TargetLowering.h revision 7ed47a13356daed2a34cd2209a31f92552e3bdd8
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <vector>
31
32namespace llvm {
33  class Value;
34  class Function;
35  class TargetMachine;
36  class TargetData;
37  class TargetRegisterClass;
38  class SDNode;
39  class SDOperand;
40  class SelectionDAG;
41  class MachineBasicBlock;
42  class MachineInstr;
43  class VectorType;
44  class TargetSubtarget;
45
46//===----------------------------------------------------------------------===//
47/// TargetLowering - This class defines information used to lower LLVM code to
48/// legal SelectionDAG operators that the target instruction selector can accept
49/// natively.
50///
51/// This class also defines callbacks that targets must implement to lower
52/// target-specific constructs to SelectionDAG operators.
53///
54class TargetLowering {
55public:
56  /// LegalizeAction - This enum indicates whether operations are valid for a
57  /// target, and if not, what action should be used to make them valid.
58  enum LegalizeAction {
59    Legal,      // The target natively supports this operation.
60    Promote,    // This operation should be executed in a larger type.
61    Expand,     // Try to expand this to other ops, otherwise use a libcall.
62    Custom      // Use the LowerOperation hook to implement custom lowering.
63  };
64
65  enum OutOfRangeShiftAmount {
66    Undefined,  // Oversized shift amounts are undefined (default).
67    Mask,       // Shift amounts are auto masked (anded) to value size.
68    Extend      // Oversized shift pulls in zeros or sign bits.
69  };
70
71  enum SetCCResultValue {
72    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
73    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
74    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
75  };
76
77  enum SchedPreference {
78    SchedulingForLatency,          // Scheduling for shortest total latency.
79    SchedulingForRegPressure       // Scheduling for lowest register pressure.
80  };
81
82  explicit TargetLowering(TargetMachine &TM);
83  virtual ~TargetLowering();
84
85  TargetMachine &getTargetMachine() const { return TM; }
86  const TargetData *getTargetData() const { return TD; }
87
88  bool isLittleEndian() const { return IsLittleEndian; }
89  MVT::ValueType getPointerTy() const { return PointerTy; }
90  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
91  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
92
93  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
94  /// codegen.
95  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
96
97  /// isSelectExpensive - Return true if the select operation is expensive for
98  /// this target.
99  bool isSelectExpensive() const { return SelectIsExpensive; }
100
101  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
102  /// a sequence of several shifts, adds, and multiplies for this target.
103  bool isIntDivCheap() const { return IntDivIsCheap; }
104
105  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
106  /// srl/add/sra.
107  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
108
109  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
110  ///
111  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
112
113  /// getSetCCResultContents - For targets without boolean registers, this flag
114  /// returns information about the contents of the high-bits in the setcc
115  /// result register.
116  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
117
118  /// getSchedulingPreference - Return target scheduling preference.
119  SchedPreference getSchedulingPreference() const {
120    return SchedPreferenceInfo;
121  }
122
123  /// getRegClassFor - Return the register class that should be used for the
124  /// specified value type.  This may only be called on legal types.
125  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
126    assert(!MVT::isExtendedVT(VT));
127    TargetRegisterClass *RC = RegClassForVT[VT];
128    assert(RC && "This value type is not natively supported!");
129    return RC;
130  }
131
132  /// isTypeLegal - Return true if the target has native support for the
133  /// specified value type.  This means that it has a register that directly
134  /// holds it without promotions or expansions.
135  bool isTypeLegal(MVT::ValueType VT) const {
136    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
137  }
138
139  class ValueTypeActionImpl {
140    /// ValueTypeActions - This is a bitvector that contains two bits for each
141    /// value type, where the two bits correspond to the LegalizeAction enum.
142    /// This can be queried with "getTypeAction(VT)".
143    uint32_t ValueTypeActions[2];
144  public:
145    ValueTypeActionImpl() {
146      ValueTypeActions[0] = ValueTypeActions[1] = 0;
147    }
148    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
149      ValueTypeActions[0] = RHS.ValueTypeActions[0];
150      ValueTypeActions[1] = RHS.ValueTypeActions[1];
151    }
152
153    LegalizeAction getTypeAction(MVT::ValueType VT) const {
154      if (MVT::isExtendedVT(VT)) {
155        if (MVT::isVector(VT)) return Expand;
156        if (MVT::isInteger(VT))
157          // First promote to a power-of-two size, then expand if necessary.
158          return VT == MVT::RoundIntegerType(VT) ? Expand : Promote;
159        assert(0 && "Unsupported extended type!");
160      }
161      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
162    }
163    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
164      assert(!MVT::isExtendedVT(VT));
165      assert(unsigned(VT >> 4) < array_lengthof(ValueTypeActions));
166      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
167    }
168  };
169
170  const ValueTypeActionImpl &getValueTypeActions() const {
171    return ValueTypeActions;
172  }
173
174  /// getTypeAction - Return how we should legalize values of this type, either
175  /// it is already legal (return 'Legal') or we need to promote it to a larger
176  /// type (return 'Promote'), or we need to expand it into multiple registers
177  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
178  LegalizeAction getTypeAction(MVT::ValueType VT) const {
179    return ValueTypeActions.getTypeAction(VT);
180  }
181
182  /// getTypeToTransformTo - For types supported by the target, this is an
183  /// identity function.  For types that must be promoted to larger types, this
184  /// returns the larger type to promote to.  For integer types that are larger
185  /// than the largest integer register, this contains one step in the expansion
186  /// to get to the smaller register. For illegal floating point types, this
187  /// returns the integer type to transform to.
188  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
189    if (!MVT::isExtendedVT(VT)) {
190      MVT::ValueType NVT = TransformToType[VT];
191      assert(getTypeAction(NVT) != Promote &&
192             "Promote may not follow Expand or Promote");
193      return NVT;
194    }
195
196    if (MVT::isVector(VT))
197      return MVT::getVectorType(MVT::getVectorElementType(VT),
198                                MVT::getVectorNumElements(VT) / 2);
199    if (MVT::isInteger(VT)) {
200      MVT::ValueType NVT = MVT::RoundIntegerType(VT);
201      if (NVT == VT)
202        // Size is a power of two - expand to half the size.
203        return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2);
204      else
205        // Promote to a power of two size, avoiding multi-step promotion.
206        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
207    }
208    assert(0 && "Unsupported extended type!");
209  }
210
211  /// getTypeToExpandTo - For types supported by the target, this is an
212  /// identity function.  For types that must be expanded (i.e. integer types
213  /// that are larger than the largest integer register or illegal floating
214  /// point types), this returns the largest legal type it will be expanded to.
215  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
216    assert(!MVT::isVector(VT));
217    while (true) {
218      switch (getTypeAction(VT)) {
219      case Legal:
220        return VT;
221      case Expand:
222        VT = getTypeToTransformTo(VT);
223        break;
224      default:
225        assert(false && "Type is not legal nor is it to be expanded!");
226        return VT;
227      }
228    }
229    return VT;
230  }
231
232  /// getVectorTypeBreakdown - Vector types are broken down into some number of
233  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
234  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
235  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
236  ///
237  /// This method returns the number of registers needed, and the VT for each
238  /// register.  It also returns the VT and quantity of the intermediate values
239  /// before they are promoted/expanded.
240  ///
241  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
242                                  MVT::ValueType &IntermediateVT,
243                                  unsigned &NumIntermediates,
244                                  MVT::ValueType &RegisterVT) const;
245
246  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
247  legal_fpimm_iterator legal_fpimm_begin() const {
248    return LegalFPImmediates.begin();
249  }
250  legal_fpimm_iterator legal_fpimm_end() const {
251    return LegalFPImmediates.end();
252  }
253
254  /// isShuffleMaskLegal - Targets can use this to indicate that they only
255  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
256  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
257  /// are assumed to be legal.
258  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
259    return true;
260  }
261
262  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
263  /// used by Targets can use this to indicate if there is a suitable
264  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
265  /// pool entry.
266  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
267                                      MVT::ValueType EVT,
268                                      SelectionDAG &DAG) const {
269    return false;
270  }
271
272  /// getOperationAction - Return how this operation should be treated: either
273  /// it is legal, needs to be promoted to a larger size, needs to be
274  /// expanded to some other code sequence, or the target has a custom expander
275  /// for it.
276  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
277    if (MVT::isExtendedVT(VT)) return Expand;
278    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
279  }
280
281  /// isOperationLegal - Return true if the specified operation is legal on this
282  /// target.
283  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
284    return getOperationAction(Op, VT) == Legal ||
285           getOperationAction(Op, VT) == Custom;
286  }
287
288  /// getLoadXAction - Return how this load with extension should be treated:
289  /// either it is legal, needs to be promoted to a larger size, needs to be
290  /// expanded to some other code sequence, or the target has a custom expander
291  /// for it.
292  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
293    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
294    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
295  }
296
297  /// isLoadXLegal - Return true if the specified load with extension is legal
298  /// on this target.
299  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
300    return getLoadXAction(LType, VT) == Legal ||
301           getLoadXAction(LType, VT) == Custom;
302  }
303
304  /// getStoreXAction - Return how this store with truncation should be treated:
305  /// either it is legal, needs to be promoted to a larger size, needs to be
306  /// expanded to some other code sequence, or the target has a custom expander
307  /// for it.
308  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
309    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
310    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
311  }
312
313  /// isStoreXLegal - Return true if the specified store with truncation is
314  /// legal on this target.
315  bool isStoreXLegal(MVT::ValueType VT) const {
316    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
317  }
318
319  /// getIndexedLoadAction - Return how the indexed load should be treated:
320  /// either it is legal, needs to be promoted to a larger size, needs to be
321  /// expanded to some other code sequence, or the target has a custom expander
322  /// for it.
323  LegalizeAction
324  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
325    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
326    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
327  }
328
329  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
330  /// on this target.
331  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
332    return getIndexedLoadAction(IdxMode, VT) == Legal ||
333           getIndexedLoadAction(IdxMode, VT) == Custom;
334  }
335
336  /// getIndexedStoreAction - Return how the indexed store should be treated:
337  /// either it is legal, needs to be promoted to a larger size, needs to be
338  /// expanded to some other code sequence, or the target has a custom expander
339  /// for it.
340  LegalizeAction
341  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
342    if (MVT::isExtendedVT(VT)) return getTypeAction(VT);
343    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
344  }
345
346  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
347  /// on this target.
348  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
349    return getIndexedStoreAction(IdxMode, VT) == Legal ||
350           getIndexedStoreAction(IdxMode, VT) == Custom;
351  }
352
353  /// getConvertAction - Return how the conversion should be treated:
354  /// either it is legal, needs to be promoted to a larger size, needs to be
355  /// expanded to some other code sequence, or the target has a custom expander
356  /// for it.
357  LegalizeAction
358  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
359    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
360           "Table isn't big enough!");
361    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
362  }
363
364  /// isConvertLegal - Return true if the specified conversion is legal
365  /// on this target.
366  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
367    return getConvertAction(FromVT, ToVT) == Legal ||
368           getConvertAction(FromVT, ToVT) == Custom;
369  }
370
371  /// getTypeToPromoteTo - If the action for this operation is to promote, this
372  /// method returns the ValueType to promote to.
373  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
374    assert(getOperationAction(Op, VT) == Promote &&
375           "This operation isn't promoted!");
376
377    // See if this has an explicit type specified.
378    std::map<std::pair<unsigned, MVT::ValueType>,
379             MVT::ValueType>::const_iterator PTTI =
380      PromoteToType.find(std::make_pair(Op, VT));
381    if (PTTI != PromoteToType.end()) return PTTI->second;
382
383    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
384           "Cannot autopromote this type, add it with AddPromotedToType.");
385
386    MVT::ValueType NVT = VT;
387    do {
388      NVT = (MVT::ValueType)(NVT+1);
389      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
390             "Didn't find type to promote to!");
391    } while (!isTypeLegal(NVT) ||
392              getOperationAction(Op, NVT) == Promote);
393    return NVT;
394  }
395
396  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
397  /// This is fixed by the LLVM operations except for the pointer size.  If
398  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
399  /// counterpart (e.g. structs), otherwise it will assert.
400  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
401    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
402    return VT == MVT::iPTR ? PointerTy : VT;
403  }
404
405  /// getRegisterType - Return the type of registers that this ValueType will
406  /// eventually require.
407  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
408    if (!MVT::isExtendedVT(VT))
409      return RegisterTypeForVT[VT];
410    if (MVT::isVector(VT)) {
411      MVT::ValueType VT1, RegisterVT;
412      unsigned NumIntermediates;
413      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
414      return RegisterVT;
415    }
416    assert(0 && "Unsupported extended type!");
417  }
418
419  /// getNumRegisters - Return the number of registers that this ValueType will
420  /// eventually require.  This is one for any types promoted to live in larger
421  /// registers, but may be more than one for types (like i64) that are split
422  /// into pieces.
423  unsigned getNumRegisters(MVT::ValueType VT) const {
424    if (!MVT::isExtendedVT(VT))
425      return NumRegistersForVT[VT];
426    if (MVT::isVector(VT)) {
427      MVT::ValueType VT1, VT2;
428      unsigned NumIntermediates;
429      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
430    }
431    assert(0 && "Unsupported extended type!");
432  }
433
434  /// hasTargetDAGCombine - If true, the target has custom DAG combine
435  /// transformations that it can perform for the specified node.
436  bool hasTargetDAGCombine(ISD::NodeType NT) const {
437    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
438  }
439
440  /// This function returns the maximum number of store operations permitted
441  /// to replace a call to llvm.memset. The value is set by the target at the
442  /// performance threshold for such a replacement.
443  /// @brief Get maximum # of store operations permitted for llvm.memset
444  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
445
446  /// This function returns the maximum number of store operations permitted
447  /// to replace a call to llvm.memcpy. The value is set by the target at the
448  /// performance threshold for such a replacement.
449  /// @brief Get maximum # of store operations permitted for llvm.memcpy
450  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
451
452  /// This function returns the maximum number of store operations permitted
453  /// to replace a call to llvm.memmove. The value is set by the target at the
454  /// performance threshold for such a replacement.
455  /// @brief Get maximum # of store operations permitted for llvm.memmove
456  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
457
458  /// This function returns true if the target allows unaligned memory accesses.
459  /// This is used, for example, in situations where an array copy/move/set is
460  /// converted to a sequence of store operations. It's use helps to ensure that
461  /// such replacements don't generate code that causes an alignment error
462  /// (trap) on the target machine.
463  /// @brief Determine if the target supports unaligned memory accesses.
464  bool allowsUnalignedMemoryAccesses() const {
465    return allowUnalignedMemoryAccesses;
466  }
467
468  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
469  /// to implement llvm.setjmp.
470  bool usesUnderscoreSetJmp() const {
471    return UseUnderscoreSetJmp;
472  }
473
474  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
475  /// to implement llvm.longjmp.
476  bool usesUnderscoreLongJmp() const {
477    return UseUnderscoreLongJmp;
478  }
479
480  /// getStackPointerRegisterToSaveRestore - If a physical register, this
481  /// specifies the register that llvm.savestack/llvm.restorestack should save
482  /// and restore.
483  unsigned getStackPointerRegisterToSaveRestore() const {
484    return StackPointerRegisterToSaveRestore;
485  }
486
487  /// getExceptionAddressRegister - If a physical register, this returns
488  /// the register that receives the exception address on entry to a landing
489  /// pad.
490  unsigned getExceptionAddressRegister() const {
491    return ExceptionPointerRegister;
492  }
493
494  /// getExceptionSelectorRegister - If a physical register, this returns
495  /// the register that receives the exception typeid on entry to a landing
496  /// pad.
497  unsigned getExceptionSelectorRegister() const {
498    return ExceptionSelectorRegister;
499  }
500
501  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
502  /// set, the default is 200)
503  unsigned getJumpBufSize() const {
504    return JumpBufSize;
505  }
506
507  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
508  /// (if never set, the default is 0)
509  unsigned getJumpBufAlignment() const {
510    return JumpBufAlignment;
511  }
512
513  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
514  /// limit. Any block whose size is greater should not be predicated.
515  virtual unsigned getIfCvtBlockSizeLimit() const {
516    return IfCvtBlockSizeLimit;
517  }
518
519  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
520  /// block to be considered for duplication. Any block whose size is greater
521  /// should not be duplicated to facilitate its predication.
522  virtual unsigned getIfCvtDupBlockSizeLimit() const {
523    return IfCvtDupBlockSizeLimit;
524  }
525
526  /// getPreIndexedAddressParts - returns true by value, base pointer and
527  /// offset pointer and addressing mode by reference if the node's address
528  /// can be legally represented as pre-indexed load / store address.
529  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
530                                         SDOperand &Offset,
531                                         ISD::MemIndexedMode &AM,
532                                         SelectionDAG &DAG) {
533    return false;
534  }
535
536  /// getPostIndexedAddressParts - returns true by value, base pointer and
537  /// offset pointer and addressing mode by reference if this node can be
538  /// combined with a load / store to form a post-indexed load / store.
539  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
540                                          SDOperand &Base, SDOperand &Offset,
541                                          ISD::MemIndexedMode &AM,
542                                          SelectionDAG &DAG) {
543    return false;
544  }
545
546  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
547  /// jumptable.
548  virtual SDOperand getPICJumpTableRelocBase(SDOperand Table,
549                                             SelectionDAG &DAG) const;
550
551  //===--------------------------------------------------------------------===//
552  // TargetLowering Optimization Methods
553  //
554
555  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
556  /// SDOperands for returning information from TargetLowering to its clients
557  /// that want to combine
558  struct TargetLoweringOpt {
559    SelectionDAG &DAG;
560    bool AfterLegalize;
561    SDOperand Old;
562    SDOperand New;
563
564    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
565      : DAG(InDAG), AfterLegalize(afterLegalize) {}
566
567    bool CombineTo(SDOperand O, SDOperand N) {
568      Old = O;
569      New = N;
570      return true;
571    }
572
573    /// ShrinkDemandedConstant - Check to see if the specified operand of the
574    /// specified instruction is a constant integer.  If so, check to see if
575    /// there are any bits set in the constant that are not demanded.  If so,
576    /// shrink the constant and return true.
577    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
578  };
579
580  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
581  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
582  /// use this information to simplify Op, create a new simplified DAG node and
583  /// return true, returning the original and new nodes in Old and New.
584  /// Otherwise, analyze the expression and return a mask of KnownOne and
585  /// KnownZero bits for the expression (used to simplify the caller).
586  /// The KnownZero/One bits may only be accurate for those bits in the
587  /// DemandedMask.
588  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
589                            uint64_t &KnownZero, uint64_t &KnownOne,
590                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
591
592  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
593  /// Mask are known to be either zero or one and return them in the
594  /// KnownZero/KnownOne bitsets.
595  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
596                                              uint64_t Mask,
597                                              uint64_t &KnownZero,
598                                              uint64_t &KnownOne,
599                                              const SelectionDAG &DAG,
600                                              unsigned Depth = 0) const;
601
602  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
603  /// targets that want to expose additional information about sign bits to the
604  /// DAG Combiner.
605  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
606                                                   unsigned Depth = 0) const;
607
608  struct DAGCombinerInfo {
609    void *DC;  // The DAG Combiner object.
610    bool BeforeLegalize;
611    bool CalledByLegalizer;
612  public:
613    SelectionDAG &DAG;
614
615    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
616      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
617
618    bool isBeforeLegalize() const { return BeforeLegalize; }
619    bool isCalledByLegalizer() const { return CalledByLegalizer; }
620
621    void AddToWorklist(SDNode *N);
622    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
623    SDOperand CombineTo(SDNode *N, SDOperand Res);
624    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
625  };
626
627  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
628  /// and cc. If it is unable to simplify it, return a null SDOperand.
629  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
630                          ISD::CondCode Cond, bool foldBooleans,
631                          DAGCombinerInfo &DCI) const;
632
633  /// PerformDAGCombine - This method will be invoked for all target nodes and
634  /// for any target-independent nodes that the target has registered with
635  /// invoke it for.
636  ///
637  /// The semantics are as follows:
638  /// Return Value:
639  ///   SDOperand.Val == 0   - No change was made
640  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
641  ///   otherwise            - N should be replaced by the returned Operand.
642  ///
643  /// In addition, methods provided by DAGCombinerInfo may be used to perform
644  /// more complex transformations.
645  ///
646  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
647
648  //===--------------------------------------------------------------------===//
649  // TargetLowering Configuration Methods - These methods should be invoked by
650  // the derived class constructor to configure this object for the target.
651  //
652
653protected:
654  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
655  /// GOT for PC-relative code.
656  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
657
658  /// setShiftAmountType - Describe the type that should be used for shift
659  /// amounts.  This type defaults to the pointer type.
660  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
661
662  /// setSetCCResultType - Describe the type that shoudl be used as the result
663  /// of a setcc operation.  This defaults to the pointer type.
664  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
665
666  /// setSetCCResultContents - Specify how the target extends the result of a
667  /// setcc operation in a register.
668  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
669
670  /// setSchedulingPreference - Specify the target scheduling preference.
671  void setSchedulingPreference(SchedPreference Pref) {
672    SchedPreferenceInfo = Pref;
673  }
674
675  /// setShiftAmountFlavor - Describe how the target handles out of range shift
676  /// amounts.
677  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
678    ShiftAmtHandling = OORSA;
679  }
680
681  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
682  /// use _setjmp to implement llvm.setjmp or the non _ version.
683  /// Defaults to false.
684  void setUseUnderscoreSetJmp(bool Val) {
685    UseUnderscoreSetJmp = Val;
686  }
687
688  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
689  /// use _longjmp to implement llvm.longjmp or the non _ version.
690  /// Defaults to false.
691  void setUseUnderscoreLongJmp(bool Val) {
692    UseUnderscoreLongJmp = Val;
693  }
694
695  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
696  /// specifies the register that llvm.savestack/llvm.restorestack should save
697  /// and restore.
698  void setStackPointerRegisterToSaveRestore(unsigned R) {
699    StackPointerRegisterToSaveRestore = R;
700  }
701
702  /// setExceptionPointerRegister - If set to a physical register, this sets
703  /// the register that receives the exception address on entry to a landing
704  /// pad.
705  void setExceptionPointerRegister(unsigned R) {
706    ExceptionPointerRegister = R;
707  }
708
709  /// setExceptionSelectorRegister - If set to a physical register, this sets
710  /// the register that receives the exception typeid on entry to a landing
711  /// pad.
712  void setExceptionSelectorRegister(unsigned R) {
713    ExceptionSelectorRegister = R;
714  }
715
716  /// SelectIsExpensive - Tells the code generator not to expand operations
717  /// into sequences that use the select operations if possible.
718  void setSelectIsExpensive() { SelectIsExpensive = true; }
719
720  /// setIntDivIsCheap - Tells the code generator that integer divide is
721  /// expensive, and if possible, should be replaced by an alternate sequence
722  /// of instructions not containing an integer divide.
723  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
724
725  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
726  /// srl/add/sra for a signed divide by power of two, and let the target handle
727  /// it.
728  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
729
730  /// addRegisterClass - Add the specified register class as an available
731  /// regclass for the specified value type.  This indicates the selector can
732  /// handle values of that class natively.
733  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
734    assert(!MVT::isExtendedVT(VT));
735    AvailableRegClasses.push_back(std::make_pair(VT, RC));
736    RegClassForVT[VT] = RC;
737  }
738
739  /// computeRegisterProperties - Once all of the register classes are added,
740  /// this allows us to compute derived properties we expose.
741  void computeRegisterProperties();
742
743  /// setOperationAction - Indicate that the specified operation does not work
744  /// with the specified type and indicate what to do about it.
745  void setOperationAction(unsigned Op, MVT::ValueType VT,
746                          LegalizeAction Action) {
747    assert(VT < 32 && Op < array_lengthof(OpActions) &&
748           "Table isn't big enough!");
749    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
750    OpActions[Op] |= (uint64_t)Action << VT*2;
751  }
752
753  /// setLoadXAction - Indicate that the specified load with extension does not
754  /// work with the with specified type and indicate what to do about it.
755  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
756                      LegalizeAction Action) {
757    assert(VT < 32 && ExtType < array_lengthof(LoadXActions) &&
758           "Table isn't big enough!");
759    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
760    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
761  }
762
763  /// setStoreXAction - Indicate that the specified store with truncation does
764  /// not work with the with specified type and indicate what to do about it.
765  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
766    assert(VT < 32 && "Table isn't big enough!");
767    StoreXActions &= ~(uint64_t(3UL) << VT*2);
768    StoreXActions |= (uint64_t)Action << VT*2;
769  }
770
771  /// setIndexedLoadAction - Indicate that the specified indexed load does or
772  /// does not work with the with specified type and indicate what to do abort
773  /// it. NOTE: All indexed mode loads are initialized to Expand in
774  /// TargetLowering.cpp
775  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
776                            LegalizeAction Action) {
777    assert(VT < 32 && IdxMode <
778           array_lengthof(IndexedModeActions[0]) &&
779           "Table isn't big enough!");
780    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
781    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
782  }
783
784  /// setIndexedStoreAction - Indicate that the specified indexed store does or
785  /// does not work with the with specified type and indicate what to do about
786  /// it. NOTE: All indexed mode stores are initialized to Expand in
787  /// TargetLowering.cpp
788  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
789                             LegalizeAction Action) {
790    assert(VT < 32 && IdxMode <
791           array_lengthof(IndexedModeActions[1]) &&
792           "Table isn't big enough!");
793    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
794    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
795  }
796
797  /// setConvertAction - Indicate that the specified conversion does or does
798  /// not work with the with specified type and indicate what to do about it.
799  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
800                        LegalizeAction Action) {
801    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
802           "Table isn't big enough!");
803    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
804    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
805  }
806
807  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
808  /// promotion code defaults to trying a larger integer/fp until it can find
809  /// one that works.  If that default is insufficient, this method can be used
810  /// by the target to override the default.
811  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
812                         MVT::ValueType DestVT) {
813    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
814  }
815
816  /// addLegalFPImmediate - Indicate that this target can instruction select
817  /// the specified FP immediate natively.
818  void addLegalFPImmediate(const APFloat& Imm) {
819    LegalFPImmediates.push_back(Imm);
820  }
821
822  /// setTargetDAGCombine - Targets should invoke this method for each target
823  /// independent node that they want to provide a custom DAG combiner for by
824  /// implementing the PerformDAGCombine virtual method.
825  void setTargetDAGCombine(ISD::NodeType NT) {
826    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
827  }
828
829  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
830  /// bytes); default is 200
831  void setJumpBufSize(unsigned Size) {
832    JumpBufSize = Size;
833  }
834
835  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
836  /// alignment (in bytes); default is 0
837  void setJumpBufAlignment(unsigned Align) {
838    JumpBufAlignment = Align;
839  }
840
841  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
842  /// limit (in number of instructions); default is 2.
843  void setIfCvtBlockSizeLimit(unsigned Limit) {
844    IfCvtBlockSizeLimit = Limit;
845  }
846
847  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
848  /// of instructions) to be considered for code duplication during
849  /// if-conversion; default is 2.
850  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
851    IfCvtDupBlockSizeLimit = Limit;
852  }
853
854public:
855
856  virtual const TargetSubtarget *getSubtarget() {
857    assert(0 && "Not Implemented");
858    return NULL;    // this is here to silence compiler errors
859  }
860  //===--------------------------------------------------------------------===//
861  // Lowering methods - These methods must be implemented by targets so that
862  // the SelectionDAGLowering code knows how to lower these.
863  //
864
865  /// LowerArguments - This hook must be implemented to indicate how we should
866  /// lower the arguments for the specified function, into the specified DAG.
867  virtual std::vector<SDOperand>
868  LowerArguments(Function &F, SelectionDAG &DAG);
869
870  /// LowerCallTo - This hook lowers an abstract call to a function into an
871  /// actual call.  This returns a pair of operands.  The first element is the
872  /// return value for the function (if RetTy is not VoidTy).  The second
873  /// element is the outgoing token chain.
874  struct ArgListEntry {
875    SDOperand Node;
876    const Type* Ty;
877    bool isSExt;
878    bool isZExt;
879    bool isInReg;
880    bool isSRet;
881    bool isNest;
882    bool isByVal;
883
884    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
885      isSRet(false), isNest(false), isByVal(false) { }
886  };
887  typedef std::vector<ArgListEntry> ArgListTy;
888  virtual std::pair<SDOperand, SDOperand>
889  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
890              bool isVarArg, unsigned CallingConv, bool isTailCall,
891              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
892
893
894  virtual SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
895  virtual SDOperand LowerMEMCPYCall(SDOperand Chain, SDOperand Dest,
896                                    SDOperand Source, SDOperand Count,
897                                    SelectionDAG &DAG);
898  virtual SDOperand LowerMEMCPYInline(SDOperand Chain, SDOperand Dest,
899                                      SDOperand Source, unsigned Size,
900                                      unsigned Align, SelectionDAG &DAG) {
901    assert(0 && "Not Implemented");
902    return SDOperand();   // this is here to silence compiler errors
903  }
904
905
906  /// LowerOperation - This callback is invoked for operations that are
907  /// unsupported by the target, which are registered to use 'custom' lowering,
908  /// and whose defined values are all legal.
909  /// If the target has no operations that require custom lowering, it need not
910  /// implement this.  The default implementation of this aborts.
911  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
912
913  /// ExpandOperationResult - This callback is invoked for operations that are
914  /// unsupported by the target, which are registered to use 'custom' lowering,
915  /// and whose result type needs to be expanded.  This must return a node whose
916  /// results precisely match the results of the input node.  This typically
917  /// involves a MERGE_VALUES node and/or BUILD_PAIR.
918  ///
919  /// If the target has no operations that require custom lowering, it need not
920  /// implement this.  The default implementation of this aborts.
921  virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
922    assert(0 && "ExpandOperationResult not implemented for this target!");
923    return 0;
924  }
925
926  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
927  /// tail call optimization. Targets which want to do tail call optimization
928  /// should override this function.
929  virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
930                                                 SDOperand Ret,
931                                                 SelectionDAG &DAG) const {
932    return false;
933  }
934
935  /// CustomPromoteOperation - This callback is invoked for operations that are
936  /// unsupported by the target, are registered to use 'custom' lowering, and
937  /// whose type needs to be promoted.
938  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
939
940  /// getTargetNodeName() - This method returns the name of a target specific
941  /// DAG node.
942  virtual const char *getTargetNodeName(unsigned Opcode) const;
943
944  //===--------------------------------------------------------------------===//
945  // Inline Asm Support hooks
946  //
947
948  enum ConstraintType {
949    C_Register,            // Constraint represents a single register.
950    C_RegisterClass,       // Constraint represents one or more registers.
951    C_Memory,              // Memory constraint.
952    C_Other,               // Something else.
953    C_Unknown              // Unsupported constraint.
954  };
955
956  /// getConstraintType - Given a constraint, return the type of constraint it
957  /// is for this target.
958  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
959
960
961  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
962  /// return a list of registers that can be used to satisfy the constraint.
963  /// This should only be used for C_RegisterClass constraints.
964  virtual std::vector<unsigned>
965  getRegClassForInlineAsmConstraint(const std::string &Constraint,
966                                    MVT::ValueType VT) const;
967
968  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
969  /// {edx}), return the register number and the register class for the
970  /// register.
971  ///
972  /// Given a register class constraint, like 'r', if this corresponds directly
973  /// to an LLVM register class, return a register of 0 and the register class
974  /// pointer.
975  ///
976  /// This should only be used for C_Register constraints.  On error,
977  /// this returns a register number of 0 and a null register class pointer..
978  virtual std::pair<unsigned, const TargetRegisterClass*>
979    getRegForInlineAsmConstraint(const std::string &Constraint,
980                                 MVT::ValueType VT) const;
981
982
983  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
984  /// vector.  If it is invalid, don't add anything to Ops.
985  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
986                                            std::vector<SDOperand> &Ops,
987                                            SelectionDAG &DAG);
988
989  //===--------------------------------------------------------------------===//
990  // Scheduler hooks
991  //
992
993  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
994  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
995  // instructions are special in various ways, which require special support to
996  // insert.  The specified MachineInstr is created but not inserted into any
997  // basic blocks, and the scheduler passes ownership of it to this method.
998  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
999                                                     MachineBasicBlock *MBB);
1000
1001  //===--------------------------------------------------------------------===//
1002  // Addressing mode description hooks (used by LSR etc).
1003  //
1004
1005  /// AddrMode - This represents an addressing mode of:
1006  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1007  /// If BaseGV is null,  there is no BaseGV.
1008  /// If BaseOffs is zero, there is no base offset.
1009  /// If HasBaseReg is false, there is no base register.
1010  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1011  /// no scale.
1012  ///
1013  struct AddrMode {
1014    GlobalValue *BaseGV;
1015    int64_t      BaseOffs;
1016    bool         HasBaseReg;
1017    int64_t      Scale;
1018    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1019  };
1020
1021  /// isLegalAddressingMode - Return true if the addressing mode represented by
1022  /// AM is legal for this target, for a load/store of the specified type.
1023  /// TODO: Handle pre/postinc as well.
1024  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1025
1026  /// isTruncateFree - Return true if it's free to truncate a value of
1027  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1028  /// register EAX to i16 by referencing its sub-register AX.
1029  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1030    return false;
1031  }
1032
1033  virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const {
1034    return false;
1035  }
1036
1037  //===--------------------------------------------------------------------===//
1038  // Div utility functions
1039  //
1040  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
1041                      std::vector<SDNode*>* Created) const;
1042  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
1043                      std::vector<SDNode*>* Created) const;
1044
1045
1046  //===--------------------------------------------------------------------===//
1047  // Runtime Library hooks
1048  //
1049
1050  /// setLibcallName - Rename the default libcall routine name for the specified
1051  /// libcall.
1052  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1053    LibcallRoutineNames[Call] = Name;
1054  }
1055
1056  /// getLibcallName - Get the libcall routine name for the specified libcall.
1057  ///
1058  const char *getLibcallName(RTLIB::Libcall Call) const {
1059    return LibcallRoutineNames[Call];
1060  }
1061
1062  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1063  /// result of the comparison libcall against zero.
1064  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1065    CmpLibcallCCs[Call] = CC;
1066  }
1067
1068  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1069  /// the comparison libcall against zero.
1070  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1071    return CmpLibcallCCs[Call];
1072  }
1073
1074private:
1075  TargetMachine &TM;
1076  const TargetData *TD;
1077
1078  /// IsLittleEndian - True if this is a little endian target.
1079  ///
1080  bool IsLittleEndian;
1081
1082  /// PointerTy - The type to use for pointers, usually i32 or i64.
1083  ///
1084  MVT::ValueType PointerTy;
1085
1086  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1087  ///
1088  bool UsesGlobalOffsetTable;
1089
1090  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1091  /// PointerTy is.
1092  MVT::ValueType ShiftAmountTy;
1093
1094  OutOfRangeShiftAmount ShiftAmtHandling;
1095
1096  /// SelectIsExpensive - Tells the code generator not to expand operations
1097  /// into sequences that use the select operations if possible.
1098  bool SelectIsExpensive;
1099
1100  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1101  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1102  /// a real cost model is in place.  If we ever optimize for size, this will be
1103  /// set to true unconditionally.
1104  bool IntDivIsCheap;
1105
1106  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1107  /// srl/add/sra for a signed divide by power of two, and let the target handle
1108  /// it.
1109  bool Pow2DivIsCheap;
1110
1111  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1112  /// PointerTy.
1113  MVT::ValueType SetCCResultTy;
1114
1115  /// SetCCResultContents - Information about the contents of the high-bits in
1116  /// the result of a setcc comparison operation.
1117  SetCCResultValue SetCCResultContents;
1118
1119  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1120  /// total cycles or lowest register usage.
1121  SchedPreference SchedPreferenceInfo;
1122
1123  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1124  /// llvm.setjmp.  Defaults to false.
1125  bool UseUnderscoreSetJmp;
1126
1127  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1128  /// llvm.longjmp.  Defaults to false.
1129  bool UseUnderscoreLongJmp;
1130
1131  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1132  unsigned JumpBufSize;
1133
1134  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1135  /// buffers
1136  unsigned JumpBufAlignment;
1137
1138  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1139  /// if-converted.
1140  unsigned IfCvtBlockSizeLimit;
1141
1142  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1143  /// duplicated during if-conversion.
1144  unsigned IfCvtDupBlockSizeLimit;
1145
1146  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1147  /// specifies the register that llvm.savestack/llvm.restorestack should save
1148  /// and restore.
1149  unsigned StackPointerRegisterToSaveRestore;
1150
1151  /// ExceptionPointerRegister - If set to a physical register, this specifies
1152  /// the register that receives the exception address on entry to a landing
1153  /// pad.
1154  unsigned ExceptionPointerRegister;
1155
1156  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1157  /// the register that receives the exception typeid on entry to a landing
1158  /// pad.
1159  unsigned ExceptionSelectorRegister;
1160
1161  /// RegClassForVT - This indicates the default register class to use for
1162  /// each ValueType the target supports natively.
1163  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1164  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1165  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1166
1167  /// TransformToType - For any value types we are promoting or expanding, this
1168  /// contains the value type that we are changing to.  For Expanded types, this
1169  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1170  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1171  /// by the system, this holds the same type (e.g. i32 -> i32).
1172  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1173
1174  /// OpActions - For each operation and each value type, keep a LegalizeAction
1175  /// that indicates how instruction selection should deal with the operation.
1176  /// Most operations are Legal (aka, supported natively by the target), but
1177  /// operations that are not should be described.  Note that operations on
1178  /// non-legal value types are not described here.
1179  uint64_t OpActions[156];
1180
1181  /// LoadXActions - For each load of load extension type and each value type,
1182  /// keep a LegalizeAction that indicates how instruction selection should deal
1183  /// with the load.
1184  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1185
1186  /// StoreXActions - For each store with truncation of each value type, keep a
1187  /// LegalizeAction that indicates how instruction selection should deal with
1188  /// the store.
1189  uint64_t StoreXActions;
1190
1191  /// IndexedModeActions - For each indexed mode and each value type, keep a
1192  /// pair of LegalizeAction that indicates how instruction selection should
1193  /// deal with the load / store.
1194  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1195
1196  /// ConvertActions - For each conversion from source type to destination type,
1197  /// keep a LegalizeAction that indicates how instruction selection should
1198  /// deal with the conversion.
1199  /// Currently, this is used only for floating->floating conversions
1200  /// (FP_EXTEND and FP_ROUND).
1201  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1202
1203  ValueTypeActionImpl ValueTypeActions;
1204
1205  std::vector<APFloat> LegalFPImmediates;
1206
1207  std::vector<std::pair<MVT::ValueType,
1208                        TargetRegisterClass*> > AvailableRegClasses;
1209
1210  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1211  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1212  /// which sets a bit in this array.
1213  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1214
1215  /// PromoteToType - For operations that must be promoted to a specific type,
1216  /// this holds the destination type.  This map should be sparse, so don't hold
1217  /// it as an array.
1218  ///
1219  /// Targets add entries to this map with AddPromotedToType(..), clients access
1220  /// this with getTypeToPromoteTo(..).
1221  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1222
1223  /// LibcallRoutineNames - Stores the name each libcall.
1224  ///
1225  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1226
1227  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1228  /// of each of the comparison libcall against zero.
1229  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1230
1231protected:
1232  /// When lowering %llvm.memset this field specifies the maximum number of
1233  /// store operations that may be substituted for the call to memset. Targets
1234  /// must set this value based on the cost threshold for that target. Targets
1235  /// should assume that the memset will be done using as many of the largest
1236  /// store operations first, followed by smaller ones, if necessary, per
1237  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1238  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1239  /// store.  This only applies to setting a constant array of a constant size.
1240  /// @brief Specify maximum number of store instructions per memset call.
1241  unsigned maxStoresPerMemset;
1242
1243  /// When lowering %llvm.memcpy this field specifies the maximum number of
1244  /// store operations that may be substituted for a call to memcpy. Targets
1245  /// must set this value based on the cost threshold for that target. Targets
1246  /// should assume that the memcpy will be done using as many of the largest
1247  /// store operations first, followed by smaller ones, if necessary, per
1248  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1249  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1250  /// and one 1-byte store. This only applies to copying a constant array of
1251  /// constant size.
1252  /// @brief Specify maximum bytes of store instructions per memcpy call.
1253  unsigned maxStoresPerMemcpy;
1254
1255  /// When lowering %llvm.memmove this field specifies the maximum number of
1256  /// store instructions that may be substituted for a call to memmove. Targets
1257  /// must set this value based on the cost threshold for that target. Targets
1258  /// should assume that the memmove will be done using as many of the largest
1259  /// store operations first, followed by smaller ones, if necessary, per
1260  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1261  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1262  /// applies to copying a constant array of constant size.
1263  /// @brief Specify maximum bytes of store instructions per memmove call.
1264  unsigned maxStoresPerMemmove;
1265
1266  /// This field specifies whether the target machine permits unaligned memory
1267  /// accesses.  This is used, for example, to determine the size of store
1268  /// operations when copying small arrays and other similar tasks.
1269  /// @brief Indicate whether the target permits unaligned memory accesses.
1270  bool allowUnalignedMemoryAccesses;
1271};
1272} // end llvm namespace
1273
1274#endif
1275