TargetLowering.h revision 7042aa598dde44ef74eb3ba1ae729729e64c46cf
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71/// This base class for TargetLowering contains the SelectionDAG-independent
72/// parts that can be used from the rest of CodeGen.
73class TargetLoweringBase {
74  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
75  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
76
77public:
78  /// This enum indicates whether operations are valid for a target, and if not,
79  /// what action should be used to make them valid.
80  enum LegalizeAction {
81    Legal,      // The target natively supports this operation.
82    Promote,    // This operation should be executed in a larger type.
83    Expand,     // Try to expand this to other ops, otherwise use a libcall.
84    Custom      // Use the LowerOperation hook to implement custom lowering.
85  };
86
87  /// This enum indicates whether a types are legal for a target, and if not,
88  /// what action should be used to make them valid.
89  enum LegalizeTypeAction {
90    TypeLegal,           // The target natively supports this type.
91    TypePromoteInteger,  // Replace this integer with a larger one.
92    TypeExpandInteger,   // Split this integer into two of half the size.
93    TypeSoftenFloat,     // Convert this float to a same size integer type.
94    TypeExpandFloat,     // Split this float into two of half the size.
95    TypeScalarizeVector, // Replace this one-element vector with its element.
96    TypeSplitVector,     // Split this vector into two of half the size.
97    TypeWidenVector      // This vector should be widened into a larger vector.
98  };
99
100  /// LegalizeKind holds the legalization kind that needs to happen to EVT
101  /// in order to type-legalize it.
102  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
103
104  /// Enum that describes how the target represents true/false values.
105  enum BooleanContent {
106    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
107    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
108    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
109  };
110
111  /// Enum that describes what type of support for selects the target has.
112  enum SelectSupportKind {
113    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
114    ScalarCondVectorVal,  // The target supports selects with a scalar condition
115                          // and vector values (ex: cmov).
116    VectorMaskSelect      // The target supports vector selects with a vector
117                          // mask (ex: x86 blends).
118  };
119
120  static ISD::NodeType getExtendForContent(BooleanContent Content) {
121    switch (Content) {
122    case UndefinedBooleanContent:
123      // Extend by adding rubbish bits.
124      return ISD::ANY_EXTEND;
125    case ZeroOrOneBooleanContent:
126      // Extend by adding zero bits.
127      return ISD::ZERO_EXTEND;
128    case ZeroOrNegativeOneBooleanContent:
129      // Extend by copying the sign bit.
130      return ISD::SIGN_EXTEND;
131    }
132    llvm_unreachable("Invalid content kind");
133  }
134
135  /// NOTE: The constructor takes ownership of TLOF.
136  explicit TargetLoweringBase(const TargetMachine &TM,
137                              const TargetLoweringObjectFile *TLOF);
138  virtual ~TargetLoweringBase();
139
140protected:
141  /// \brief Initialize all of the actions to default values.
142  void initActions();
143
144public:
145  const TargetMachine &getTargetMachine() const { return TM; }
146  const DataLayout *getDataLayout() const { return TD; }
147  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
148
149  bool isBigEndian() const { return !IsLittleEndian; }
150  bool isLittleEndian() const { return IsLittleEndian; }
151  // Return the pointer type for the given address space, defaults to
152  // the pointer type from the data layout.
153  // FIXME: The default needs to be removed once all the code is updated.
154  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const { return PointerTy; }
155  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
156
157  EVT getShiftAmountTy(EVT LHSTy) const;
158
159  /// Return true if the select operation is expensive for this target.
160  bool isSelectExpensive() const { return SelectIsExpensive; }
161
162  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
163    return true;
164  }
165
166  /// Return true if a vector of the given type should be split
167  /// (TypeSplitVector) instead of promoted (TypePromoteInteger) during type
168  /// legalization.
169  virtual bool shouldSplitVectorElementType(EVT /*VT*/) const { return false; }
170
171  /// Return true if integer divide is usually cheaper than a sequence of
172  /// several shifts, adds, and multiplies for this target.
173  bool isIntDivCheap() const { return IntDivIsCheap; }
174
175  /// Returns true if target has indicated at least one type should be bypassed.
176  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
177
178  /// Returns map of slow types for division or remainder with corresponding
179  /// fast types
180  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
181    return BypassSlowDivWidths;
182  }
183
184  /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
185  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
186
187  /// Return true if Flow Control is an expensive operation that should be
188  /// avoided.
189  bool isJumpExpensive() const { return JumpIsExpensive; }
190
191  /// Return true if selects are only cheaper than branches if the branch is
192  /// unlikely to be predicted right.
193  bool isPredictableSelectExpensive() const {
194    return PredictableSelectIsExpensive;
195  }
196
197  /// Return the ValueType of the result of SETCC operations.  Also used to
198  /// obtain the target's preferred type for the condition operand of SELECT and
199  /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
200  /// since there are no other operands to get a type hint from.
201  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
202
203  /// Return the ValueType for comparison libcalls. Comparions libcalls include
204  /// floating point comparion calls, and Ordered/Unordered check calls on
205  /// floating point numbers.
206  virtual
207  MVT::SimpleValueType getCmpLibcallReturnType() const;
208
209  /// For targets without i1 registers, this gives the nature of the high-bits
210  /// of boolean values held in types wider than i1.
211  ///
212  /// "Boolean values" are special true/false values produced by nodes like
213  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
214  /// Not to be confused with general values promoted from i1.  Some cpus
215  /// distinguish between vectors of boolean and scalars; the isVec parameter
216  /// selects between the two kinds.  For example on X86 a scalar boolean should
217  /// be zero extended from i1, while the elements of a vector of booleans
218  /// should be sign extended from i1.
219  BooleanContent getBooleanContents(bool isVec) const {
220    return isVec ? BooleanVectorContents : BooleanContents;
221  }
222
223  /// Return target scheduling preference.
224  Sched::Preference getSchedulingPreference() const {
225    return SchedPreferenceInfo;
226  }
227
228  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
229  /// for different nodes. This function returns the preference (or none) for
230  /// the given node.
231  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
232    return Sched::None;
233  }
234
235  /// Return the register class that should be used for the specified value
236  /// type.
237  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
238    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
239    assert(RC && "This value type is not natively supported!");
240    return RC;
241  }
242
243  /// Return the 'representative' register class for the specified value
244  /// type.
245  ///
246  /// The 'representative' register class is the largest legal super-reg
247  /// register class for the register class of the value type.  For example, on
248  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
249  /// register class is GR64 on x86_64.
250  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
251    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
252    return RC;
253  }
254
255  /// Return the cost of the 'representative' register class for the specified
256  /// value type.
257  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
258    return RepRegClassCostForVT[VT.SimpleTy];
259  }
260
261  /// Return true if the target has native support for the specified value type.
262  /// This means that it has a register that directly holds it without
263  /// promotions or expansions.
264  bool isTypeLegal(EVT VT) const {
265    assert(!VT.isSimple() ||
266           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
267    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
268  }
269
270  class ValueTypeActionImpl {
271    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
272    /// that indicates how instruction selection should deal with the type.
273    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
274
275  public:
276    ValueTypeActionImpl() {
277      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
278    }
279
280    LegalizeTypeAction getTypeAction(MVT VT) const {
281      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
282    }
283
284    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
285      unsigned I = VT.SimpleTy;
286      ValueTypeActions[I] = Action;
287    }
288  };
289
290  const ValueTypeActionImpl &getValueTypeActions() const {
291    return ValueTypeActions;
292  }
293
294  /// Return how we should legalize values of this type, either it is already
295  /// legal (return 'Legal') or we need to promote it to a larger type (return
296  /// 'Promote'), or we need to expand it into multiple registers of smaller
297  /// integer type (return 'Expand').  'Custom' is not an option.
298  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
299    return getTypeConversion(Context, VT).first;
300  }
301  LegalizeTypeAction getTypeAction(MVT VT) const {
302    return ValueTypeActions.getTypeAction(VT);
303  }
304
305  /// For types supported by the target, this is an identity function.  For
306  /// types that must be promoted to larger types, this returns the larger type
307  /// to promote to.  For integer types that are larger than the largest integer
308  /// register, this contains one step in the expansion to get to the smaller
309  /// register. For illegal floating point types, this returns the integer type
310  /// to transform to.
311  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
312    return getTypeConversion(Context, VT).second;
313  }
314
315  /// For types supported by the target, this is an identity function.  For
316  /// types that must be expanded (i.e. integer types that are larger than the
317  /// largest integer register or illegal floating point types), this returns
318  /// the largest legal type it will be expanded to.
319  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
320    assert(!VT.isVector());
321    while (true) {
322      switch (getTypeAction(Context, VT)) {
323      case TypeLegal:
324        return VT;
325      case TypeExpandInteger:
326        VT = getTypeToTransformTo(Context, VT);
327        break;
328      default:
329        llvm_unreachable("Type is not legal nor is it to be expanded!");
330      }
331    }
332  }
333
334  /// Vector types are broken down into some number of legal first class types.
335  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
336  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
337  /// turns into 4 EVT::i32 values with both PPC and X86.
338  ///
339  /// This method returns the number of registers needed, and the VT for each
340  /// register.  It also returns the VT and quantity of the intermediate values
341  /// before they are promoted/expanded.
342  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
343                                  EVT &IntermediateVT,
344                                  unsigned &NumIntermediates,
345                                  MVT &RegisterVT) const;
346
347  struct IntrinsicInfo {
348    unsigned     opc;         // target opcode
349    EVT          memVT;       // memory VT
350    const Value* ptrVal;      // value representing memory location
351    int          offset;      // offset off of ptrVal
352    unsigned     align;       // alignment
353    bool         vol;         // is volatile?
354    bool         readMem;     // reads memory?
355    bool         writeMem;    // writes memory?
356  };
357
358  /// Given an intrinsic, checks if on the target the intrinsic will need to map
359  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
360  /// true and store the intrinsic information into the IntrinsicInfo that was
361  /// passed to the function.
362  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
363                                  unsigned /*Intrinsic*/) const {
364    return false;
365  }
366
367  /// Returns true if the target can instruction select the specified FP
368  /// immediate natively. If false, the legalizer will materialize the FP
369  /// immediate as a load from a constant pool.
370  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
371    return false;
372  }
373
374  /// Targets can use this to indicate that they only support *some*
375  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
376  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
377  /// legal.
378  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
379                                  EVT /*VT*/) const {
380    return true;
381  }
382
383  /// Returns true if the operation can trap for the value type.
384  ///
385  /// VT must be a legal type. By default, we optimistically assume most
386  /// operations don't trap except for divide and remainder.
387  virtual bool canOpTrap(unsigned Op, EVT VT) const;
388
389  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
390  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
391  /// a VAND with a constant pool entry.
392  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
393                                      EVT /*VT*/) const {
394    return false;
395  }
396
397  /// Return how this operation should be treated: either it is legal, needs to
398  /// be promoted to a larger size, needs to be expanded to some other code
399  /// sequence, or the target has a custom expander for it.
400  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
401    if (VT.isExtended()) return Expand;
402    // If a target-specific SDNode requires legalization, require the target
403    // to provide custom legalization for it.
404    if (Op > array_lengthof(OpActions[0])) return Custom;
405    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
406    return (LegalizeAction)OpActions[I][Op];
407  }
408
409  /// Return true if the specified operation is legal on this target or can be
410  /// made legal with custom lowering. This is used to help guide high-level
411  /// lowering decisions.
412  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
413    return (VT == MVT::Other || isTypeLegal(VT)) &&
414      (getOperationAction(Op, VT) == Legal ||
415       getOperationAction(Op, VT) == Custom);
416  }
417
418  /// Return true if the specified operation is legal on this target or can be
419  /// made legal using promotion. This is used to help guide high-level lowering
420  /// decisions.
421  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
422    return (VT == MVT::Other || isTypeLegal(VT)) &&
423      (getOperationAction(Op, VT) == Legal ||
424       getOperationAction(Op, VT) == Promote);
425  }
426
427  /// Return true if the specified operation is illegal on this target or
428  /// unlikely to be made legal with custom lowering. This is used to help guide
429  /// high-level lowering decisions.
430  bool isOperationExpand(unsigned Op, EVT VT) const {
431    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
432  }
433
434  /// Return true if the specified operation is legal on this target.
435  bool isOperationLegal(unsigned Op, EVT VT) const {
436    return (VT == MVT::Other || isTypeLegal(VT)) &&
437           getOperationAction(Op, VT) == Legal;
438  }
439
440  /// Return how this load with extension should be treated: either it is legal,
441  /// needs to be promoted to a larger size, needs to be expanded to some other
442  /// code sequence, or the target has a custom expander for it.
443  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
444    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
445           "Table isn't big enough!");
446    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
447  }
448
449  /// Return true if the specified load with extension is legal on this target.
450  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
451    return VT.isSimple() &&
452      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
453  }
454
455  /// Return how this store with truncation should be treated: either it is
456  /// legal, needs to be promoted to a larger size, needs to be expanded to some
457  /// other code sequence, or the target has a custom expander for it.
458  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
459    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
460           "Table isn't big enough!");
461    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
462                                            [MemVT.SimpleTy];
463  }
464
465  /// Return true if the specified store with truncation is legal on this
466  /// target.
467  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
468    return isTypeLegal(ValVT) && MemVT.isSimple() &&
469      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
470  }
471
472  /// Return how the indexed load should be treated: either it is legal, needs
473  /// to be promoted to a larger size, needs to be expanded to some other code
474  /// sequence, or the target has a custom expander for it.
475  LegalizeAction
476  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
477    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
478           "Table isn't big enough!");
479    unsigned Ty = (unsigned)VT.SimpleTy;
480    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
481  }
482
483  /// Return true if the specified indexed load is legal on this target.
484  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
485    return VT.isSimple() &&
486      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
487       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
488  }
489
490  /// Return how the indexed store should be treated: either it is legal, needs
491  /// to be promoted to a larger size, needs to be expanded to some other code
492  /// sequence, or the target has a custom expander for it.
493  LegalizeAction
494  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
495    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
496           "Table isn't big enough!");
497    unsigned Ty = (unsigned)VT.SimpleTy;
498    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
499  }
500
501  /// Return true if the specified indexed load is legal on this target.
502  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
503    return VT.isSimple() &&
504      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
505       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
506  }
507
508  /// Return how the condition code should be treated: either it is legal, needs
509  /// to be expanded to some other code sequence, or the target has a custom
510  /// expander for it.
511  LegalizeAction
512  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
513    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
514           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
515           "Table isn't big enough!");
516    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
517    /// value and the upper 27 bits index into the second dimension of the
518    /// array to select what 64bit value to use.
519    LegalizeAction Action = (LegalizeAction)
520      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
521    assert(Action != Promote && "Can't promote condition code!");
522    return Action;
523  }
524
525  /// Return true if the specified condition code is legal on this target.
526  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
527    return
528      getCondCodeAction(CC, VT) == Legal ||
529      getCondCodeAction(CC, VT) == Custom;
530  }
531
532
533  /// If the action for this operation is to promote, this method returns the
534  /// ValueType to promote to.
535  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
536    assert(getOperationAction(Op, VT) == Promote &&
537           "This operation isn't promoted!");
538
539    // See if this has an explicit type specified.
540    std::map<std::pair<unsigned, MVT::SimpleValueType>,
541             MVT::SimpleValueType>::const_iterator PTTI =
542      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
543    if (PTTI != PromoteToType.end()) return PTTI->second;
544
545    assert((VT.isInteger() || VT.isFloatingPoint()) &&
546           "Cannot autopromote this type, add it with AddPromotedToType.");
547
548    MVT NVT = VT;
549    do {
550      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
551      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
552             "Didn't find type to promote to!");
553    } while (!isTypeLegal(NVT) ||
554              getOperationAction(Op, NVT) == Promote);
555    return NVT;
556  }
557
558  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
559  /// operations except for the pointer size.  If AllowUnknown is true, this
560  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
561  /// otherwise it will assert.
562  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
563    // Lower scalar pointers to native pointer types.
564    if (Ty->isPointerTy()) return PointerTy;
565
566    if (Ty->isVectorTy()) {
567      VectorType *VTy = cast<VectorType>(Ty);
568      Type *Elm = VTy->getElementType();
569      // Lower vectors of pointers to native pointer types.
570      if (Elm->isPointerTy())
571        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
572      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
573                       VTy->getNumElements());
574    }
575    return EVT::getEVT(Ty, AllowUnknown);
576  }
577
578  /// Return the MVT corresponding to this LLVM type. See getValueType.
579  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
580    return getValueType(Ty, AllowUnknown).getSimpleVT();
581  }
582
583  /// Return the desired alignment for ByVal aggregate function arguments in the
584  /// caller parameter area.  This is the actual alignment, not its logarithm.
585  virtual unsigned getByValTypeAlignment(Type *Ty) const;
586
587  /// Return the type of registers that this ValueType will eventually require.
588  MVT getRegisterType(MVT VT) const {
589    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
590    return RegisterTypeForVT[VT.SimpleTy];
591  }
592
593  /// Return the type of registers that this ValueType will eventually require.
594  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
595    if (VT.isSimple()) {
596      assert((unsigned)VT.getSimpleVT().SimpleTy <
597                array_lengthof(RegisterTypeForVT));
598      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
599    }
600    if (VT.isVector()) {
601      EVT VT1;
602      MVT RegisterVT;
603      unsigned NumIntermediates;
604      (void)getVectorTypeBreakdown(Context, VT, VT1,
605                                   NumIntermediates, RegisterVT);
606      return RegisterVT;
607    }
608    if (VT.isInteger()) {
609      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
610    }
611    llvm_unreachable("Unsupported extended type!");
612  }
613
614  /// Return the number of registers that this ValueType will eventually
615  /// require.
616  ///
617  /// This is one for any types promoted to live in larger registers, but may be
618  /// more than one for types (like i64) that are split into pieces.  For types
619  /// like i140, which are first promoted then expanded, it is the number of
620  /// registers needed to hold all the bits of the original type.  For an i140
621  /// on a 32 bit machine this means 5 registers.
622  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
623    if (VT.isSimple()) {
624      assert((unsigned)VT.getSimpleVT().SimpleTy <
625                array_lengthof(NumRegistersForVT));
626      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
627    }
628    if (VT.isVector()) {
629      EVT VT1;
630      MVT VT2;
631      unsigned NumIntermediates;
632      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
633    }
634    if (VT.isInteger()) {
635      unsigned BitWidth = VT.getSizeInBits();
636      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
637      return (BitWidth + RegWidth - 1) / RegWidth;
638    }
639    llvm_unreachable("Unsupported extended type!");
640  }
641
642  /// If true, then instruction selection should seek to shrink the FP constant
643  /// of the specified type to a smaller type in order to save space and / or
644  /// reduce runtime.
645  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
646
647  /// If true, the target has custom DAG combine transformations that it can
648  /// perform for the specified node.
649  bool hasTargetDAGCombine(ISD::NodeType NT) const {
650    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
651    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
652  }
653
654  /// \brief Get maximum # of store operations permitted for llvm.memset
655  ///
656  /// This function returns the maximum number of store operations permitted
657  /// to replace a call to llvm.memset. The value is set by the target at the
658  /// performance threshold for such a replacement. If OptSize is true,
659  /// return the limit for functions that have OptSize attribute.
660  unsigned getMaxStoresPerMemset(bool OptSize) const {
661    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
662  }
663
664  /// \brief Get maximum # of store operations permitted for llvm.memcpy
665  ///
666  /// This function returns the maximum number of store operations permitted
667  /// to replace a call to llvm.memcpy. The value is set by the target at the
668  /// performance threshold for such a replacement. If OptSize is true,
669  /// return the limit for functions that have OptSize attribute.
670  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
671    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
672  }
673
674  /// \brief Get maximum # of store operations permitted for llvm.memmove
675  ///
676  /// This function returns the maximum number of store operations permitted
677  /// to replace a call to llvm.memmove. The value is set by the target at the
678  /// performance threshold for such a replacement. If OptSize is true,
679  /// return the limit for functions that have OptSize attribute.
680  unsigned getMaxStoresPerMemmove(bool OptSize) const {
681    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
682  }
683
684  /// \brief Determine if the target supports unaligned memory accesses.
685  ///
686  /// This function returns true if the target allows unaligned memory accesses.
687  /// of the specified type. If true, it also returns whether the unaligned
688  /// memory access is "fast" in the second argument by reference. This is used,
689  /// for example, in situations where an array copy/move/set is converted to a
690  /// sequence of store operations. It's use helps to ensure that such
691  /// replacements don't generate code that causes an alignment error (trap) on
692  /// the target machine.
693  virtual bool allowsUnalignedMemoryAccesses(EVT, bool * /*Fast*/ = 0) const {
694    return false;
695  }
696
697  /// Returns the target specific optimal type for load and store operations as
698  /// a result of memset, memcpy, and memmove lowering.
699  ///
700  /// If DstAlign is zero that means it's safe to destination alignment can
701  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
702  /// a need to check it against alignment requirement, probably because the
703  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
704  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
705  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
706  /// does not need to be loaded.  It returns EVT::Other if the type should be
707  /// determined using generic target-independent logic.
708  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
709                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
710                                  bool /*IsMemset*/,
711                                  bool /*ZeroMemset*/,
712                                  bool /*MemcpyStrSrc*/,
713                                  MachineFunction &/*MF*/) const {
714    return MVT::Other;
715  }
716
717  /// Returns true if it's safe to use load / store of the specified type to
718  /// expand memcpy / memset inline.
719  ///
720  /// This is mostly true for all types except for some special cases. For
721  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
722  /// fstpl which also does type conversion. Note the specified type doesn't
723  /// have to be legal as the hook is used before type legalization.
724  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
725
726  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
727  bool usesUnderscoreSetJmp() const {
728    return UseUnderscoreSetJmp;
729  }
730
731  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
732  bool usesUnderscoreLongJmp() const {
733    return UseUnderscoreLongJmp;
734  }
735
736  /// Return whether the target can generate code for jump tables.
737  bool supportJumpTables() const {
738    return SupportJumpTables;
739  }
740
741  /// Return integer threshold on number of blocks to use jump tables rather
742  /// than if sequence.
743  int getMinimumJumpTableEntries() const {
744    return MinimumJumpTableEntries;
745  }
746
747  /// If a physical register, this specifies the register that
748  /// llvm.savestack/llvm.restorestack should save and restore.
749  unsigned getStackPointerRegisterToSaveRestore() const {
750    return StackPointerRegisterToSaveRestore;
751  }
752
753  /// If a physical register, this returns the register that receives the
754  /// exception address on entry to a landing pad.
755  unsigned getExceptionPointerRegister() const {
756    return ExceptionPointerRegister;
757  }
758
759  /// If a physical register, this returns the register that receives the
760  /// exception typeid on entry to a landing pad.
761  unsigned getExceptionSelectorRegister() const {
762    return ExceptionSelectorRegister;
763  }
764
765  /// Returns the target's jmp_buf size in bytes (if never set, the default is
766  /// 200)
767  unsigned getJumpBufSize() const {
768    return JumpBufSize;
769  }
770
771  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
772  /// is 0)
773  unsigned getJumpBufAlignment() const {
774    return JumpBufAlignment;
775  }
776
777  /// Return the minimum stack alignment of an argument.
778  unsigned getMinStackArgumentAlignment() const {
779    return MinStackArgumentAlignment;
780  }
781
782  /// Return the minimum function alignment.
783  unsigned getMinFunctionAlignment() const {
784    return MinFunctionAlignment;
785  }
786
787  /// Return the preferred function alignment.
788  unsigned getPrefFunctionAlignment() const {
789    return PrefFunctionAlignment;
790  }
791
792  /// Return the preferred loop alignment.
793  unsigned getPrefLoopAlignment() const {
794    return PrefLoopAlignment;
795  }
796
797  /// Return whether the DAG builder should automatically insert fences and
798  /// reduce ordering for atomics.
799  bool getInsertFencesForAtomic() const {
800    return InsertFencesForAtomic;
801  }
802
803  /// Return true if the target stores stack protector cookies at a fixed offset
804  /// in some non-standard address space, and populates the address space and
805  /// offset as appropriate.
806  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
807                                      unsigned &/*Offset*/) const {
808    return false;
809  }
810
811  /// Returns the maximal possible offset which can be used for loads / stores
812  /// from the global.
813  virtual unsigned getMaximalGlobalOffset() const {
814    return 0;
815  }
816
817  //===--------------------------------------------------------------------===//
818  /// \name Helpers for TargetTransformInfo implementations
819  /// @{
820
821  /// Get the ISD node that corresponds to the Instruction class opcode.
822  int InstructionOpcodeToISD(unsigned Opcode) const;
823
824  /// Estimate the cost of type-legalization and the legalized type.
825  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
826
827  /// @}
828
829  //===--------------------------------------------------------------------===//
830  // TargetLowering Configuration Methods - These methods should be invoked by
831  // the derived class constructor to configure this object for the target.
832  //
833
834  /// \brief Reset the operation actions based on target options.
835  virtual void resetOperationActions() {}
836
837protected:
838  /// Specify how the target extends the result of a boolean value from i1 to a
839  /// wider type.  See getBooleanContents.
840  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
841
842  /// Specify how the target extends the result of a vector boolean value from a
843  /// vector of i1 to a wider type.  See getBooleanContents.
844  void setBooleanVectorContents(BooleanContent Ty) {
845    BooleanVectorContents = Ty;
846  }
847
848  /// Specify the target scheduling preference.
849  void setSchedulingPreference(Sched::Preference Pref) {
850    SchedPreferenceInfo = Pref;
851  }
852
853  /// Indicate whether this target prefers to use _setjmp to implement
854  /// llvm.setjmp or the non _ version.  Defaults to false.
855  void setUseUnderscoreSetJmp(bool Val) {
856    UseUnderscoreSetJmp = Val;
857  }
858
859  /// Indicate whether this target prefers to use _longjmp to implement
860  /// llvm.longjmp or the non _ version.  Defaults to false.
861  void setUseUnderscoreLongJmp(bool Val) {
862    UseUnderscoreLongJmp = Val;
863  }
864
865  /// Indicate whether the target can generate code for jump tables.
866  void setSupportJumpTables(bool Val) {
867    SupportJumpTables = Val;
868  }
869
870  /// Indicate the number of blocks to generate jump tables rather than if
871  /// sequence.
872  void setMinimumJumpTableEntries(int Val) {
873    MinimumJumpTableEntries = Val;
874  }
875
876  /// If set to a physical register, this specifies the register that
877  /// llvm.savestack/llvm.restorestack should save and restore.
878  void setStackPointerRegisterToSaveRestore(unsigned R) {
879    StackPointerRegisterToSaveRestore = R;
880  }
881
882  /// If set to a physical register, this sets the register that receives the
883  /// exception address on entry to a landing pad.
884  void setExceptionPointerRegister(unsigned R) {
885    ExceptionPointerRegister = R;
886  }
887
888  /// If set to a physical register, this sets the register that receives the
889  /// exception typeid on entry to a landing pad.
890  void setExceptionSelectorRegister(unsigned R) {
891    ExceptionSelectorRegister = R;
892  }
893
894  /// Tells the code generator not to expand operations into sequences that use
895  /// the select operations if possible.
896  void setSelectIsExpensive(bool isExpensive = true) {
897    SelectIsExpensive = isExpensive;
898  }
899
900  /// Tells the code generator not to expand sequence of operations into a
901  /// separate sequences that increases the amount of flow control.
902  void setJumpIsExpensive(bool isExpensive = true) {
903    JumpIsExpensive = isExpensive;
904  }
905
906  /// Tells the code generator that integer divide is expensive, and if
907  /// possible, should be replaced by an alternate sequence of instructions not
908  /// containing an integer divide.
909  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
910
911  /// Tells the code generator which bitwidths to bypass.
912  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
913    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
914  }
915
916  /// Tells the code generator that it shouldn't generate srl/add/sra for a
917  /// signed divide by power of two, and let the target handle it.
918  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
919
920  /// Add the specified register class as an available regclass for the
921  /// specified value type. This indicates the selector can handle values of
922  /// that class natively.
923  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
924    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
925    AvailableRegClasses.push_back(std::make_pair(VT, RC));
926    RegClassForVT[VT.SimpleTy] = RC;
927  }
928
929  /// Remove all register classes.
930  void clearRegisterClasses() {
931    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
932
933    AvailableRegClasses.clear();
934  }
935
936  /// \brief Remove all operation actions.
937  void clearOperationActions() {
938  }
939
940  /// Return the largest legal super-reg register class of the register class
941  /// for the specified type and its associated "cost".
942  virtual std::pair<const TargetRegisterClass*, uint8_t>
943  findRepresentativeClass(MVT VT) const;
944
945  /// Once all of the register classes are added, this allows us to compute
946  /// derived properties we expose.
947  void computeRegisterProperties();
948
949  /// Indicate that the specified operation does not work with the specified
950  /// type and indicate what to do about it.
951  void setOperationAction(unsigned Op, MVT VT,
952                          LegalizeAction Action) {
953    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
954    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
955  }
956
957  /// Indicate that the specified load with extension does not work with the
958  /// specified type and indicate what to do about it.
959  void setLoadExtAction(unsigned ExtType, MVT VT,
960                        LegalizeAction Action) {
961    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
962           "Table isn't big enough!");
963    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
964  }
965
966  /// Indicate that the specified truncating store does not work with the
967  /// specified type and indicate what to do about it.
968  void setTruncStoreAction(MVT ValVT, MVT MemVT,
969                           LegalizeAction Action) {
970    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
971           "Table isn't big enough!");
972    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
973  }
974
975  /// Indicate that the specified indexed load does or does not work with the
976  /// specified type and indicate what to do abort it.
977  ///
978  /// NOTE: All indexed mode loads are initialized to Expand in
979  /// TargetLowering.cpp
980  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
981                            LegalizeAction Action) {
982    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
983           (unsigned)Action < 0xf && "Table isn't big enough!");
984    // Load action are kept in the upper half.
985    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
986    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
987  }
988
989  /// Indicate that the specified indexed store does or does not work with the
990  /// specified type and indicate what to do about it.
991  ///
992  /// NOTE: All indexed mode stores are initialized to Expand in
993  /// TargetLowering.cpp
994  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
995                             LegalizeAction Action) {
996    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
997           (unsigned)Action < 0xf && "Table isn't big enough!");
998    // Store action are kept in the lower half.
999    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1000    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1001  }
1002
1003  /// Indicate that the specified condition code is or isn't supported on the
1004  /// target and indicate what to do about it.
1005  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1006                         LegalizeAction Action) {
1007    assert(VT < MVT::LAST_VALUETYPE &&
1008           (unsigned)CC < array_lengthof(CondCodeActions) &&
1009           "Table isn't big enough!");
1010    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1011    /// value and the upper 27 bits index into the second dimension of the
1012    /// array to select what 64bit value to use.
1013    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1014      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1015    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1016      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1017  }
1018
1019  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1020  /// to trying a larger integer/fp until it can find one that works. If that
1021  /// default is insufficient, this method can be used by the target to override
1022  /// the default.
1023  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1024    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1025  }
1026
1027  /// Targets should invoke this method for each target independent node that
1028  /// they want to provide a custom DAG combiner for by implementing the
1029  /// PerformDAGCombine virtual method.
1030  void setTargetDAGCombine(ISD::NodeType NT) {
1031    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1032    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1033  }
1034
1035  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1036  void setJumpBufSize(unsigned Size) {
1037    JumpBufSize = Size;
1038  }
1039
1040  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1041  /// 0
1042  void setJumpBufAlignment(unsigned Align) {
1043    JumpBufAlignment = Align;
1044  }
1045
1046  /// Set the target's minimum function alignment (in log2(bytes))
1047  void setMinFunctionAlignment(unsigned Align) {
1048    MinFunctionAlignment = Align;
1049  }
1050
1051  /// Set the target's preferred function alignment.  This should be set if
1052  /// there is a performance benefit to higher-than-minimum alignment (in
1053  /// log2(bytes))
1054  void setPrefFunctionAlignment(unsigned Align) {
1055    PrefFunctionAlignment = Align;
1056  }
1057
1058  /// Set the target's preferred loop alignment. Default alignment is zero, it
1059  /// means the target does not care about loop alignment.  The alignment is
1060  /// specified in log2(bytes).
1061  void setPrefLoopAlignment(unsigned Align) {
1062    PrefLoopAlignment = Align;
1063  }
1064
1065  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1066  void setMinStackArgumentAlignment(unsigned Align) {
1067    MinStackArgumentAlignment = Align;
1068  }
1069
1070  /// Set if the DAG builder should automatically insert fences and reduce the
1071  /// order of atomic memory operations to Monotonic.
1072  void setInsertFencesForAtomic(bool fence) {
1073    InsertFencesForAtomic = fence;
1074  }
1075
1076public:
1077  //===--------------------------------------------------------------------===//
1078  // Addressing mode description hooks (used by LSR etc).
1079  //
1080
1081  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1082  /// instructions reading the address. This allows as much computation as
1083  /// possible to be done in the address mode for that operand. This hook lets
1084  /// targets also pass back when this should be done on intrinsics which
1085  /// load/store.
1086  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1087                                    SmallVectorImpl<Value*> &/*Ops*/,
1088                                    Type *&/*AccessTy*/) const {
1089    return false;
1090  }
1091
1092  /// This represents an addressing mode of:
1093  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1094  /// If BaseGV is null,  there is no BaseGV.
1095  /// If BaseOffs is zero, there is no base offset.
1096  /// If HasBaseReg is false, there is no base register.
1097  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1098  /// no scale.
1099  struct AddrMode {
1100    GlobalValue *BaseGV;
1101    int64_t      BaseOffs;
1102    bool         HasBaseReg;
1103    int64_t      Scale;
1104    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1105  };
1106
1107  /// Return true if the addressing mode represented by AM is legal for this
1108  /// target, for a load/store of the specified type.
1109  ///
1110  /// The type may be VoidTy, in which case only return true if the addressing
1111  /// mode is legal for a load/store of any legal type.  TODO: Handle
1112  /// pre/postinc as well.
1113  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1114
1115  /// \brief Return the cost of the scaling factor used in the addressing mode
1116  /// represented by AM for this target, for a load/store of the specified type.
1117  ///
1118  /// If the AM is supported, the return value must be >= 0.
1119  /// If the AM is not supported, it returns a negative value.
1120  /// TODO: Handle pre/postinc as well.
1121  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1122    // Default: assume that any scaling factor used in a legal AM is free.
1123    if (isLegalAddressingMode(AM, Ty)) return 0;
1124    return -1;
1125  }
1126
1127  /// Return true if the specified immediate is legal icmp immediate, that is
1128  /// the target has icmp instructions which can compare a register against the
1129  /// immediate without having to materialize the immediate into a register.
1130  virtual bool isLegalICmpImmediate(int64_t) const {
1131    return true;
1132  }
1133
1134  /// Return true if the specified immediate is legal add immediate, that is the
1135  /// target has add instructions which can add a register with the immediate
1136  /// without having to materialize the immediate into a register.
1137  virtual bool isLegalAddImmediate(int64_t) const {
1138    return true;
1139  }
1140
1141  /// Return true if it's free to truncate a value of type Ty1 to type
1142  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1143  /// by referencing its sub-register AX.
1144  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1145    return false;
1146  }
1147
1148  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1149    return false;
1150  }
1151
1152  /// Return true if any actual instruction that defines a value of type Ty1
1153  /// implicitly zero-extends the value to Ty2 in the result register.
1154  ///
1155  /// This does not necessarily include registers defined in unknown ways, such
1156  /// as incoming arguments, or copies from unknown virtual registers. Also, if
1157  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1158  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1159  /// values implicit zero-extend the result out to 64 bits.
1160  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1161    return false;
1162  }
1163
1164  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1165    return false;
1166  }
1167
1168  /// Return true if zero-extending the specific node Val to type VT2 is free
1169  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1170  /// because it's folded such as X86 zero-extending loads).
1171  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1172    return isZExtFree(Val.getValueType(), VT2);
1173  }
1174
1175  /// Return true if an fneg operation is free to the point where it is never
1176  /// worthwhile to replace it with a bitwise operation.
1177  virtual bool isFNegFree(EVT) const {
1178    return false;
1179  }
1180
1181  /// Return true if an fneg operation is free to the point where it is never
1182  /// worthwhile to replace it with a bitwise operation.
1183  virtual bool isFAbsFree(EVT) const {
1184    return false;
1185  }
1186
1187  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1188  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1189  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1190  ///
1191  /// NOTE: This may be called before legalization on types for which FMAs are
1192  /// not legal, but should return true if those types will eventually legalize
1193  /// to types that support FMAs. After legalization, it will only be called on
1194  /// types that support FMAs (via Legal or Custom actions)
1195  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1196    return false;
1197  }
1198
1199  /// Return true if it's profitable to narrow operations of type VT1 to
1200  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1201  /// i32 to i16.
1202  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1203    return false;
1204  }
1205
1206  //===--------------------------------------------------------------------===//
1207  // Runtime Library hooks
1208  //
1209
1210  /// Rename the default libcall routine name for the specified libcall.
1211  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1212    LibcallRoutineNames[Call] = Name;
1213  }
1214
1215  /// Get the libcall routine name for the specified libcall.
1216  const char *getLibcallName(RTLIB::Libcall Call) const {
1217    return LibcallRoutineNames[Call];
1218  }
1219
1220  /// Override the default CondCode to be used to test the result of the
1221  /// comparison libcall against zero.
1222  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1223    CmpLibcallCCs[Call] = CC;
1224  }
1225
1226  /// Get the CondCode that's to be used to test the result of the comparison
1227  /// libcall against zero.
1228  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1229    return CmpLibcallCCs[Call];
1230  }
1231
1232  /// Set the CallingConv that should be used for the specified libcall.
1233  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1234    LibcallCallingConvs[Call] = CC;
1235  }
1236
1237  /// Get the CallingConv that should be used for the specified libcall.
1238  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1239    return LibcallCallingConvs[Call];
1240  }
1241
1242private:
1243  const TargetMachine &TM;
1244  const DataLayout *TD;
1245  const TargetLoweringObjectFile &TLOF;
1246
1247  /// The type to use for pointers for the default address space, usually i32 or
1248  /// i64.
1249  MVT PointerTy;
1250
1251  /// True if this is a little endian target.
1252  bool IsLittleEndian;
1253
1254  /// Tells the code generator not to expand operations into sequences that use
1255  /// the select operations if possible.
1256  bool SelectIsExpensive;
1257
1258  /// Tells the code generator not to expand integer divides by constants into a
1259  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1260  /// model is in place.  If we ever optimize for size, this will be set to true
1261  /// unconditionally.
1262  bool IntDivIsCheap;
1263
1264  /// Tells the code generator to bypass slow divide or remainder
1265  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1266  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1267  /// div/rem when the operands are positive and less than 256.
1268  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1269
1270  /// Tells the code generator that it shouldn't generate srl/add/sra for a
1271  /// signed divide by power of two, and let the target handle it.
1272  bool Pow2DivIsCheap;
1273
1274  /// Tells the code generator that it shouldn't generate extra flow control
1275  /// instructions and should attempt to combine flow control instructions via
1276  /// predication.
1277  bool JumpIsExpensive;
1278
1279  /// This target prefers to use _setjmp to implement llvm.setjmp.
1280  ///
1281  /// Defaults to false.
1282  bool UseUnderscoreSetJmp;
1283
1284  /// This target prefers to use _longjmp to implement llvm.longjmp.
1285  ///
1286  /// Defaults to false.
1287  bool UseUnderscoreLongJmp;
1288
1289  /// Whether the target can generate code for jumptables.  If it's not true,
1290  /// then each jumptable must be lowered into if-then-else's.
1291  bool SupportJumpTables;
1292
1293  /// Number of blocks threshold to use jump tables.
1294  int MinimumJumpTableEntries;
1295
1296  /// Information about the contents of the high-bits in boolean values held in
1297  /// a type wider than i1. See getBooleanContents.
1298  BooleanContent BooleanContents;
1299
1300  /// Information about the contents of the high-bits in boolean vector values
1301  /// when the element type is wider than i1. See getBooleanContents.
1302  BooleanContent BooleanVectorContents;
1303
1304  /// The target scheduling preference: shortest possible total cycles or lowest
1305  /// register usage.
1306  Sched::Preference SchedPreferenceInfo;
1307
1308  /// The size, in bytes, of the target's jmp_buf buffers
1309  unsigned JumpBufSize;
1310
1311  /// The alignment, in bytes, of the target's jmp_buf buffers
1312  unsigned JumpBufAlignment;
1313
1314  /// The minimum alignment that any argument on the stack needs to have.
1315  unsigned MinStackArgumentAlignment;
1316
1317  /// The minimum function alignment (used when optimizing for size, and to
1318  /// prevent explicitly provided alignment from leading to incorrect code).
1319  unsigned MinFunctionAlignment;
1320
1321  /// The preferred function alignment (used when alignment unspecified and
1322  /// optimizing for speed).
1323  unsigned PrefFunctionAlignment;
1324
1325  /// The preferred loop alignment.
1326  unsigned PrefLoopAlignment;
1327
1328  /// Whether the DAG builder should automatically insert fences and reduce
1329  /// ordering for atomics.  (This will be set for for most architectures with
1330  /// weak memory ordering.)
1331  bool InsertFencesForAtomic;
1332
1333  /// If set to a physical register, this specifies the register that
1334  /// llvm.savestack/llvm.restorestack should save and restore.
1335  unsigned StackPointerRegisterToSaveRestore;
1336
1337  /// If set to a physical register, this specifies the register that receives
1338  /// the exception address on entry to a landing pad.
1339  unsigned ExceptionPointerRegister;
1340
1341  /// If set to a physical register, this specifies the register that receives
1342  /// the exception typeid on entry to a landing pad.
1343  unsigned ExceptionSelectorRegister;
1344
1345  /// This indicates the default register class to use for each ValueType the
1346  /// target supports natively.
1347  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1348  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1349  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1350
1351  /// This indicates the "representative" register class to use for each
1352  /// ValueType the target supports natively. This information is used by the
1353  /// scheduler to track register pressure. By default, the representative
1354  /// register class is the largest legal super-reg register class of the
1355  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1356  /// representative class would be GR32.
1357  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1358
1359  /// This indicates the "cost" of the "representative" register class for each
1360  /// ValueType. The cost is used by the scheduler to approximate register
1361  /// pressure.
1362  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1363
1364  /// For any value types we are promoting or expanding, this contains the value
1365  /// type that we are changing to.  For Expanded types, this contains one step
1366  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1367  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1368  /// the same type (e.g. i32 -> i32).
1369  MVT TransformToType[MVT::LAST_VALUETYPE];
1370
1371  /// For each operation and each value type, keep a LegalizeAction that
1372  /// indicates how instruction selection should deal with the operation.  Most
1373  /// operations are Legal (aka, supported natively by the target), but
1374  /// operations that are not should be described.  Note that operations on
1375  /// non-legal value types are not described here.
1376  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1377
1378  /// For each load extension type and each value type, keep a LegalizeAction
1379  /// that indicates how instruction selection should deal with a load of a
1380  /// specific value type and extension type.
1381  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1382
1383  /// For each value type pair keep a LegalizeAction that indicates whether a
1384  /// truncating store of a specific value type and truncating type is legal.
1385  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1386
1387  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1388  /// that indicates how instruction selection should deal with the load /
1389  /// store.
1390  ///
1391  /// The first dimension is the value_type for the reference. The second
1392  /// dimension represents the various modes for load store.
1393  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1394
1395  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1396  /// indicates how instruction selection should deal with the condition code.
1397  ///
1398  /// Because each CC action takes up 2 bits, we need to have the array size be
1399  /// large enough to fit all of the value types. This can be done by dividing
1400  /// the MVT::LAST_VALUETYPE by 32 and adding one.
1401  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1402
1403  ValueTypeActionImpl ValueTypeActions;
1404
1405public:
1406  LegalizeKind
1407  getTypeConversion(LLVMContext &Context, EVT VT) const {
1408    // If this is a simple type, use the ComputeRegisterProp mechanism.
1409    if (VT.isSimple()) {
1410      MVT SVT = VT.getSimpleVT();
1411      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1412      MVT NVT = TransformToType[SVT.SimpleTy];
1413      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1414
1415      assert(
1416        (LA == TypeLegal ||
1417         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1418         && "Promote may not follow Expand or Promote");
1419
1420      if (LA == TypeSplitVector)
1421        return LegalizeKind(LA, EVT::getVectorVT(Context,
1422                                                 SVT.getVectorElementType(),
1423                                                 SVT.getVectorNumElements()/2));
1424      if (LA == TypeScalarizeVector)
1425        return LegalizeKind(LA, SVT.getVectorElementType());
1426      return LegalizeKind(LA, NVT);
1427    }
1428
1429    // Handle Extended Scalar Types.
1430    if (!VT.isVector()) {
1431      assert(VT.isInteger() && "Float types must be simple");
1432      unsigned BitSize = VT.getSizeInBits();
1433      // First promote to a power-of-two size, then expand if necessary.
1434      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1435        EVT NVT = VT.getRoundIntegerType(Context);
1436        assert(NVT != VT && "Unable to round integer VT");
1437        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1438        // Avoid multi-step promotion.
1439        if (NextStep.first == TypePromoteInteger) return NextStep;
1440        // Return rounded integer type.
1441        return LegalizeKind(TypePromoteInteger, NVT);
1442      }
1443
1444      return LegalizeKind(TypeExpandInteger,
1445                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1446    }
1447
1448    // Handle vector types.
1449    unsigned NumElts = VT.getVectorNumElements();
1450    EVT EltVT = VT.getVectorElementType();
1451
1452    // Vectors with only one element are always scalarized.
1453    if (NumElts == 1)
1454      return LegalizeKind(TypeScalarizeVector, EltVT);
1455
1456    // Try to widen vector elements until a legal type is found.
1457    if (EltVT.isInteger()) {
1458      // Vectors with a number of elements that is not a power of two are always
1459      // widened, for example <3 x float> -> <4 x float>.
1460      if (!VT.isPow2VectorType()) {
1461        NumElts = (unsigned)NextPowerOf2(NumElts);
1462        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1463        return LegalizeKind(TypeWidenVector, NVT);
1464      }
1465
1466      // Examine the element type.
1467      LegalizeKind LK = getTypeConversion(Context, EltVT);
1468
1469      // If type is to be expanded, split the vector.
1470      //  <4 x i140> -> <2 x i140>
1471      if (LK.first == TypeExpandInteger)
1472        return LegalizeKind(TypeSplitVector,
1473                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1474
1475      // Promote the integer element types until a legal vector type is found
1476      // or until the element integer type is too big. If a legal type was not
1477      // found, fallback to the usual mechanism of widening/splitting the
1478      // vector.
1479      EVT OldEltVT = EltVT;
1480      while (1) {
1481        // Increase the bitwidth of the element to the next pow-of-two
1482        // (which is greater than 8 bits).
1483        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1484                                 ).getRoundIntegerType(Context);
1485
1486        // Stop trying when getting a non-simple element type.
1487        // Note that vector elements may be greater than legal vector element
1488        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1489        if (!EltVT.isSimple()) break;
1490
1491        // Build a new vector type and check if it is legal.
1492        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1493        // Found a legal promoted vector type.
1494        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1495          return LegalizeKind(TypePromoteInteger,
1496                              EVT::getVectorVT(Context, EltVT, NumElts));
1497      }
1498
1499      // Reset the type to the unexpanded type if we did not find a legal vector
1500      // type with a promoted vector element type.
1501      EltVT = OldEltVT;
1502    }
1503
1504    // Try to widen the vector until a legal type is found.
1505    // If there is no wider legal type, split the vector.
1506    while (1) {
1507      // Round up to the next power of 2.
1508      NumElts = (unsigned)NextPowerOf2(NumElts);
1509
1510      // If there is no simple vector type with this many elements then there
1511      // cannot be a larger legal vector type.  Note that this assumes that
1512      // there are no skipped intermediate vector types in the simple types.
1513      if (!EltVT.isSimple()) break;
1514      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1515      if (LargerVector == MVT()) break;
1516
1517      // If this type is legal then widen the vector.
1518      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1519        return LegalizeKind(TypeWidenVector, LargerVector);
1520    }
1521
1522    // Widen odd vectors to next power of two.
1523    if (!VT.isPow2VectorType()) {
1524      EVT NVT = VT.getPow2VectorType(Context);
1525      return LegalizeKind(TypeWidenVector, NVT);
1526    }
1527
1528    // Vectors with illegal element types are expanded.
1529    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1530    return LegalizeKind(TypeSplitVector, NVT);
1531  }
1532
1533private:
1534  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1535
1536  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1537  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1538  /// array.
1539  unsigned char
1540  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1541
1542  /// For operations that must be promoted to a specific type, this holds the
1543  /// destination type.  This map should be sparse, so don't hold it as an
1544  /// array.
1545  ///
1546  /// Targets add entries to this map with AddPromotedToType(..), clients access
1547  /// this with getTypeToPromoteTo(..).
1548  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1549    PromoteToType;
1550
1551  /// Stores the name each libcall.
1552  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1553
1554  /// The ISD::CondCode that should be used to test the result of each of the
1555  /// comparison libcall against zero.
1556  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1557
1558  /// Stores the CallingConv that should be used for each libcall.
1559  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1560
1561protected:
1562  /// \brief Specify maximum number of store instructions per memset call.
1563  ///
1564  /// When lowering \@llvm.memset this field specifies the maximum number of
1565  /// store operations that may be substituted for the call to memset. Targets
1566  /// must set this value based on the cost threshold for that target. Targets
1567  /// should assume that the memset will be done using as many of the largest
1568  /// store operations first, followed by smaller ones, if necessary, per
1569  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1570  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1571  /// store.  This only applies to setting a constant array of a constant size.
1572  unsigned MaxStoresPerMemset;
1573
1574  /// Maximum number of stores operations that may be substituted for the call
1575  /// to memset, used for functions with OptSize attribute.
1576  unsigned MaxStoresPerMemsetOptSize;
1577
1578  /// \brief Specify maximum bytes of store instructions per memcpy call.
1579  ///
1580  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1581  /// store operations that may be substituted for a call to memcpy. Targets
1582  /// must set this value based on the cost threshold for that target. Targets
1583  /// should assume that the memcpy will be done using as many of the largest
1584  /// store operations first, followed by smaller ones, if necessary, per
1585  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1586  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1587  /// and one 1-byte store. This only applies to copying a constant array of
1588  /// constant size.
1589  unsigned MaxStoresPerMemcpy;
1590
1591  /// Maximum number of store operations that may be substituted for a call to
1592  /// memcpy, used for functions with OptSize attribute.
1593  unsigned MaxStoresPerMemcpyOptSize;
1594
1595  /// \brief Specify maximum bytes of store instructions per memmove call.
1596  ///
1597  /// When lowering \@llvm.memmove this field specifies the maximum number of
1598  /// store instructions that may be substituted for a call to memmove. Targets
1599  /// must set this value based on the cost threshold for that target. Targets
1600  /// should assume that the memmove will be done using as many of the largest
1601  /// store operations first, followed by smaller ones, if necessary, per
1602  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1603  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1604  /// applies to copying a constant array of constant size.
1605  unsigned MaxStoresPerMemmove;
1606
1607  /// Maximum number of store instructions that may be substituted for a call to
1608  /// memmove, used for functions with OpSize attribute.
1609  unsigned MaxStoresPerMemmoveOptSize;
1610
1611  /// Tells the code generator that select is more expensive than a branch if
1612  /// the branch is usually predicted right.
1613  bool PredictableSelectIsExpensive;
1614
1615protected:
1616  /// Return true if the value types that can be represented by the specified
1617  /// register class are all legal.
1618  bool isLegalRC(const TargetRegisterClass *RC) const;
1619};
1620
1621/// This class defines information used to lower LLVM code to legal SelectionDAG
1622/// operators that the target instruction selector can accept natively.
1623///
1624/// This class also defines callbacks that targets must implement to lower
1625/// target-specific constructs to SelectionDAG operators.
1626class TargetLowering : public TargetLoweringBase {
1627  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1628  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1629
1630public:
1631  /// NOTE: The constructor takes ownership of TLOF.
1632  explicit TargetLowering(const TargetMachine &TM,
1633                          const TargetLoweringObjectFile *TLOF);
1634
1635  /// Returns true by value, base pointer and offset pointer and addressing mode
1636  /// by reference if the node's address can be legally represented as
1637  /// pre-indexed load / store address.
1638  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1639                                         SDValue &/*Offset*/,
1640                                         ISD::MemIndexedMode &/*AM*/,
1641                                         SelectionDAG &/*DAG*/) const {
1642    return false;
1643  }
1644
1645  /// Returns true by value, base pointer and offset pointer and addressing mode
1646  /// by reference if this node can be combined with a load / store to form a
1647  /// post-indexed load / store.
1648  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1649                                          SDValue &/*Base*/, SDValue &/*Offset*/,
1650                                          ISD::MemIndexedMode &/*AM*/,
1651                                          SelectionDAG &/*DAG*/) const {
1652    return false;
1653  }
1654
1655  /// Return the entry encoding for a jump table in the current function.  The
1656  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
1657  virtual unsigned getJumpTableEncoding() const;
1658
1659  virtual const MCExpr *
1660  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1661                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1662                            MCContext &/*Ctx*/) const {
1663    llvm_unreachable("Need to implement this hook if target has custom JTIs");
1664  }
1665
1666  /// Returns relocation base for the given PIC jumptable.
1667  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1668                                           SelectionDAG &DAG) const;
1669
1670  /// This returns the relocation base for the given PIC jumptable, the same as
1671  /// getPICJumpTableRelocBase, but as an MCExpr.
1672  virtual const MCExpr *
1673  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1674                               unsigned JTI, MCContext &Ctx) const;
1675
1676  /// Return true if folding a constant offset with the given GlobalAddress is
1677  /// legal.  It is frequently not legal in PIC relocation models.
1678  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1679
1680  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1681                            SDValue &Chain) const;
1682
1683  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1684                           SDValue &NewLHS, SDValue &NewRHS,
1685                           ISD::CondCode &CCCode, SDLoc DL) const;
1686
1687  SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
1688                      const SDValue *Ops, unsigned NumOps,
1689                      bool isSigned, SDLoc dl) const;
1690
1691  //===--------------------------------------------------------------------===//
1692  // TargetLowering Optimization Methods
1693  //
1694
1695  /// A convenience struct that encapsulates a DAG, and two SDValues for
1696  /// returning information from TargetLowering to its clients that want to
1697  /// combine.
1698  struct TargetLoweringOpt {
1699    SelectionDAG &DAG;
1700    bool LegalTys;
1701    bool LegalOps;
1702    SDValue Old;
1703    SDValue New;
1704
1705    explicit TargetLoweringOpt(SelectionDAG &InDAG,
1706                               bool LT, bool LO) :
1707      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1708
1709    bool LegalTypes() const { return LegalTys; }
1710    bool LegalOperations() const { return LegalOps; }
1711
1712    bool CombineTo(SDValue O, SDValue N) {
1713      Old = O;
1714      New = N;
1715      return true;
1716    }
1717
1718    /// Check to see if the specified operand of the specified instruction is a
1719    /// constant integer.  If so, check to see if there are any bits set in the
1720    /// constant that are not demanded.  If so, shrink the constant and return
1721    /// true.
1722    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1723
1724    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
1725    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
1726    /// generalized for targets with other types of implicit widening casts.
1727    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1728                          SDLoc dl);
1729  };
1730
1731  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
1732  /// result of Op are ever used downstream.  If we can use this information to
1733  /// simplify Op, create a new simplified DAG node and return true, returning
1734  /// the original and new nodes in Old and New.  Otherwise, analyze the
1735  /// expression and return a mask of KnownOne and KnownZero bits for the
1736  /// expression (used to simplify the caller).  The KnownZero/One bits may only
1737  /// be accurate for those bits in the DemandedMask.
1738  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1739                            APInt &KnownZero, APInt &KnownOne,
1740                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1741
1742  /// Determine which of the bits specified in Mask are known to be either zero
1743  /// or one and return them in the KnownZero/KnownOne bitsets.
1744  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
1745                                              APInt &KnownZero,
1746                                              APInt &KnownOne,
1747                                              const SelectionDAG &DAG,
1748                                              unsigned Depth = 0) const;
1749
1750  /// This method can be implemented by targets that want to expose additional
1751  /// information about sign bits to the DAG Combiner.
1752  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1753                                                   unsigned Depth = 0) const;
1754
1755  struct DAGCombinerInfo {
1756    void *DC;  // The DAG Combiner object.
1757    CombineLevel Level;
1758    bool CalledByLegalizer;
1759  public:
1760    SelectionDAG &DAG;
1761
1762    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
1763      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
1764
1765    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
1766    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
1767    bool isAfterLegalizeVectorOps() const {
1768      return Level == AfterLegalizeDAG;
1769    }
1770    CombineLevel getDAGCombineLevel() { return Level; }
1771    bool isCalledByLegalizer() const { return CalledByLegalizer; }
1772
1773    void AddToWorklist(SDNode *N);
1774    void RemoveFromWorklist(SDNode *N);
1775    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
1776                      bool AddTo = true);
1777    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
1778    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1779
1780    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1781  };
1782
1783  /// Try to simplify a setcc built with the specified operands and cc. If it is
1784  /// unable to simplify it, return a null SDValue.
1785  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1786                          ISD::CondCode Cond, bool foldBooleans,
1787                          DAGCombinerInfo &DCI, SDLoc dl) const;
1788
1789  /// Returns true (and the GlobalValue and the offset) if the node is a
1790  /// GlobalAddress + offset.
1791  virtual bool
1792  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1793
1794  /// This method will be invoked for all target nodes and for any
1795  /// target-independent nodes that the target has registered with invoke it
1796  /// for.
1797  ///
1798  /// The semantics are as follows:
1799  /// Return Value:
1800  ///   SDValue.Val == 0   - No change was made
1801  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1802  ///   otherwise          - N should be replaced by the returned Operand.
1803  ///
1804  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1805  /// more complex transformations.
1806  ///
1807  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1808
1809  /// Return true if the target has native support for the specified value type
1810  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
1811  /// i16 is legal, but undesirable since i16 instruction encodings are longer
1812  /// and some i16 instructions are slow.
1813  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1814    // By default, assume all legal types are desirable.
1815    return isTypeLegal(VT);
1816  }
1817
1818  /// Return true if it is profitable for dag combiner to transform a floating
1819  /// point op of specified opcode to a equivalent op of an integer
1820  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
1821  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1822                                                 EVT /*VT*/) const {
1823    return false;
1824  }
1825
1826  /// This method query the target whether it is beneficial for dag combiner to
1827  /// promote the specified node. If true, it should return the desired
1828  /// promotion type by reference.
1829  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1830    return false;
1831  }
1832
1833  //===--------------------------------------------------------------------===//
1834  // Lowering methods - These methods must be implemented by targets so that
1835  // the SelectionDAGBuilder code knows how to lower these.
1836  //
1837
1838  /// This hook must be implemented to lower the incoming (formal) arguments,
1839  /// described by the Ins array, into the specified DAG. The implementation
1840  /// should fill in the InVals array with legal-type argument values, and
1841  /// return the resulting token chain value.
1842  ///
1843  virtual SDValue
1844    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1845                         bool /*isVarArg*/,
1846                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1847                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
1848                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1849    llvm_unreachable("Not Implemented");
1850  }
1851
1852  struct ArgListEntry {
1853    SDValue Node;
1854    Type* Ty;
1855    bool isSExt     : 1;
1856    bool isZExt     : 1;
1857    bool isInReg    : 1;
1858    bool isSRet     : 1;
1859    bool isNest     : 1;
1860    bool isByVal    : 1;
1861    bool isReturned : 1;
1862    uint16_t Alignment;
1863
1864    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1865      isSRet(false), isNest(false), isByVal(false), isReturned(false),
1866      Alignment(0) { }
1867  };
1868  typedef std::vector<ArgListEntry> ArgListTy;
1869
1870  /// This structure contains all information that is necessary for lowering
1871  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
1872  /// needs to lower a call, and targets will see this struct in their LowerCall
1873  /// implementation.
1874  struct CallLoweringInfo {
1875    SDValue Chain;
1876    Type *RetTy;
1877    bool RetSExt           : 1;
1878    bool RetZExt           : 1;
1879    bool IsVarArg          : 1;
1880    bool IsInReg           : 1;
1881    bool DoesNotReturn     : 1;
1882    bool IsReturnValueUsed : 1;
1883
1884    // IsTailCall should be modified by implementations of
1885    // TargetLowering::LowerCall that perform tail call conversions.
1886    bool IsTailCall;
1887
1888    unsigned NumFixedArgs;
1889    CallingConv::ID CallConv;
1890    SDValue Callee;
1891    ArgListTy &Args;
1892    SelectionDAG &DAG;
1893    SDLoc DL;
1894    ImmutableCallSite *CS;
1895    SmallVector<ISD::OutputArg, 32> Outs;
1896    SmallVector<SDValue, 32> OutVals;
1897    SmallVector<ISD::InputArg, 32> Ins;
1898
1899
1900    /// Constructs a call lowering context based on the ImmutableCallSite \p cs.
1901    CallLoweringInfo(SDValue chain, Type *retTy,
1902                     FunctionType *FTy, bool isTailCall, SDValue callee,
1903                     ArgListTy &args, SelectionDAG &dag, SDLoc dl,
1904                     ImmutableCallSite &cs)
1905    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1906      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1907      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1908      DoesNotReturn(cs.doesNotReturn()),
1909      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1910      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1911      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1912      DL(dl), CS(&cs) {}
1913
1914    /// Constructs a call lowering context based on the provided call
1915    /// information.
1916    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1917                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1918                     CallingConv::ID callConv, bool isTailCall,
1919                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1920                     ArgListTy &args, SelectionDAG &dag, SDLoc dl)
1921    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1922      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1923      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1924      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1925      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1926  };
1927
1928  /// This function lowers an abstract call to a function into an actual call.
1929  /// This returns a pair of operands.  The first element is the return value
1930  /// for the function (if RetTy is not VoidTy).  The second element is the
1931  /// outgoing token chain. It calls LowerCall to do the actual lowering.
1932  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1933
1934  /// This hook must be implemented to lower calls into the the specified
1935  /// DAG. The outgoing arguments to the call are described by the Outs array,
1936  /// and the values to be returned by the call are described by the Ins
1937  /// array. The implementation should fill in the InVals array with legal-type
1938  /// return values from the call, and return the resulting token chain value.
1939  virtual SDValue
1940    LowerCall(CallLoweringInfo &/*CLI*/,
1941              SmallVectorImpl<SDValue> &/*InVals*/) const {
1942    llvm_unreachable("Not Implemented");
1943  }
1944
1945  /// Target-specific cleanup for formal ByVal parameters.
1946  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1947
1948  /// This hook should be implemented to check whether the return values
1949  /// described by the Outs array can fit into the return registers.  If false
1950  /// is returned, an sret-demotion is performed.
1951  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1952                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1953               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1954               LLVMContext &/*Context*/) const
1955  {
1956    // Return true by default to get preexisting behavior.
1957    return true;
1958  }
1959
1960  /// This hook must be implemented to lower outgoing return values, described
1961  /// by the Outs array, into the specified DAG. The implementation should
1962  /// return the resulting token chain value.
1963  virtual SDValue
1964    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1965                bool /*isVarArg*/,
1966                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1967                const SmallVectorImpl<SDValue> &/*OutVals*/,
1968                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1969    llvm_unreachable("Not Implemented");
1970  }
1971
1972  /// Return true if result of the specified node is used by a return node
1973  /// only. It also compute and return the input chain for the tail call.
1974  ///
1975  /// This is used to determine whether it is possible to codegen a libcall as
1976  /// tail call at legalization time.
1977  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
1978    return false;
1979  }
1980
1981  /// Return true if the target may be able emit the call instruction as a tail
1982  /// call. This is used by optimization passes to determine if it's profitable
1983  /// to duplicate return instructions to enable tailcall optimization.
1984  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1985    return false;
1986  }
1987
1988  /// Return the type that should be used to zero or sign extend a
1989  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
1990  /// convention requires the return type to be promoted, but this is not true
1991  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
1992  /// calling conventions. The frontend should handle this and include all of
1993  /// the necessary information.
1994  virtual MVT getTypeForExtArgOrReturn(MVT VT,
1995                                       ISD::NodeType /*ExtendKind*/) const {
1996    MVT MinVT = getRegisterType(MVT::i32);
1997    return VT.bitsLT(MinVT) ? MinVT : VT;
1998  }
1999
2000  /// This callback is invoked by the type legalizer to legalize nodes with an
2001  /// illegal operand type but legal result types.  It replaces the
2002  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2003  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2004  /// use this callback.
2005  ///
2006  /// TODO: Consider merging with ReplaceNodeResults.
2007  ///
2008  /// The target places new result values for the node in Results (their number
2009  /// and types must exactly match those of the original return values of
2010  /// the node), or leaves Results empty, which indicates that the node is not
2011  /// to be custom lowered after all.
2012  /// The default implementation calls LowerOperation.
2013  virtual void LowerOperationWrapper(SDNode *N,
2014                                     SmallVectorImpl<SDValue> &Results,
2015                                     SelectionDAG &DAG) const;
2016
2017  /// This callback is invoked for operations that are unsupported by the
2018  /// target, which are registered to use 'custom' lowering, and whose defined
2019  /// values are all legal.  If the target has no operations that require custom
2020  /// lowering, it need not implement this.  The default implementation of this
2021  /// aborts.
2022  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2023
2024  /// This callback is invoked when a node result type is illegal for the
2025  /// target, and the operation was registered to use 'custom' lowering for that
2026  /// result type.  The target places new result values for the node in Results
2027  /// (their number and types must exactly match those of the original return
2028  /// values of the node), or leaves Results empty, which indicates that the
2029  /// node is not to be custom lowered after all.
2030  ///
2031  /// If the target has no operations that require custom lowering, it need not
2032  /// implement this.  The default implementation aborts.
2033  virtual void ReplaceNodeResults(SDNode * /*N*/,
2034                                  SmallVectorImpl<SDValue> &/*Results*/,
2035                                  SelectionDAG &/*DAG*/) const {
2036    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2037  }
2038
2039  /// This method returns the name of a target specific DAG node.
2040  virtual const char *getTargetNodeName(unsigned Opcode) const;
2041
2042  /// This method returns a target specific FastISel object, or null if the
2043  /// target does not support "fast" ISel.
2044  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2045                                   const TargetLibraryInfo *) const {
2046    return 0;
2047  }
2048
2049  //===--------------------------------------------------------------------===//
2050  // Inline Asm Support hooks
2051  //
2052
2053  /// This hook allows the target to expand an inline asm call to be explicit
2054  /// llvm code if it wants to.  This is useful for turning simple inline asms
2055  /// into LLVM intrinsics, which gives the compiler more information about the
2056  /// behavior of the code.
2057  virtual bool ExpandInlineAsm(CallInst *) const {
2058    return false;
2059  }
2060
2061  enum ConstraintType {
2062    C_Register,            // Constraint represents specific register(s).
2063    C_RegisterClass,       // Constraint represents any of register(s) in class.
2064    C_Memory,              // Memory constraint.
2065    C_Other,               // Something else.
2066    C_Unknown              // Unsupported constraint.
2067  };
2068
2069  enum ConstraintWeight {
2070    // Generic weights.
2071    CW_Invalid  = -1,     // No match.
2072    CW_Okay     = 0,      // Acceptable.
2073    CW_Good     = 1,      // Good weight.
2074    CW_Better   = 2,      // Better weight.
2075    CW_Best     = 3,      // Best weight.
2076
2077    // Well-known weights.
2078    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2079    CW_Register     = CW_Good,    // Register operands.
2080    CW_Memory       = CW_Better,  // Memory operands.
2081    CW_Constant     = CW_Best,    // Constant operand.
2082    CW_Default      = CW_Okay     // Default or don't know type.
2083  };
2084
2085  /// This contains information for each constraint that we are lowering.
2086  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2087    /// This contains the actual string for the code, like "m".  TargetLowering
2088    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2089    /// matches the operand.
2090    std::string ConstraintCode;
2091
2092    /// Information about the constraint code, e.g. Register, RegisterClass,
2093    /// Memory, Other, Unknown.
2094    TargetLowering::ConstraintType ConstraintType;
2095
2096    /// If this is the result output operand or a clobber, this is null,
2097    /// otherwise it is the incoming operand to the CallInst.  This gets
2098    /// modified as the asm is processed.
2099    Value *CallOperandVal;
2100
2101    /// The ValueType for the operand value.
2102    MVT ConstraintVT;
2103
2104    /// Return true of this is an input operand that is a matching constraint
2105    /// like "4".
2106    bool isMatchingInputConstraint() const;
2107
2108    /// If this is an input matching constraint, this method returns the output
2109    /// operand it matches.
2110    unsigned getMatchedOperand() const;
2111
2112    /// Copy constructor for copying from an AsmOperandInfo.
2113    AsmOperandInfo(const AsmOperandInfo &info)
2114      : InlineAsm::ConstraintInfo(info),
2115        ConstraintCode(info.ConstraintCode),
2116        ConstraintType(info.ConstraintType),
2117        CallOperandVal(info.CallOperandVal),
2118        ConstraintVT(info.ConstraintVT) {
2119    }
2120
2121    /// Copy constructor for copying from a ConstraintInfo.
2122    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2123      : InlineAsm::ConstraintInfo(info),
2124        ConstraintType(TargetLowering::C_Unknown),
2125        CallOperandVal(0), ConstraintVT(MVT::Other) {
2126    }
2127  };
2128
2129  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2130
2131  /// Split up the constraint string from the inline assembly value into the
2132  /// specific constraints and their prefixes, and also tie in the associated
2133  /// operand values.  If this returns an empty vector, and if the constraint
2134  /// string itself isn't empty, there was an error parsing.
2135  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2136
2137  /// Examine constraint type and operand type and determine a weight value.
2138  /// The operand object must already have been set up with the operand type.
2139  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2140      AsmOperandInfo &info, int maIndex) const;
2141
2142  /// Examine constraint string and operand type and determine a weight value.
2143  /// The operand object must already have been set up with the operand type.
2144  virtual ConstraintWeight getSingleConstraintMatchWeight(
2145      AsmOperandInfo &info, const char *constraint) const;
2146
2147  /// Determines the constraint code and constraint type to use for the specific
2148  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2149  /// If the actual operand being passed in is available, it can be passed in as
2150  /// Op, otherwise an empty SDValue can be passed.
2151  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2152                                      SDValue Op,
2153                                      SelectionDAG *DAG = 0) const;
2154
2155  /// Given a constraint, return the type of constraint it is for this target.
2156  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2157
2158  /// Given a physical register constraint (e.g.  {edx}), return the register
2159  /// number and the register class for the register.
2160  ///
2161  /// Given a register class constraint, like 'r', if this corresponds directly
2162  /// to an LLVM register class, return a register of 0 and the register class
2163  /// pointer.
2164  ///
2165  /// This should only be used for C_Register constraints.  On error, this
2166  /// returns a register number of 0 and a null register class pointer..
2167  virtual std::pair<unsigned, const TargetRegisterClass*>
2168    getRegForInlineAsmConstraint(const std::string &Constraint,
2169                                 MVT VT) const;
2170
2171  /// Try to replace an X constraint, which matches anything, with another that
2172  /// has more specific requirements based on the type of the corresponding
2173  /// operand.  This returns null if there is no replacement to make.
2174  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2175
2176  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2177  /// add anything to Ops.
2178  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2179                                            std::vector<SDValue> &Ops,
2180                                            SelectionDAG &DAG) const;
2181
2182  //===--------------------------------------------------------------------===//
2183  // Div utility functions
2184  //
2185  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2186                         SelectionDAG &DAG) const;
2187  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2188                      std::vector<SDNode*> *Created) const;
2189  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2190                      std::vector<SDNode*> *Created) const;
2191
2192  //===--------------------------------------------------------------------===//
2193  // Instruction Emitting Hooks
2194  //
2195
2196  // This method should be implemented by targets that mark instructions with
2197  // the 'usesCustomInserter' flag.  These instructions are special in various
2198  // ways, which require special support to insert.  The specified MachineInstr
2199  // is created but not inserted into any basic blocks, and this method is
2200  // called to expand it into a sequence of instructions, potentially also
2201  // creating new basic blocks and control flow.
2202  virtual MachineBasicBlock *
2203    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2204
2205  /// This method should be implemented by targets that mark instructions with
2206  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2207  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2208  /// ARM 's' setting instructions.
2209  virtual void
2210  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2211};
2212
2213/// Given an LLVM IR type and return type attributes, compute the return value
2214/// EVTs and flags, and optionally also the offsets, if the return value is
2215/// being lowered to memory.
2216void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2217                   SmallVectorImpl<ISD::OutputArg> &Outs,
2218                   const TargetLowering &TLI);
2219
2220} // end llvm namespace
2221
2222#endif
2223