TargetLowering.h revision 7f32156bb9c017b71971c52fac892fa7b9b06dd2
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include <map>
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41  class VectorType;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData *getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
91  /// codegen.
92  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
93
94  /// isSelectExpensive - Return true if the select operation is expensive for
95  /// this target.
96  bool isSelectExpensive() const { return SelectIsExpensive; }
97
98  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
99  /// a sequence of several shifts, adds, and multiplies for this target.
100  bool isIntDivCheap() const { return IntDivIsCheap; }
101
102  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
103  /// srl/add/sra.
104  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
105
106  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
107  ///
108  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
109
110  /// getSetCCResultContents - For targets without boolean registers, this flag
111  /// returns information about the contents of the high-bits in the setcc
112  /// result register.
113  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
114
115  /// getSchedulingPreference - Return target scheduling preference.
116  SchedPreference getSchedulingPreference() const {
117    return SchedPreferenceInfo;
118  }
119
120  /// getRegClassFor - Return the register class that should be used for the
121  /// specified value type.  This may only be called on legal types.
122  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
123    assert(!MVT::isExtendedValueType(VT));
124    TargetRegisterClass *RC = RegClassForVT[VT];
125    assert(RC && "This value type is not natively supported!");
126    return RC;
127  }
128
129  /// isTypeLegal - Return true if the target has native support for the
130  /// specified value type.  This means that it has a register that directly
131  /// holds it without promotions or expansions.
132  bool isTypeLegal(MVT::ValueType VT) const {
133    return !MVT::isExtendedValueType(VT) ?
134           RegClassForVT[VT] != 0 :
135           false;
136  }
137
138  class ValueTypeActionImpl {
139    /// ValueTypeActions - This is a bitvector that contains two bits for each
140    /// value type, where the two bits correspond to the LegalizeAction enum.
141    /// This can be queried with "getTypeAction(VT)".
142    uint32_t ValueTypeActions[2];
143  public:
144    ValueTypeActionImpl() {
145      ValueTypeActions[0] = ValueTypeActions[1] = 0;
146    }
147    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
148      ValueTypeActions[0] = RHS.ValueTypeActions[0];
149      ValueTypeActions[1] = RHS.ValueTypeActions[1];
150    }
151
152    LegalizeAction getTypeAction(MVT::ValueType VT) const {
153      return !MVT::isExtendedValueType(VT) ?
154             (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3) :
155             Expand;
156    }
157    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
158      assert(!MVT::isExtendedValueType(VT));
159      assert(unsigned(VT >> 4) <
160             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
161      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
162    }
163  };
164
165  const ValueTypeActionImpl &getValueTypeActions() const {
166    return ValueTypeActions;
167  }
168
169  /// getTypeAction - Return how we should legalize values of this type, either
170  /// it is already legal (return 'Legal') or we need to promote it to a larger
171  /// type (return 'Promote'), or we need to expand it into multiple registers
172  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
173  LegalizeAction getTypeAction(MVT::ValueType VT) const {
174    return ValueTypeActions.getTypeAction(VT);
175  }
176
177  /// getTypeToTransformTo - For types supported by the target, this is an
178  /// identity function.  For types that must be promoted to larger types, this
179  /// returns the larger type to promote to.  For integer types that are larger
180  /// than the largest integer register, this contains one step in the expansion
181  /// to get to the smaller register. For illegal floating point types, this
182  /// returns the integer type to transform to.
183  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
184    if (MVT::isExtendedValueType(VT))
185      return MVT::getVectorType(MVT::getVectorElementType(VT),
186                                MVT::getVectorNumElements(VT) / 2);
187
188    return TransformToType[VT];
189  }
190
191  /// getTypeToExpandTo - For types supported by the target, this is an
192  /// identity function.  For types that must be expanded (i.e. integer types
193  /// that are larger than the largest integer register or illegal floating
194  /// point types), this returns the largest legal type it will be expanded to.
195  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
196    assert(!MVT::isExtendedValueType(VT));
197    while (true) {
198      switch (getTypeAction(VT)) {
199      case Legal:
200        return VT;
201      case Expand:
202        VT = getTypeToTransformTo(VT);
203        break;
204      default:
205        assert(false && "Type is not legal nor is it to be expanded!");
206        return VT;
207      }
208    }
209    return VT;
210  }
211
212  /// getVectorTypeBreakdown - Vector types are broken down into some number of
213  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
214  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
215  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
216  ///
217  /// This method returns the number of registers needed, and the VT for each
218  /// register.  It also returns the VT of the VectorType elements before they
219  /// are promoted/expanded.
220  ///
221  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
222                                  MVT::ValueType &ElementVT,
223                                  MVT::ValueType &LegalElementVT) const;
224
225  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
226  legal_fpimm_iterator legal_fpimm_begin() const {
227    return LegalFPImmediates.begin();
228  }
229  legal_fpimm_iterator legal_fpimm_end() const {
230    return LegalFPImmediates.end();
231  }
232
233  /// isShuffleMaskLegal - Targets can use this to indicate that they only
234  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
235  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
236  /// are assumed to be legal.
237  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
238    return true;
239  }
240
241  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
242  /// used by Targets can use this to indicate if there is a suitable
243  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
244  /// pool entry.
245  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
246                                      MVT::ValueType EVT,
247                                      SelectionDAG &DAG) const {
248    return false;
249  }
250
251  /// getOperationAction - Return how this operation should be treated: either
252  /// it is legal, needs to be promoted to a larger size, needs to be
253  /// expanded to some other code sequence, or the target has a custom expander
254  /// for it.
255  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
256    return !MVT::isExtendedValueType(VT) ?
257           (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3) :
258           Expand;
259  }
260
261  /// isOperationLegal - Return true if the specified operation is legal on this
262  /// target.
263  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
264    return getOperationAction(Op, VT) == Legal ||
265           getOperationAction(Op, VT) == Custom;
266  }
267
268  /// getLoadXAction - Return how this load with extension should be treated:
269  /// either it is legal, needs to be promoted to a larger size, needs to be
270  /// expanded to some other code sequence, or the target has a custom expander
271  /// for it.
272  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
273    return !MVT::isExtendedValueType(VT) ?
274           (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3) :
275           Expand;
276  }
277
278  /// isLoadXLegal - Return true if the specified load with extension is legal
279  /// on this target.
280  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
281    return getLoadXAction(LType, VT) == Legal ||
282           getLoadXAction(LType, VT) == Custom;
283  }
284
285  /// getStoreXAction - Return how this store with truncation should be treated:
286  /// either it is legal, needs to be promoted to a larger size, needs to be
287  /// expanded to some other code sequence, or the target has a custom expander
288  /// for it.
289  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
290    return !MVT::isExtendedValueType(VT) ?
291           (LegalizeAction)((StoreXActions >> (2*VT)) & 3) :
292           Expand;
293  }
294
295  /// isStoreXLegal - Return true if the specified store with truncation is
296  /// legal on this target.
297  bool isStoreXLegal(MVT::ValueType VT) const {
298    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
299  }
300
301  /// getIndexedLoadAction - Return how the indexed load should be treated:
302  /// either it is legal, needs to be promoted to a larger size, needs to be
303  /// expanded to some other code sequence, or the target has a custom expander
304  /// for it.
305  LegalizeAction
306  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
307    return !MVT::isExtendedValueType(VT) ?
308           (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3) :
309           Expand;
310  }
311
312  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
313  /// on this target.
314  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
315    return getIndexedLoadAction(IdxMode, VT) == Legal ||
316           getIndexedLoadAction(IdxMode, VT) == Custom;
317  }
318
319  /// getIndexedStoreAction - Return how the indexed store should be treated:
320  /// either it is legal, needs to be promoted to a larger size, needs to be
321  /// expanded to some other code sequence, or the target has a custom expander
322  /// for it.
323  LegalizeAction
324  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
325    return !MVT::isExtendedValueType(VT) ?
326           (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3) :
327           Expand;
328  }
329
330  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
331  /// on this target.
332  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
333    return getIndexedStoreAction(IdxMode, VT) == Legal ||
334           getIndexedStoreAction(IdxMode, VT) == Custom;
335  }
336
337  /// getTypeToPromoteTo - If the action for this operation is to promote, this
338  /// method returns the ValueType to promote to.
339  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
340    assert(getOperationAction(Op, VT) == Promote &&
341           "This operation isn't promoted!");
342
343    // See if this has an explicit type specified.
344    std::map<std::pair<unsigned, MVT::ValueType>,
345             MVT::ValueType>::const_iterator PTTI =
346      PromoteToType.find(std::make_pair(Op, VT));
347    if (PTTI != PromoteToType.end()) return PTTI->second;
348
349    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
350           "Cannot autopromote this type, add it with AddPromotedToType.");
351
352    MVT::ValueType NVT = VT;
353    do {
354      NVT = (MVT::ValueType)(NVT+1);
355      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
356             "Didn't find type to promote to!");
357    } while (!isTypeLegal(NVT) ||
358              getOperationAction(Op, NVT) == Promote);
359    return NVT;
360  }
361
362  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
363  /// This is fixed by the LLVM operations except for the pointer size.  If
364  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
365  /// counterpart (e.g. structs), otherwise it will assert.
366  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
367    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
368    return VT == MVT::iPTR ? PointerTy : VT;
369  }
370
371  /// getNumRegisters - Return the number of registers that this ValueType will
372  /// eventually require.  This is one for any types promoted to live in larger
373  /// registers, but may be more than one for types (like i64) that are split
374  /// into pieces.
375  unsigned getNumRegisters(MVT::ValueType VT) const {
376    if (!MVT::isExtendedValueType(VT))
377      return NumRegistersForVT[VT];
378
379    MVT::ValueType VT1, VT2;
380    return getVectorTypeBreakdown(VT, VT1, VT2);
381  }
382
383  /// hasTargetDAGCombine - If true, the target has custom DAG combine
384  /// transformations that it can perform for the specified node.
385  bool hasTargetDAGCombine(ISD::NodeType NT) const {
386    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
387  }
388
389  /// This function returns the maximum number of store operations permitted
390  /// to replace a call to llvm.memset. The value is set by the target at the
391  /// performance threshold for such a replacement.
392  /// @brief Get maximum # of store operations permitted for llvm.memset
393  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
394
395  /// This function returns the maximum number of store operations permitted
396  /// to replace a call to llvm.memcpy. The value is set by the target at the
397  /// performance threshold for such a replacement.
398  /// @brief Get maximum # of store operations permitted for llvm.memcpy
399  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
400
401  /// This function returns the maximum number of store operations permitted
402  /// to replace a call to llvm.memmove. The value is set by the target at the
403  /// performance threshold for such a replacement.
404  /// @brief Get maximum # of store operations permitted for llvm.memmove
405  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
406
407  /// This function returns true if the target allows unaligned memory accesses.
408  /// This is used, for example, in situations where an array copy/move/set is
409  /// converted to a sequence of store operations. It's use helps to ensure that
410  /// such replacements don't generate code that causes an alignment error
411  /// (trap) on the target machine.
412  /// @brief Determine if the target supports unaligned memory accesses.
413  bool allowsUnalignedMemoryAccesses() const {
414    return allowUnalignedMemoryAccesses;
415  }
416
417  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
418  /// to implement llvm.setjmp.
419  bool usesUnderscoreSetJmp() const {
420    return UseUnderscoreSetJmp;
421  }
422
423  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
424  /// to implement llvm.longjmp.
425  bool usesUnderscoreLongJmp() const {
426    return UseUnderscoreLongJmp;
427  }
428
429  /// getStackPointerRegisterToSaveRestore - If a physical register, this
430  /// specifies the register that llvm.savestack/llvm.restorestack should save
431  /// and restore.
432  unsigned getStackPointerRegisterToSaveRestore() const {
433    return StackPointerRegisterToSaveRestore;
434  }
435
436  /// getExceptionAddressRegister - If a physical register, this returns
437  /// the register that receives the exception address on entry to a landing
438  /// pad.
439  unsigned getExceptionAddressRegister() const {
440    return ExceptionPointerRegister;
441  }
442
443  /// getExceptionSelectorRegister - If a physical register, this returns
444  /// the register that receives the exception typeid on entry to a landing
445  /// pad.
446  unsigned getExceptionSelectorRegister() const {
447    return ExceptionSelectorRegister;
448  }
449
450  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
451  /// set, the default is 200)
452  unsigned getJumpBufSize() const {
453    return JumpBufSize;
454  }
455
456  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
457  /// (if never set, the default is 0)
458  unsigned getJumpBufAlignment() const {
459    return JumpBufAlignment;
460  }
461
462  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
463  /// limit. Any block whose size is greater should not be predicated.
464  virtual unsigned getIfCvtBlockSizeLimit() const {
465    return IfCvtBlockSizeLimit;
466  }
467
468  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
469  /// block to be considered for duplication. Any block whose size is greater
470  /// should not be duplicated to facilitate its predication.
471  virtual unsigned getIfCvtDupBlockSizeLimit() const {
472    return IfCvtDupBlockSizeLimit;
473  }
474
475  /// getPreIndexedAddressParts - returns true by value, base pointer and
476  /// offset pointer and addressing mode by reference if the node's address
477  /// can be legally represented as pre-indexed load / store address.
478  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
479                                         SDOperand &Offset,
480                                         ISD::MemIndexedMode &AM,
481                                         SelectionDAG &DAG) {
482    return false;
483  }
484
485  /// getPostIndexedAddressParts - returns true by value, base pointer and
486  /// offset pointer and addressing mode by reference if this node can be
487  /// combined with a load / store to form a post-indexed load / store.
488  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
489                                          SDOperand &Base, SDOperand &Offset,
490                                          ISD::MemIndexedMode &AM,
491                                          SelectionDAG &DAG) {
492    return false;
493  }
494
495  //===--------------------------------------------------------------------===//
496  // TargetLowering Optimization Methods
497  //
498
499  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
500  /// SDOperands for returning information from TargetLowering to its clients
501  /// that want to combine
502  struct TargetLoweringOpt {
503    SelectionDAG &DAG;
504    SDOperand Old;
505    SDOperand New;
506
507    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
508
509    bool CombineTo(SDOperand O, SDOperand N) {
510      Old = O;
511      New = N;
512      return true;
513    }
514
515    /// ShrinkDemandedConstant - Check to see if the specified operand of the
516    /// specified instruction is a constant integer.  If so, check to see if there
517    /// are any bits set in the constant that are not demanded.  If so, shrink the
518    /// constant and return true.
519    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
520  };
521
522  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
523  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
524  /// use this information to simplify Op, create a new simplified DAG node and
525  /// return true, returning the original and new nodes in Old and New.
526  /// Otherwise, analyze the expression and return a mask of KnownOne and
527  /// KnownZero bits for the expression (used to simplify the caller).
528  /// The KnownZero/One bits may only be accurate for those bits in the
529  /// DemandedMask.
530  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
531                            uint64_t &KnownZero, uint64_t &KnownOne,
532                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
533
534  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
535  /// Mask are known to be either zero or one and return them in the
536  /// KnownZero/KnownOne bitsets.
537  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
538                                              uint64_t Mask,
539                                              uint64_t &KnownZero,
540                                              uint64_t &KnownOne,
541                                              const SelectionDAG &DAG,
542                                              unsigned Depth = 0) const;
543
544  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
545  /// targets that want to expose additional information about sign bits to the
546  /// DAG Combiner.
547  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
548                                                   unsigned Depth = 0) const;
549
550  struct DAGCombinerInfo {
551    void *DC;  // The DAG Combiner object.
552    bool BeforeLegalize;
553    bool CalledByLegalizer;
554  public:
555    SelectionDAG &DAG;
556
557    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
558      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
559
560    bool isBeforeLegalize() const { return BeforeLegalize; }
561    bool isCalledByLegalizer() const { return CalledByLegalizer; }
562
563    void AddToWorklist(SDNode *N);
564    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
565    SDOperand CombineTo(SDNode *N, SDOperand Res);
566    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
567  };
568
569  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
570  /// and cc. If it is unable to simplify it, return a null SDOperand.
571  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
572                          ISD::CondCode Cond, bool foldBooleans,
573                          DAGCombinerInfo &DCI) const;
574
575  /// PerformDAGCombine - This method will be invoked for all target nodes and
576  /// for any target-independent nodes that the target has registered with
577  /// invoke it for.
578  ///
579  /// The semantics are as follows:
580  /// Return Value:
581  ///   SDOperand.Val == 0   - No change was made
582  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
583  ///   otherwise            - N should be replaced by the returned Operand.
584  ///
585  /// In addition, methods provided by DAGCombinerInfo may be used to perform
586  /// more complex transformations.
587  ///
588  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
589
590  //===--------------------------------------------------------------------===//
591  // TargetLowering Configuration Methods - These methods should be invoked by
592  // the derived class constructor to configure this object for the target.
593  //
594
595protected:
596  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
597  /// GOT for PC-relative code.
598  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
599
600  /// setShiftAmountType - Describe the type that should be used for shift
601  /// amounts.  This type defaults to the pointer type.
602  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
603
604  /// setSetCCResultType - Describe the type that shoudl be used as the result
605  /// of a setcc operation.  This defaults to the pointer type.
606  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
607
608  /// setSetCCResultContents - Specify how the target extends the result of a
609  /// setcc operation in a register.
610  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
611
612  /// setSchedulingPreference - Specify the target scheduling preference.
613  void setSchedulingPreference(SchedPreference Pref) {
614    SchedPreferenceInfo = Pref;
615  }
616
617  /// setShiftAmountFlavor - Describe how the target handles out of range shift
618  /// amounts.
619  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
620    ShiftAmtHandling = OORSA;
621  }
622
623  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
624  /// use _setjmp to implement llvm.setjmp or the non _ version.
625  /// Defaults to false.
626  void setUseUnderscoreSetJmp(bool Val) {
627    UseUnderscoreSetJmp = Val;
628  }
629
630  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
631  /// use _longjmp to implement llvm.longjmp or the non _ version.
632  /// Defaults to false.
633  void setUseUnderscoreLongJmp(bool Val) {
634    UseUnderscoreLongJmp = Val;
635  }
636
637  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
638  /// specifies the register that llvm.savestack/llvm.restorestack should save
639  /// and restore.
640  void setStackPointerRegisterToSaveRestore(unsigned R) {
641    StackPointerRegisterToSaveRestore = R;
642  }
643
644  /// setExceptionPointerRegister - If set to a physical register, this sets
645  /// the register that receives the exception address on entry to a landing
646  /// pad.
647  void setExceptionPointerRegister(unsigned R) {
648    ExceptionPointerRegister = R;
649  }
650
651  /// setExceptionSelectorRegister - If set to a physical register, this sets
652  /// the register that receives the exception typeid on entry to a landing
653  /// pad.
654  void setExceptionSelectorRegister(unsigned R) {
655    ExceptionSelectorRegister = R;
656  }
657
658  /// SelectIsExpensive - Tells the code generator not to expand operations
659  /// into sequences that use the select operations if possible.
660  void setSelectIsExpensive() { SelectIsExpensive = true; }
661
662  /// setIntDivIsCheap - Tells the code generator that integer divide is
663  /// expensive, and if possible, should be replaced by an alternate sequence
664  /// of instructions not containing an integer divide.
665  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
666
667  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
668  /// srl/add/sra for a signed divide by power of two, and let the target handle
669  /// it.
670  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
671
672  /// addRegisterClass - Add the specified register class as an available
673  /// regclass for the specified value type.  This indicates the selector can
674  /// handle values of that class natively.
675  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
676    assert(!MVT::isExtendedValueType(VT));
677    AvailableRegClasses.push_back(std::make_pair(VT, RC));
678    RegClassForVT[VT] = RC;
679  }
680
681  /// computeRegisterProperties - Once all of the register classes are added,
682  /// this allows us to compute derived properties we expose.
683  void computeRegisterProperties();
684
685  /// setOperationAction - Indicate that the specified operation does not work
686  /// with the specified type and indicate what to do about it.
687  void setOperationAction(unsigned Op, MVT::ValueType VT,
688                          LegalizeAction Action) {
689    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
690           "Table isn't big enough!");
691    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
692    OpActions[Op] |= (uint64_t)Action << VT*2;
693  }
694
695  /// setLoadXAction - Indicate that the specified load with extension does not
696  /// work with the with specified type and indicate what to do about it.
697  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
698                      LegalizeAction Action) {
699    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
700           "Table isn't big enough!");
701    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
702    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
703  }
704
705  /// setStoreXAction - Indicate that the specified store with truncation does
706  /// not work with the with specified type and indicate what to do about it.
707  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
708    assert(VT < 32 && "Table isn't big enough!");
709    StoreXActions &= ~(uint64_t(3UL) << VT*2);
710    StoreXActions |= (uint64_t)Action << VT*2;
711  }
712
713  /// setIndexedLoadAction - Indicate that the specified indexed load does or
714  /// does not work with the with specified type and indicate what to do abort
715  /// it. NOTE: All indexed mode loads are initialized to Expand in
716  /// TargetLowering.cpp
717  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
718                            LegalizeAction Action) {
719    assert(VT < 32 && IdxMode <
720           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
721           "Table isn't big enough!");
722    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
723    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
724  }
725
726  /// setIndexedStoreAction - Indicate that the specified indexed store does or
727  /// does not work with the with specified type and indicate what to do about
728  /// it. NOTE: All indexed mode stores are initialized to Expand in
729  /// TargetLowering.cpp
730  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
731                             LegalizeAction Action) {
732    assert(VT < 32 && IdxMode <
733           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
734           "Table isn't big enough!");
735    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
736    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
737  }
738
739  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
740  /// promotion code defaults to trying a larger integer/fp until it can find
741  /// one that works.  If that default is insufficient, this method can be used
742  /// by the target to override the default.
743  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
744                         MVT::ValueType DestVT) {
745    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
746  }
747
748  /// addLegalFPImmediate - Indicate that this target can instruction select
749  /// the specified FP immediate natively.
750  void addLegalFPImmediate(double Imm) {
751    LegalFPImmediates.push_back(Imm);
752  }
753
754  /// setTargetDAGCombine - Targets should invoke this method for each target
755  /// independent node that they want to provide a custom DAG combiner for by
756  /// implementing the PerformDAGCombine virtual method.
757  void setTargetDAGCombine(ISD::NodeType NT) {
758    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
759  }
760
761  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
762  /// bytes); default is 200
763  void setJumpBufSize(unsigned Size) {
764    JumpBufSize = Size;
765  }
766
767  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
768  /// alignment (in bytes); default is 0
769  void setJumpBufAlignment(unsigned Align) {
770    JumpBufAlignment = Align;
771  }
772
773  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
774  /// limit (in number of instructions); default is 2.
775  void setIfCvtBlockSizeLimit(unsigned Limit) {
776    IfCvtBlockSizeLimit = Limit;
777  }
778
779  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
780  /// of instructions) to be considered for code duplication during
781  /// if-conversion; default is 2.
782  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
783    IfCvtDupBlockSizeLimit = Limit;
784  }
785
786public:
787
788  //===--------------------------------------------------------------------===//
789  // Lowering methods - These methods must be implemented by targets so that
790  // the SelectionDAGLowering code knows how to lower these.
791  //
792
793  /// LowerArguments - This hook must be implemented to indicate how we should
794  /// lower the arguments for the specified function, into the specified DAG.
795  virtual std::vector<SDOperand>
796  LowerArguments(Function &F, SelectionDAG &DAG);
797
798  /// LowerCallTo - This hook lowers an abstract call to a function into an
799  /// actual call.  This returns a pair of operands.  The first element is the
800  /// return value for the function (if RetTy is not VoidTy).  The second
801  /// element is the outgoing token chain.
802  struct ArgListEntry {
803    SDOperand Node;
804    const Type* Ty;
805    bool isSExt;
806    bool isZExt;
807    bool isInReg;
808    bool isSRet;
809
810    ArgListEntry():isSExt(false), isZExt(false), isInReg(false), isSRet(false) { };
811  };
812  typedef std::vector<ArgListEntry> ArgListTy;
813  virtual std::pair<SDOperand, SDOperand>
814  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
815              bool isVarArg, unsigned CallingConv, bool isTailCall,
816              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
817
818  /// LowerOperation - This callback is invoked for operations that are
819  /// unsupported by the target, which are registered to use 'custom' lowering,
820  /// and whose defined values are all legal.
821  /// If the target has no operations that require custom lowering, it need not
822  /// implement this.  The default implementation of this aborts.
823  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
824
825  /// CustomPromoteOperation - This callback is invoked for operations that are
826  /// unsupported by the target, are registered to use 'custom' lowering, and
827  /// whose type needs to be promoted.
828  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
829
830  /// getTargetNodeName() - This method returns the name of a target specific
831  /// DAG node.
832  virtual const char *getTargetNodeName(unsigned Opcode) const;
833
834  //===--------------------------------------------------------------------===//
835  // Inline Asm Support hooks
836  //
837
838  enum ConstraintType {
839    C_Register,            // Constraint represents a single register.
840    C_RegisterClass,       // Constraint represents one or more registers.
841    C_Memory,              // Memory constraint.
842    C_Other,               // Something else.
843    C_Unknown              // Unsupported constraint.
844  };
845
846  /// getConstraintType - Given a constraint, return the type of constraint it
847  /// is for this target.
848  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
849
850
851  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
852  /// return a list of registers that can be used to satisfy the constraint.
853  /// This should only be used for C_RegisterClass constraints.
854  virtual std::vector<unsigned>
855  getRegClassForInlineAsmConstraint(const std::string &Constraint,
856                                    MVT::ValueType VT) const;
857
858  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
859  /// {edx}), return the register number and the register class for the
860  /// register.
861  ///
862  /// Given a register class constraint, like 'r', if this corresponds directly
863  /// to an LLVM register class, return a register of 0 and the register class
864  /// pointer.
865  ///
866  /// This should only be used for C_Register constraints.  On error,
867  /// this returns a register number of 0 and a null register class pointer..
868  virtual std::pair<unsigned, const TargetRegisterClass*>
869    getRegForInlineAsmConstraint(const std::string &Constraint,
870                                 MVT::ValueType VT) const;
871
872
873  /// isOperandValidForConstraint - Return the specified operand (possibly
874  /// modified) if the specified SDOperand is valid for the specified target
875  /// constraint letter, otherwise return null.
876  virtual SDOperand
877    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
878                                SelectionDAG &DAG);
879
880  //===--------------------------------------------------------------------===//
881  // Scheduler hooks
882  //
883
884  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
885  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
886  // instructions are special in various ways, which require special support to
887  // insert.  The specified MachineInstr is created but not inserted into any
888  // basic blocks, and the scheduler passes ownership of it to this method.
889  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
890                                                     MachineBasicBlock *MBB);
891
892  //===--------------------------------------------------------------------===//
893  // Addressing mode description hooks (used by LSR etc).
894  //
895
896  /// AddrMode - This represents an addressing mode of:
897  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
898  /// If BaseGV is null,  there is no BaseGV.
899  /// If BaseOffs is zero, there is no base offset.
900  /// If HasBaseReg is false, there is no base register.
901  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
902  /// no scale.
903  ///
904  struct AddrMode {
905    GlobalValue *BaseGV;
906    int64_t      BaseOffs;
907    bool         HasBaseReg;
908    int64_t      Scale;
909    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
910  };
911
912  /// isLegalAddressingMode - Return true if the addressing mode represented by
913  /// AM is legal for this target, for a load/store of the specified type.
914  /// TODO: Handle pre/postinc as well.
915  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
916
917  //===--------------------------------------------------------------------===//
918  // Div utility functions
919  //
920  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
921                      std::vector<SDNode*>* Created) const;
922  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
923                      std::vector<SDNode*>* Created) const;
924
925
926  //===--------------------------------------------------------------------===//
927  // Runtime Library hooks
928  //
929
930  /// setLibcallName - Rename the default libcall routine name for the specified
931  /// libcall.
932  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
933    LibcallRoutineNames[Call] = Name;
934  }
935
936  /// getLibcallName - Get the libcall routine name for the specified libcall.
937  ///
938  const char *getLibcallName(RTLIB::Libcall Call) const {
939    return LibcallRoutineNames[Call];
940  }
941
942  /// setCmpLibcallCC - Override the default CondCode to be used to test the
943  /// result of the comparison libcall against zero.
944  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
945    CmpLibcallCCs[Call] = CC;
946  }
947
948  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
949  /// the comparison libcall against zero.
950  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
951    return CmpLibcallCCs[Call];
952  }
953
954private:
955  TargetMachine &TM;
956  const TargetData *TD;
957
958  /// IsLittleEndian - True if this is a little endian target.
959  ///
960  bool IsLittleEndian;
961
962  /// PointerTy - The type to use for pointers, usually i32 or i64.
963  ///
964  MVT::ValueType PointerTy;
965
966  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
967  ///
968  bool UsesGlobalOffsetTable;
969
970  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
971  /// PointerTy is.
972  MVT::ValueType ShiftAmountTy;
973
974  OutOfRangeShiftAmount ShiftAmtHandling;
975
976  /// SelectIsExpensive - Tells the code generator not to expand operations
977  /// into sequences that use the select operations if possible.
978  bool SelectIsExpensive;
979
980  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
981  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
982  /// a real cost model is in place.  If we ever optimize for size, this will be
983  /// set to true unconditionally.
984  bool IntDivIsCheap;
985
986  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
987  /// srl/add/sra for a signed divide by power of two, and let the target handle
988  /// it.
989  bool Pow2DivIsCheap;
990
991  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
992  /// PointerTy.
993  MVT::ValueType SetCCResultTy;
994
995  /// SetCCResultContents - Information about the contents of the high-bits in
996  /// the result of a setcc comparison operation.
997  SetCCResultValue SetCCResultContents;
998
999  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1000  /// total cycles or lowest register usage.
1001  SchedPreference SchedPreferenceInfo;
1002
1003  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1004  /// llvm.setjmp.  Defaults to false.
1005  bool UseUnderscoreSetJmp;
1006
1007  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1008  /// llvm.longjmp.  Defaults to false.
1009  bool UseUnderscoreLongJmp;
1010
1011  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1012  unsigned JumpBufSize;
1013
1014  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1015  /// buffers
1016  unsigned JumpBufAlignment;
1017
1018  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1019  /// if-converted.
1020  unsigned IfCvtBlockSizeLimit;
1021
1022  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1023  /// duplicated during if-conversion.
1024  unsigned IfCvtDupBlockSizeLimit;
1025
1026  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1027  /// specifies the register that llvm.savestack/llvm.restorestack should save
1028  /// and restore.
1029  unsigned StackPointerRegisterToSaveRestore;
1030
1031  /// ExceptionPointerRegister - If set to a physical register, this specifies
1032  /// the register that receives the exception address on entry to a landing
1033  /// pad.
1034  unsigned ExceptionPointerRegister;
1035
1036  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1037  /// the register that receives the exception typeid on entry to a landing
1038  /// pad.
1039  unsigned ExceptionSelectorRegister;
1040
1041  /// RegClassForVT - This indicates the default register class to use for
1042  /// each ValueType the target supports natively.
1043  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1044  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1045
1046  /// TransformToType - For any value types we are promoting or expanding, this
1047  /// contains the value type that we are changing to.  For Expanded types, this
1048  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1049  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1050  /// by the system, this holds the same type (e.g. i32 -> i32).
1051  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1052
1053  /// OpActions - For each operation and each value type, keep a LegalizeAction
1054  /// that indicates how instruction selection should deal with the operation.
1055  /// Most operations are Legal (aka, supported natively by the target), but
1056  /// operations that are not should be described.  Note that operations on
1057  /// non-legal value types are not described here.
1058  uint64_t OpActions[156];
1059
1060  /// LoadXActions - For each load of load extension type and each value type,
1061  /// keep a LegalizeAction that indicates how instruction selection should deal
1062  /// with the load.
1063  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1064
1065  /// StoreXActions - For each store with truncation of each value type, keep a
1066  /// LegalizeAction that indicates how instruction selection should deal with
1067  /// the store.
1068  uint64_t StoreXActions;
1069
1070  /// IndexedModeActions - For each indexed mode and each value type, keep a
1071  /// pair of LegalizeAction that indicates how instruction selection should
1072  /// deal with the load / store.
1073  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1074
1075  ValueTypeActionImpl ValueTypeActions;
1076
1077  std::vector<double> LegalFPImmediates;
1078
1079  std::vector<std::pair<MVT::ValueType,
1080                        TargetRegisterClass*> > AvailableRegClasses;
1081
1082  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1083  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1084  /// which sets a bit in this array.
1085  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1086
1087  /// PromoteToType - For operations that must be promoted to a specific type,
1088  /// this holds the destination type.  This map should be sparse, so don't hold
1089  /// it as an array.
1090  ///
1091  /// Targets add entries to this map with AddPromotedToType(..), clients access
1092  /// this with getTypeToPromoteTo(..).
1093  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1094
1095  /// LibcallRoutineNames - Stores the name each libcall.
1096  ///
1097  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1098
1099  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1100  /// of each of the comparison libcall against zero.
1101  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1102
1103protected:
1104  /// When lowering %llvm.memset this field specifies the maximum number of
1105  /// store operations that may be substituted for the call to memset. Targets
1106  /// must set this value based on the cost threshold for that target. Targets
1107  /// should assume that the memset will be done using as many of the largest
1108  /// store operations first, followed by smaller ones, if necessary, per
1109  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1110  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1111  /// store.  This only applies to setting a constant array of a constant size.
1112  /// @brief Specify maximum number of store instructions per memset call.
1113  unsigned maxStoresPerMemset;
1114
1115  /// When lowering %llvm.memcpy this field specifies the maximum number of
1116  /// store operations that may be substituted for a call to memcpy. Targets
1117  /// must set this value based on the cost threshold for that target. Targets
1118  /// should assume that the memcpy will be done using as many of the largest
1119  /// store operations first, followed by smaller ones, if necessary, per
1120  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1121  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1122  /// and one 1-byte store. This only applies to copying a constant array of
1123  /// constant size.
1124  /// @brief Specify maximum bytes of store instructions per memcpy call.
1125  unsigned maxStoresPerMemcpy;
1126
1127  /// When lowering %llvm.memmove this field specifies the maximum number of
1128  /// store instructions that may be substituted for a call to memmove. Targets
1129  /// must set this value based on the cost threshold for that target. Targets
1130  /// should assume that the memmove will be done using as many of the largest
1131  /// store operations first, followed by smaller ones, if necessary, per
1132  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1133  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1134  /// applies to copying a constant array of constant size.
1135  /// @brief Specify maximum bytes of store instructions per memmove call.
1136  unsigned maxStoresPerMemmove;
1137
1138  /// This field specifies whether the target machine permits unaligned memory
1139  /// accesses.  This is used, for example, to determine the size of store
1140  /// operations when copying small arrays and other similar tasks.
1141  /// @brief Indicate whether the target permits unaligned memory accesses.
1142  bool allowUnalignedMemoryAccesses;
1143};
1144} // end llvm namespace
1145
1146#endif
1147