &Outs,
2220                   const TargetLowering &TLI);
2221
2222} // end llvm namespace
2223
2224#endif
2225