TargetLowering.h revision 825b72b0571821bf2d378749f69d6c4cfb52d2f9
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  // FIXME: should this be here?
61  namespace TLSModel {
62    enum Model {
63      GeneralDynamic,
64      LocalDynamic,
65      InitialExec,
66      LocalExec
67    };
68  }
69  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
82  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  enum BooleanContent { // How the target represents true/false values.
94    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
95    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
96    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
97  };
98
99  enum SchedPreference {
100    SchedulingForLatency,          // Scheduling for shortest total latency.
101    SchedulingForRegPressure       // Scheduling for lowest register pressure.
102  };
103
104  /// NOTE: The constructor takes ownership of TLOF.
105  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
118  /// codegen.
119  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
120
121  /// isSelectExpensive - Return true if the select operation is expensive for
122  /// this target.
123  bool isSelectExpensive() const { return SelectIsExpensive; }
124
125  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
126  /// a sequence of several shifts, adds, and multiplies for this target.
127  bool isIntDivCheap() const { return IntDivIsCheap; }
128
129  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
130  /// srl/add/sra.
131  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
132
133  /// getSetCCResultType - Return the ValueType of the result of SETCC
134  /// operations.  Also used to obtain the target's preferred type for
135  /// the condition operand of SELECT and BRCOND nodes.  In the case of
136  /// BRCOND the argument passed is MVT::Other since there are no other
137  /// operands to get a type hint from.
138  virtual
139  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
140
141  /// getBooleanContents - For targets without i1 registers, this gives the
142  /// nature of the high-bits of boolean values held in types wider than i1.
143  /// "Boolean values" are special true/false values produced by nodes like
144  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
145  /// Not to be confused with general values promoted from i1.
146  BooleanContent getBooleanContents() const { return BooleanContents;}
147
148  /// getSchedulingPreference - Return target scheduling preference.
149  SchedPreference getSchedulingPreference() const {
150    return SchedPreferenceInfo;
151  }
152
153  /// getRegClassFor - Return the register class that should be used for the
154  /// specified value type.  This may only be called on legal types.
155  TargetRegisterClass *getRegClassFor(EVT VT) const {
156    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
157    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
158    assert(RC && "This value type is not natively supported!");
159    return RC;
160  }
161
162  /// isTypeLegal - Return true if the target has native support for the
163  /// specified value type.  This means that it has a register that directly
164  /// holds it without promotions or expansions.
165  bool isTypeLegal(EVT VT) const {
166    assert(!VT.isSimple() ||
167           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
168    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
169  }
170
171  class ValueTypeActionImpl {
172    /// ValueTypeActions - This is a bitvector that contains two bits for each
173    /// value type, where the two bits correspond to the LegalizeAction enum.
174    /// This can be queried with "getTypeAction(VT)".
175    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
176    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
177  public:
178    ValueTypeActionImpl() {
179      ValueTypeActions[0] = ValueTypeActions[1] = 0;
180      ValueTypeActions[2] = ValueTypeActions[3] = 0;
181    }
182    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
183      ValueTypeActions[0] = RHS.ValueTypeActions[0];
184      ValueTypeActions[1] = RHS.ValueTypeActions[1];
185      ValueTypeActions[2] = RHS.ValueTypeActions[2];
186      ValueTypeActions[3] = RHS.ValueTypeActions[3];
187    }
188
189    LegalizeAction getTypeAction(EVT VT) const {
190      if (VT.isExtended()) {
191        if (VT.isVector()) {
192          return VT.isPow2VectorType() ? Expand : Promote;
193        }
194        if (VT.isInteger())
195          // First promote to a power-of-two size, then expand if necessary.
196          return VT == VT.getRoundIntegerType() ? Expand : Promote;
197        assert(0 && "Unsupported extended type!");
198        return Legal;
199      }
200      unsigned I = VT.getSimpleVT().SimpleTy;
201      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
202      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
203    }
204    void setTypeAction(EVT VT, LegalizeAction Action) {
205      unsigned I = VT.getSimpleVT().SimpleTy;
206      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
207      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
208    }
209  };
210
211  const ValueTypeActionImpl &getValueTypeActions() const {
212    return ValueTypeActions;
213  }
214
215  /// getTypeAction - Return how we should legalize values of this type, either
216  /// it is already legal (return 'Legal') or we need to promote it to a larger
217  /// type (return 'Promote'), or we need to expand it into multiple registers
218  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
219  LegalizeAction getTypeAction(EVT VT) const {
220    return ValueTypeActions.getTypeAction(VT);
221  }
222
223  /// getTypeToTransformTo - For types supported by the target, this is an
224  /// identity function.  For types that must be promoted to larger types, this
225  /// returns the larger type to promote to.  For integer types that are larger
226  /// than the largest integer register, this contains one step in the expansion
227  /// to get to the smaller register. For illegal floating point types, this
228  /// returns the integer type to transform to.
229  EVT getTypeToTransformTo(EVT VT) const {
230    if (VT.isSimple()) {
231      assert((unsigned)VT.getSimpleVT().SimpleTy <
232             array_lengthof(TransformToType));
233      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
234      assert(getTypeAction(NVT) != Promote &&
235             "Promote may not follow Expand or Promote");
236      return NVT;
237    }
238
239    if (VT.isVector()) {
240      EVT NVT = VT.getPow2VectorType();
241      if (NVT == VT) {
242        // Vector length is a power of 2 - split to half the size.
243        unsigned NumElts = VT.getVectorNumElements();
244        EVT EltVT = VT.getVectorElementType();
245        return (NumElts == 1) ? EltVT : EVT::getVectorVT(EltVT, NumElts / 2);
246      }
247      // Promote to a power of two size, avoiding multi-step promotion.
248      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
249    } else if (VT.isInteger()) {
250      EVT NVT = VT.getRoundIntegerType();
251      if (NVT == VT)
252        // Size is a power of two - expand to half the size.
253        return EVT::getIntegerVT(VT.getSizeInBits() / 2);
254      else
255        // Promote to a power of two size, avoiding multi-step promotion.
256        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
257    }
258    assert(0 && "Unsupported extended type!");
259    return MVT(MVT::Other); // Not reached
260  }
261
262  /// getTypeToExpandTo - For types supported by the target, this is an
263  /// identity function.  For types that must be expanded (i.e. integer types
264  /// that are larger than the largest integer register or illegal floating
265  /// point types), this returns the largest legal type it will be expanded to.
266  EVT getTypeToExpandTo(EVT VT) const {
267    assert(!VT.isVector());
268    while (true) {
269      switch (getTypeAction(VT)) {
270      case Legal:
271        return VT;
272      case Expand:
273        VT = getTypeToTransformTo(VT);
274        break;
275      default:
276        assert(false && "Type is not legal nor is it to be expanded!");
277        return VT;
278      }
279    }
280    return VT;
281  }
282
283  /// getVectorTypeBreakdown - Vector types are broken down into some number of
284  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
285  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
286  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
287  ///
288  /// This method returns the number of registers needed, and the VT for each
289  /// register.  It also returns the VT and quantity of the intermediate values
290  /// before they are promoted/expanded.
291  ///
292  unsigned getVectorTypeBreakdown(EVT VT,
293                                  EVT &IntermediateVT,
294                                  unsigned &NumIntermediates,
295                                  EVT &RegisterVT) const;
296
297  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
298  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
299  /// this is the case, it returns true and store the intrinsic
300  /// information into the IntrinsicInfo that was passed to the function.
301  typedef struct IntrinsicInfo {
302    unsigned     opc;         // target opcode
303    EVT          memVT;       // memory VT
304    const Value* ptrVal;      // value representing memory location
305    int          offset;      // offset off of ptrVal
306    unsigned     align;       // alignment
307    bool         vol;         // is volatile?
308    bool         readMem;     // reads memory?
309    bool         writeMem;    // writes memory?
310  } IntrinisicInfo;
311
312  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
313                                  CallInst &I, unsigned Intrinsic) {
314    return false;
315  }
316
317  /// getWidenVectorType: given a vector type, returns the type to widen to
318  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
319  /// If there is no vector type that we want to widen to, returns MVT::Other
320  /// When and were to widen is target dependent based on the cost of
321  /// scalarizing vs using the wider vector type.
322  virtual EVT getWidenVectorType(EVT VT) const;
323
324  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
325  legal_fpimm_iterator legal_fpimm_begin() const {
326    return LegalFPImmediates.begin();
327  }
328  legal_fpimm_iterator legal_fpimm_end() const {
329    return LegalFPImmediates.end();
330  }
331
332  /// isShuffleMaskLegal - Targets can use this to indicate that they only
333  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
334  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
335  /// are assumed to be legal.
336  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
337                                  EVT VT) const {
338    return true;
339  }
340
341  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
342  /// used by Targets can use this to indicate if there is a suitable
343  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
344  /// pool entry.
345  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
346                                      EVT VT) const {
347    return false;
348  }
349
350  /// getOperationAction - Return how this operation should be treated: either
351  /// it is legal, needs to be promoted to a larger size, needs to be
352  /// expanded to some other code sequence, or the target has a custom expander
353  /// for it.
354  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
355    if (VT.isExtended()) return Expand;
356    assert(Op < array_lengthof(OpActions[0]) &&
357           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
358           "Table isn't big enough!");
359    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
360    unsigned J = I & 31;
361    I = I >> 5;
362    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
363  }
364
365  /// isOperationLegalOrCustom - Return true if the specified operation is
366  /// legal on this target or can be made legal with custom lowering. This
367  /// is used to help guide high-level lowering decisions.
368  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
369    return (VT == MVT::Other || isTypeLegal(VT)) &&
370      (getOperationAction(Op, VT) == Legal ||
371       getOperationAction(Op, VT) == Custom);
372  }
373
374  /// isOperationLegal - Return true if the specified operation is legal on this
375  /// target.
376  bool isOperationLegal(unsigned Op, EVT VT) const {
377    return (VT == MVT::Other || isTypeLegal(VT)) &&
378           getOperationAction(Op, VT) == Legal;
379  }
380
381  /// getLoadExtAction - Return how this load with extension should be treated:
382  /// either it is legal, needs to be promoted to a larger size, needs to be
383  /// expanded to some other code sequence, or the target has a custom expander
384  /// for it.
385  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
386    assert(LType < array_lengthof(LoadExtActions) &&
387           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
388           "Table isn't big enough!");
389    return (LegalizeAction)((LoadExtActions[LType] >>
390              (2*VT.getSimpleVT().SimpleTy)) & 3);
391  }
392
393  /// isLoadExtLegal - Return true if the specified load with extension is legal
394  /// on this target.
395  bool isLoadExtLegal(unsigned LType, EVT VT) const {
396    return VT.isSimple() &&
397      (getLoadExtAction(LType, VT) == Legal ||
398       getLoadExtAction(LType, VT) == Custom);
399  }
400
401  /// getTruncStoreAction - Return how this store with truncation should be
402  /// treated: either it is legal, needs to be promoted to a larger size, needs
403  /// to be expanded to some other code sequence, or the target has a custom
404  /// expander for it.
405  LegalizeAction getTruncStoreAction(EVT ValVT,
406                                     EVT MemVT) const {
407    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
408             array_lengthof(TruncStoreActions) &&
409           (unsigned)MemVT.getSimpleVT().SimpleTy <
410             sizeof(TruncStoreActions[0])*4 &&
411           "Table isn't big enough!");
412    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
413                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
414  }
415
416  /// isTruncStoreLegal - Return true if the specified store with truncation is
417  /// legal on this target.
418  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
419    return isTypeLegal(ValVT) && MemVT.isSimple() &&
420      (getTruncStoreAction(ValVT, MemVT) == Legal ||
421       getTruncStoreAction(ValVT, MemVT) == Custom);
422  }
423
424  /// getIndexedLoadAction - Return how the indexed load should be treated:
425  /// either it is legal, needs to be promoted to a larger size, needs to be
426  /// expanded to some other code sequence, or the target has a custom expander
427  /// for it.
428  LegalizeAction
429  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
430    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
431           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
432           "Table isn't big enough!");
433    return (LegalizeAction)((IndexedModeActions[
434                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
435  }
436
437  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
438  /// on this target.
439  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
440    return VT.isSimple() &&
441      (getIndexedLoadAction(IdxMode, VT) == Legal ||
442       getIndexedLoadAction(IdxMode, VT) == Custom);
443  }
444
445  /// getIndexedStoreAction - Return how the indexed store should be treated:
446  /// either it is legal, needs to be promoted to a larger size, needs to be
447  /// expanded to some other code sequence, or the target has a custom expander
448  /// for it.
449  LegalizeAction
450  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
451    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
452           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
453           "Table isn't big enough!");
454    return (LegalizeAction)((IndexedModeActions[
455              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
456  }
457
458  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
459  /// on this target.
460  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
461    return VT.isSimple() &&
462      (getIndexedStoreAction(IdxMode, VT) == Legal ||
463       getIndexedStoreAction(IdxMode, VT) == Custom);
464  }
465
466  /// getConvertAction - Return how the conversion should be treated:
467  /// either it is legal, needs to be promoted to a larger size, needs to be
468  /// expanded to some other code sequence, or the target has a custom expander
469  /// for it.
470  LegalizeAction
471  getConvertAction(EVT FromVT, EVT ToVT) const {
472    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
473              array_lengthof(ConvertActions) &&
474           (unsigned)ToVT.getSimpleVT().SimpleTy <
475              sizeof(ConvertActions[0])*4 &&
476           "Table isn't big enough!");
477    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
478                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
479  }
480
481  /// isConvertLegal - Return true if the specified conversion is legal
482  /// on this target.
483  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
484    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
485      (getConvertAction(FromVT, ToVT) == Legal ||
486       getConvertAction(FromVT, ToVT) == Custom);
487  }
488
489  /// getCondCodeAction - Return how the condition code should be treated:
490  /// either it is legal, needs to be expanded to some other code sequence,
491  /// or the target has a custom expander for it.
492  LegalizeAction
493  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
494    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
495           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
496           "Table isn't big enough!");
497    LegalizeAction Action = (LegalizeAction)
498      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
499    assert(Action != Promote && "Can't promote condition code!");
500    return Action;
501  }
502
503  /// isCondCodeLegal - Return true if the specified condition code is legal
504  /// on this target.
505  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
506    return getCondCodeAction(CC, VT) == Legal ||
507           getCondCodeAction(CC, VT) == Custom;
508  }
509
510
511  /// getTypeToPromoteTo - If the action for this operation is to promote, this
512  /// method returns the ValueType to promote to.
513  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
514    assert(getOperationAction(Op, VT) == Promote &&
515           "This operation isn't promoted!");
516
517    // See if this has an explicit type specified.
518    std::map<std::pair<unsigned, MVT::SimpleValueType>,
519             MVT::SimpleValueType>::const_iterator PTTI =
520      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
521    if (PTTI != PromoteToType.end()) return PTTI->second;
522
523    assert((VT.isInteger() || VT.isFloatingPoint()) &&
524           "Cannot autopromote this type, add it with AddPromotedToType.");
525
526    EVT NVT = VT;
527    do {
528      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
529      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
530             "Didn't find type to promote to!");
531    } while (!isTypeLegal(NVT) ||
532              getOperationAction(Op, NVT) == Promote);
533    return NVT;
534  }
535
536  /// getValueType - Return the EVT corresponding to this LLVM type.
537  /// This is fixed by the LLVM operations except for the pointer size.  If
538  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
539  /// counterpart (e.g. structs), otherwise it will assert.
540  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
541    EVT VT = EVT::getEVT(Ty, AllowUnknown);
542    return VT == MVT:: iPTR ? PointerTy : VT;
543  }
544
545  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
546  /// function arguments in the caller parameter area.  This is the actual
547  /// alignment, not its logarithm.
548  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
549
550  /// getRegisterType - Return the type of registers that this ValueType will
551  /// eventually require.
552  EVT getRegisterType(EVT VT) const {
553    if (VT.isSimple()) {
554      assert((unsigned)VT.getSimpleVT().SimpleTy <
555                array_lengthof(RegisterTypeForVT));
556      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
557    }
558    if (VT.isVector()) {
559      EVT VT1, RegisterVT;
560      unsigned NumIntermediates;
561      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
562      return RegisterVT;
563    }
564    if (VT.isInteger()) {
565      return getRegisterType(getTypeToTransformTo(VT));
566    }
567    assert(0 && "Unsupported extended type!");
568    return EVT(MVT::Other); // Not reached
569  }
570
571  /// getNumRegisters - Return the number of registers that this ValueType will
572  /// eventually require.  This is one for any types promoted to live in larger
573  /// registers, but may be more than one for types (like i64) that are split
574  /// into pieces.  For types like i140, which are first promoted then expanded,
575  /// it is the number of registers needed to hold all the bits of the original
576  /// type.  For an i140 on a 32 bit machine this means 5 registers.
577  unsigned getNumRegisters(EVT VT) const {
578    if (VT.isSimple()) {
579      assert((unsigned)VT.getSimpleVT().SimpleTy <
580                array_lengthof(NumRegistersForVT));
581      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
582    }
583    if (VT.isVector()) {
584      EVT VT1, VT2;
585      unsigned NumIntermediates;
586      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
587    }
588    if (VT.isInteger()) {
589      unsigned BitWidth = VT.getSizeInBits();
590      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
591      return (BitWidth + RegWidth - 1) / RegWidth;
592    }
593    assert(0 && "Unsupported extended type!");
594    return 0; // Not reached
595  }
596
597  /// ShouldShrinkFPConstant - If true, then instruction selection should
598  /// seek to shrink the FP constant of the specified type to a smaller type
599  /// in order to save space and / or reduce runtime.
600  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
601
602  /// hasTargetDAGCombine - If true, the target has custom DAG combine
603  /// transformations that it can perform for the specified node.
604  bool hasTargetDAGCombine(ISD::NodeType NT) const {
605    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
606    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
607  }
608
609  /// This function returns the maximum number of store operations permitted
610  /// to replace a call to llvm.memset. The value is set by the target at the
611  /// performance threshold for such a replacement.
612  /// @brief Get maximum # of store operations permitted for llvm.memset
613  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
614
615  /// This function returns the maximum number of store operations permitted
616  /// to replace a call to llvm.memcpy. The value is set by the target at the
617  /// performance threshold for such a replacement.
618  /// @brief Get maximum # of store operations permitted for llvm.memcpy
619  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
620
621  /// This function returns the maximum number of store operations permitted
622  /// to replace a call to llvm.memmove. The value is set by the target at the
623  /// performance threshold for such a replacement.
624  /// @brief Get maximum # of store operations permitted for llvm.memmove
625  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
626
627  /// This function returns true if the target allows unaligned memory accesses.
628  /// This is used, for example, in situations where an array copy/move/set is
629  /// converted to a sequence of store operations. It's use helps to ensure that
630  /// such replacements don't generate code that causes an alignment error
631  /// (trap) on the target machine.
632  /// @brief Determine if the target supports unaligned memory accesses.
633  bool allowsUnalignedMemoryAccesses() const {
634    return allowUnalignedMemoryAccesses;
635  }
636
637  /// This function returns true if the target would benefit from code placement
638  /// optimization.
639  /// @brief Determine if the target should perform code placement optimization.
640  bool shouldOptimizeCodePlacement() const {
641    return benefitFromCodePlacementOpt;
642  }
643
644  /// getOptimalMemOpType - Returns the target specific optimal type for load
645  /// and store operations as a result of memset, memcpy, and memmove lowering.
646  /// It returns EVT::iAny if SelectionDAG should be responsible for
647  /// determining it.
648  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
649                                  bool isSrcConst, bool isSrcStr,
650                                  SelectionDAG &DAG) const {
651    return MVT::iAny;
652  }
653
654  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
655  /// to implement llvm.setjmp.
656  bool usesUnderscoreSetJmp() const {
657    return UseUnderscoreSetJmp;
658  }
659
660  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
661  /// to implement llvm.longjmp.
662  bool usesUnderscoreLongJmp() const {
663    return UseUnderscoreLongJmp;
664  }
665
666  /// getStackPointerRegisterToSaveRestore - If a physical register, this
667  /// specifies the register that llvm.savestack/llvm.restorestack should save
668  /// and restore.
669  unsigned getStackPointerRegisterToSaveRestore() const {
670    return StackPointerRegisterToSaveRestore;
671  }
672
673  /// getExceptionAddressRegister - If a physical register, this returns
674  /// the register that receives the exception address on entry to a landing
675  /// pad.
676  unsigned getExceptionAddressRegister() const {
677    return ExceptionPointerRegister;
678  }
679
680  /// getExceptionSelectorRegister - If a physical register, this returns
681  /// the register that receives the exception typeid on entry to a landing
682  /// pad.
683  unsigned getExceptionSelectorRegister() const {
684    return ExceptionSelectorRegister;
685  }
686
687  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
688  /// set, the default is 200)
689  unsigned getJumpBufSize() const {
690    return JumpBufSize;
691  }
692
693  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
694  /// (if never set, the default is 0)
695  unsigned getJumpBufAlignment() const {
696    return JumpBufAlignment;
697  }
698
699  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
700  /// limit. Any block whose size is greater should not be predicated.
701  unsigned getIfCvtBlockSizeLimit() const {
702    return IfCvtBlockSizeLimit;
703  }
704
705  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
706  /// block to be considered for duplication. Any block whose size is greater
707  /// should not be duplicated to facilitate its predication.
708  unsigned getIfCvtDupBlockSizeLimit() const {
709    return IfCvtDupBlockSizeLimit;
710  }
711
712  /// getPrefLoopAlignment - return the preferred loop alignment.
713  ///
714  unsigned getPrefLoopAlignment() const {
715    return PrefLoopAlignment;
716  }
717
718  /// getPreIndexedAddressParts - returns true by value, base pointer and
719  /// offset pointer and addressing mode by reference if the node's address
720  /// can be legally represented as pre-indexed load / store address.
721  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
722                                         SDValue &Offset,
723                                         ISD::MemIndexedMode &AM,
724                                         SelectionDAG &DAG) const {
725    return false;
726  }
727
728  /// getPostIndexedAddressParts - returns true by value, base pointer and
729  /// offset pointer and addressing mode by reference if this node can be
730  /// combined with a load / store to form a post-indexed load / store.
731  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
732                                          SDValue &Base, SDValue &Offset,
733                                          ISD::MemIndexedMode &AM,
734                                          SelectionDAG &DAG) const {
735    return false;
736  }
737
738  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
739  /// jumptable.
740  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
741                                             SelectionDAG &DAG) const;
742
743  /// isOffsetFoldingLegal - Return true if folding a constant offset
744  /// with the given GlobalAddress is legal.  It is frequently not legal in
745  /// PIC relocation models.
746  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
747
748  /// getFunctionAlignment - Return the Log2 alignment of this function.
749  virtual unsigned getFunctionAlignment(const Function *) const = 0;
750
751  //===--------------------------------------------------------------------===//
752  // TargetLowering Optimization Methods
753  //
754
755  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
756  /// SDValues for returning information from TargetLowering to its clients
757  /// that want to combine
758  struct TargetLoweringOpt {
759    SelectionDAG &DAG;
760    SDValue Old;
761    SDValue New;
762
763    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
764
765    bool CombineTo(SDValue O, SDValue N) {
766      Old = O;
767      New = N;
768      return true;
769    }
770
771    /// ShrinkDemandedConstant - Check to see if the specified operand of the
772    /// specified instruction is a constant integer.  If so, check to see if
773    /// there are any bits set in the constant that are not demanded.  If so,
774    /// shrink the constant and return true.
775    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
776
777    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
778    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
779    /// cast, but it could be generalized for targets with other types of
780    /// implicit widening casts.
781    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
782                          DebugLoc dl);
783  };
784
785  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
786  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
787  /// use this information to simplify Op, create a new simplified DAG node and
788  /// return true, returning the original and new nodes in Old and New.
789  /// Otherwise, analyze the expression and return a mask of KnownOne and
790  /// KnownZero bits for the expression (used to simplify the caller).
791  /// The KnownZero/One bits may only be accurate for those bits in the
792  /// DemandedMask.
793  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
794                            APInt &KnownZero, APInt &KnownOne,
795                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
796
797  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
798  /// Mask are known to be either zero or one and return them in the
799  /// KnownZero/KnownOne bitsets.
800  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
801                                              const APInt &Mask,
802                                              APInt &KnownZero,
803                                              APInt &KnownOne,
804                                              const SelectionDAG &DAG,
805                                              unsigned Depth = 0) const;
806
807  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
808  /// targets that want to expose additional information about sign bits to the
809  /// DAG Combiner.
810  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
811                                                   unsigned Depth = 0) const;
812
813  struct DAGCombinerInfo {
814    void *DC;  // The DAG Combiner object.
815    bool BeforeLegalize;
816    bool BeforeLegalizeOps;
817    bool CalledByLegalizer;
818  public:
819    SelectionDAG &DAG;
820
821    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
822      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
823        CalledByLegalizer(cl), DAG(dag) {}
824
825    bool isBeforeLegalize() const { return BeforeLegalize; }
826    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
827    bool isCalledByLegalizer() const { return CalledByLegalizer; }
828
829    void AddToWorklist(SDNode *N);
830    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
831                      bool AddTo = true);
832    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
833    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
834
835    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
836  };
837
838  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
839  /// and cc. If it is unable to simplify it, return a null SDValue.
840  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
841                          ISD::CondCode Cond, bool foldBooleans,
842                          DAGCombinerInfo &DCI, DebugLoc dl) const;
843
844  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
845  /// node is a GlobalAddress + offset.
846  virtual bool
847  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
848
849  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
850  /// location that is 'Dist' units away from the location that the 'Base' load
851  /// is loading from.
852  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
853                         int Dist, const MachineFrameInfo *MFI) const;
854
855  /// PerformDAGCombine - This method will be invoked for all target nodes and
856  /// for any target-independent nodes that the target has registered with
857  /// invoke it for.
858  ///
859  /// The semantics are as follows:
860  /// Return Value:
861  ///   SDValue.Val == 0   - No change was made
862  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
863  ///   otherwise          - N should be replaced by the returned Operand.
864  ///
865  /// In addition, methods provided by DAGCombinerInfo may be used to perform
866  /// more complex transformations.
867  ///
868  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
869
870  //===--------------------------------------------------------------------===//
871  // TargetLowering Configuration Methods - These methods should be invoked by
872  // the derived class constructor to configure this object for the target.
873  //
874
875protected:
876  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
877  /// GOT for PC-relative code.
878  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
879
880  /// setShiftAmountType - Describe the type that should be used for shift
881  /// amounts.  This type defaults to the pointer type.
882  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
883
884  /// setBooleanContents - Specify how the target extends the result of a
885  /// boolean value from i1 to a wider type.  See getBooleanContents.
886  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
887
888  /// setSchedulingPreference - Specify the target scheduling preference.
889  void setSchedulingPreference(SchedPreference Pref) {
890    SchedPreferenceInfo = Pref;
891  }
892
893  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
894  /// use _setjmp to implement llvm.setjmp or the non _ version.
895  /// Defaults to false.
896  void setUseUnderscoreSetJmp(bool Val) {
897    UseUnderscoreSetJmp = Val;
898  }
899
900  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
901  /// use _longjmp to implement llvm.longjmp or the non _ version.
902  /// Defaults to false.
903  void setUseUnderscoreLongJmp(bool Val) {
904    UseUnderscoreLongJmp = Val;
905  }
906
907  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
908  /// specifies the register that llvm.savestack/llvm.restorestack should save
909  /// and restore.
910  void setStackPointerRegisterToSaveRestore(unsigned R) {
911    StackPointerRegisterToSaveRestore = R;
912  }
913
914  /// setExceptionPointerRegister - If set to a physical register, this sets
915  /// the register that receives the exception address on entry to a landing
916  /// pad.
917  void setExceptionPointerRegister(unsigned R) {
918    ExceptionPointerRegister = R;
919  }
920
921  /// setExceptionSelectorRegister - If set to a physical register, this sets
922  /// the register that receives the exception typeid on entry to a landing
923  /// pad.
924  void setExceptionSelectorRegister(unsigned R) {
925    ExceptionSelectorRegister = R;
926  }
927
928  /// SelectIsExpensive - Tells the code generator not to expand operations
929  /// into sequences that use the select operations if possible.
930  void setSelectIsExpensive() { SelectIsExpensive = true; }
931
932  /// setIntDivIsCheap - Tells the code generator that integer divide is
933  /// expensive, and if possible, should be replaced by an alternate sequence
934  /// of instructions not containing an integer divide.
935  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
936
937  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
938  /// srl/add/sra for a signed divide by power of two, and let the target handle
939  /// it.
940  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
941
942  /// addRegisterClass - Add the specified register class as an available
943  /// regclass for the specified value type.  This indicates the selector can
944  /// handle values of that class natively.
945  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
946    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
947    AvailableRegClasses.push_back(std::make_pair(VT, RC));
948    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
949  }
950
951  /// computeRegisterProperties - Once all of the register classes are added,
952  /// this allows us to compute derived properties we expose.
953  void computeRegisterProperties();
954
955  /// setOperationAction - Indicate that the specified operation does not work
956  /// with the specified type and indicate what to do about it.
957  void setOperationAction(unsigned Op, MVT VT,
958                          LegalizeAction Action) {
959    unsigned I = (unsigned)VT.SimpleTy;
960    unsigned J = I & 31;
961    I = I >> 5;
962    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
963    OpActions[I][Op] |= (uint64_t)Action << (J*2);
964  }
965
966  /// setLoadExtAction - Indicate that the specified load with extension does
967  /// not work with the with specified type and indicate what to do about it.
968  void setLoadExtAction(unsigned ExtType, MVT VT,
969                      LegalizeAction Action) {
970    assert((unsigned)VT.SimpleTy < sizeof(LoadExtActions[0])*4 &&
971           ExtType < array_lengthof(LoadExtActions) &&
972           "Table isn't big enough!");
973    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
974    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
975  }
976
977  /// setTruncStoreAction - Indicate that the specified truncating store does
978  /// not work with the with specified type and indicate what to do about it.
979  void setTruncStoreAction(MVT ValVT, MVT MemVT,
980                           LegalizeAction Action) {
981    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
982           (unsigned)MemVT.SimpleTy < sizeof(TruncStoreActions[0])*4 &&
983           "Table isn't big enough!");
984    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
985    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
986  }
987
988  /// setIndexedLoadAction - Indicate that the specified indexed load does or
989  /// does not work with the with specified type and indicate what to do abort
990  /// it. NOTE: All indexed mode loads are initialized to Expand in
991  /// TargetLowering.cpp
992  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
993                            LegalizeAction Action) {
994    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
995           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
996           "Table isn't big enough!");
997    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
998  }
999
1000  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1001  /// does not work with the with specified type and indicate what to do about
1002  /// it. NOTE: All indexed mode stores are initialized to Expand in
1003  /// TargetLowering.cpp
1004  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1005                             LegalizeAction Action) {
1006    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1007           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1008           "Table isn't big enough!");
1009    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1010  }
1011
1012  /// setConvertAction - Indicate that the specified conversion does or does
1013  /// not work with the with specified type and indicate what to do about it.
1014  void setConvertAction(MVT FromVT, MVT ToVT,
1015                        LegalizeAction Action) {
1016    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1017           (unsigned)ToVT.SimpleTy < sizeof(ConvertActions[0])*4 &&
1018           "Table isn't big enough!");
1019    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1020    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1021  }
1022
1023  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1024  /// supported on the target and indicate what to do about it.
1025  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1026                         LegalizeAction Action) {
1027    assert((unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
1028           (unsigned)CC < array_lengthof(CondCodeActions) &&
1029           "Table isn't big enough!");
1030    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1031    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1032  }
1033
1034  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1035  /// promotion code defaults to trying a larger integer/fp until it can find
1036  /// one that works.  If that default is insufficient, this method can be used
1037  /// by the target to override the default.
1038  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1039    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1040  }
1041
1042  /// addLegalFPImmediate - Indicate that this target can instruction select
1043  /// the specified FP immediate natively.
1044  void addLegalFPImmediate(const APFloat& Imm) {
1045    LegalFPImmediates.push_back(Imm);
1046  }
1047
1048  /// setTargetDAGCombine - Targets should invoke this method for each target
1049  /// independent node that they want to provide a custom DAG combiner for by
1050  /// implementing the PerformDAGCombine virtual method.
1051  void setTargetDAGCombine(ISD::NodeType NT) {
1052    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1053    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1054  }
1055
1056  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1057  /// bytes); default is 200
1058  void setJumpBufSize(unsigned Size) {
1059    JumpBufSize = Size;
1060  }
1061
1062  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1063  /// alignment (in bytes); default is 0
1064  void setJumpBufAlignment(unsigned Align) {
1065    JumpBufAlignment = Align;
1066  }
1067
1068  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1069  /// limit (in number of instructions); default is 2.
1070  void setIfCvtBlockSizeLimit(unsigned Limit) {
1071    IfCvtBlockSizeLimit = Limit;
1072  }
1073
1074  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1075  /// of instructions) to be considered for code duplication during
1076  /// if-conversion; default is 2.
1077  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1078    IfCvtDupBlockSizeLimit = Limit;
1079  }
1080
1081  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1082  /// alignment is zero, it means the target does not care about loop alignment.
1083  void setPrefLoopAlignment(unsigned Align) {
1084    PrefLoopAlignment = Align;
1085  }
1086
1087public:
1088
1089  virtual const TargetSubtarget *getSubtarget() {
1090    assert(0 && "Not Implemented");
1091    return NULL;    // this is here to silence compiler errors
1092  }
1093
1094  //===--------------------------------------------------------------------===//
1095  // Lowering methods - These methods must be implemented by targets so that
1096  // the SelectionDAGLowering code knows how to lower these.
1097  //
1098
1099  /// LowerFormalArguments - This hook must be implemented to lower the
1100  /// incoming (formal) arguments, described by the Ins array, into the
1101  /// specified DAG. The implementation should fill in the InVals array
1102  /// with legal-type argument values, and return the resulting token
1103  /// chain value.
1104  ///
1105  virtual SDValue
1106    LowerFormalArguments(SDValue Chain,
1107                         unsigned CallConv, bool isVarArg,
1108                         const SmallVectorImpl<ISD::InputArg> &Ins,
1109                         DebugLoc dl, SelectionDAG &DAG,
1110                         SmallVectorImpl<SDValue> &InVals) {
1111    assert(0 && "Not Implemented");
1112    return SDValue();    // this is here to silence compiler errors
1113  }
1114
1115  /// LowerCallTo - This function lowers an abstract call to a function into an
1116  /// actual call.  This returns a pair of operands.  The first element is the
1117  /// return value for the function (if RetTy is not VoidTy).  The second
1118  /// element is the outgoing token chain. It calls LowerCall to do the actual
1119  /// lowering.
1120  struct ArgListEntry {
1121    SDValue Node;
1122    const Type* Ty;
1123    bool isSExt  : 1;
1124    bool isZExt  : 1;
1125    bool isInReg : 1;
1126    bool isSRet  : 1;
1127    bool isNest  : 1;
1128    bool isByVal : 1;
1129    uint16_t Alignment;
1130
1131    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1132      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1133  };
1134  typedef std::vector<ArgListEntry> ArgListTy;
1135  std::pair<SDValue, SDValue>
1136  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1137              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1138              unsigned CallConv, bool isTailCall, bool isReturnValueUsed,
1139              SDValue Callee, ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl);
1140
1141  /// LowerCall - This hook must be implemented to lower calls into the
1142  /// the specified DAG. The outgoing arguments to the call are described
1143  /// by the Outs array, and the values to be returned by the call are
1144  /// described by the Ins array. The implementation should fill in the
1145  /// InVals array with legal-type return values from the call, and return
1146  /// the resulting token chain value.
1147  ///
1148  /// The isTailCall flag here is normative. If it is true, the
1149  /// implementation must emit a tail call. The
1150  /// IsEligibleForTailCallOptimization hook should be used to catch
1151  /// cases that cannot be handled.
1152  ///
1153  virtual SDValue
1154    LowerCall(SDValue Chain, SDValue Callee,
1155              unsigned CallConv, bool isVarArg, bool isTailCall,
1156              const SmallVectorImpl<ISD::OutputArg> &Outs,
1157              const SmallVectorImpl<ISD::InputArg> &Ins,
1158              DebugLoc dl, SelectionDAG &DAG,
1159              SmallVectorImpl<SDValue> &InVals) {
1160    assert(0 && "Not Implemented");
1161    return SDValue();    // this is here to silence compiler errors
1162  }
1163
1164  /// LowerReturn - This hook must be implemented to lower outgoing
1165  /// return values, described by the Outs array, into the specified
1166  /// DAG. The implementation should return the resulting token chain
1167  /// value.
1168  ///
1169  virtual SDValue
1170    LowerReturn(SDValue Chain, unsigned CallConv, bool isVarArg,
1171                const SmallVectorImpl<ISD::OutputArg> &Outs,
1172                DebugLoc dl, SelectionDAG &DAG) {
1173    assert(0 && "Not Implemented");
1174    return SDValue();    // this is here to silence compiler errors
1175  }
1176
1177  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1178  /// memcpy. This can be used by targets to provide code sequences for cases
1179  /// that don't fit the target's parameters for simple loads/stores and can be
1180  /// more efficient than using a library call. This function can return a null
1181  /// SDValue if the target declines to use custom code and a different
1182  /// lowering strategy should be used.
1183  ///
1184  /// If AlwaysInline is true, the size is constant and the target should not
1185  /// emit any calls and is strongly encouraged to attempt to emit inline code
1186  /// even if it is beyond the usual threshold because this intrinsic is being
1187  /// expanded in a place where calls are not feasible (e.g. within the prologue
1188  /// for another call). If the target chooses to decline an AlwaysInline
1189  /// request here, legalize will resort to using simple loads and stores.
1190  virtual SDValue
1191  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1192                          SDValue Chain,
1193                          SDValue Op1, SDValue Op2,
1194                          SDValue Op3, unsigned Align,
1195                          bool AlwaysInline,
1196                          const Value *DstSV, uint64_t DstOff,
1197                          const Value *SrcSV, uint64_t SrcOff) {
1198    return SDValue();
1199  }
1200
1201  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1202  /// memmove. This can be used by targets to provide code sequences for cases
1203  /// that don't fit the target's parameters for simple loads/stores and can be
1204  /// more efficient than using a library call. This function can return a null
1205  /// SDValue if the target declines to use custom code and a different
1206  /// lowering strategy should be used.
1207  virtual SDValue
1208  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1209                           SDValue Chain,
1210                           SDValue Op1, SDValue Op2,
1211                           SDValue Op3, unsigned Align,
1212                           const Value *DstSV, uint64_t DstOff,
1213                           const Value *SrcSV, uint64_t SrcOff) {
1214    return SDValue();
1215  }
1216
1217  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1218  /// memset. This can be used by targets to provide code sequences for cases
1219  /// that don't fit the target's parameters for simple stores and can be more
1220  /// efficient than using a library call. This function can return a null
1221  /// SDValue if the target declines to use custom code and a different
1222  /// lowering strategy should be used.
1223  virtual SDValue
1224  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1225                          SDValue Chain,
1226                          SDValue Op1, SDValue Op2,
1227                          SDValue Op3, unsigned Align,
1228                          const Value *DstSV, uint64_t DstOff) {
1229    return SDValue();
1230  }
1231
1232  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1233  /// to legalize nodes with an illegal operand type but legal result types.
1234  /// It replaces the LowerOperation callback in the type Legalizer.
1235  /// The reason we can not do away with LowerOperation entirely is that
1236  /// LegalizeDAG isn't yet ready to use this callback.
1237  /// TODO: Consider merging with ReplaceNodeResults.
1238
1239  /// The target places new result values for the node in Results (their number
1240  /// and types must exactly match those of the original return values of
1241  /// the node), or leaves Results empty, which indicates that the node is not
1242  /// to be custom lowered after all.
1243  /// The default implementation calls LowerOperation.
1244  virtual void LowerOperationWrapper(SDNode *N,
1245                                     SmallVectorImpl<SDValue> &Results,
1246                                     SelectionDAG &DAG);
1247
1248  /// LowerOperation - This callback is invoked for operations that are
1249  /// unsupported by the target, which are registered to use 'custom' lowering,
1250  /// and whose defined values are all legal.
1251  /// If the target has no operations that require custom lowering, it need not
1252  /// implement this.  The default implementation of this aborts.
1253  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1254
1255  /// ReplaceNodeResults - This callback is invoked when a node result type is
1256  /// illegal for the target, and the operation was registered to use 'custom'
1257  /// lowering for that result type.  The target places new result values for
1258  /// the node in Results (their number and types must exactly match those of
1259  /// the original return values of the node), or leaves Results empty, which
1260  /// indicates that the node is not to be custom lowered after all.
1261  ///
1262  /// If the target has no operations that require custom lowering, it need not
1263  /// implement this.  The default implementation aborts.
1264  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1265                                  SelectionDAG &DAG) {
1266    assert(0 && "ReplaceNodeResults not implemented for this target!");
1267  }
1268
1269  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1270  /// tail call optimization. Targets which want to do tail call optimization
1271  /// should override this function.
1272  virtual bool
1273  IsEligibleForTailCallOptimization(SDValue Callee,
1274                                    unsigned CalleeCC,
1275                                    bool isVarArg,
1276                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1277                                    SelectionDAG& DAG) const {
1278    // Conservative default: no calls are eligible.
1279    return false;
1280  }
1281
1282  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1283  /// it exists. Skip a possible ISD::TokenFactor.
1284  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1285                                                 unsigned TailCallNodeOpCode) {
1286    if (Chain.getOpcode() == TailCallNodeOpCode) {
1287      return Chain;
1288    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1289      if (Chain.getNumOperands() &&
1290          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1291        return Chain.getOperand(0);
1292    }
1293    return Chain;
1294  }
1295
1296  /// getTargetNodeName() - This method returns the name of a target specific
1297  /// DAG node.
1298  virtual const char *getTargetNodeName(unsigned Opcode) const;
1299
1300  /// createFastISel - This method returns a target specific FastISel object,
1301  /// or null if the target does not support "fast" ISel.
1302  virtual FastISel *
1303  createFastISel(MachineFunction &,
1304                 MachineModuleInfo *, DwarfWriter *,
1305                 DenseMap<const Value *, unsigned> &,
1306                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1307                 DenseMap<const AllocaInst *, int> &
1308#ifndef NDEBUG
1309                 , SmallSet<Instruction*, 8> &CatchInfoLost
1310#endif
1311                 ) {
1312    return 0;
1313  }
1314
1315  //===--------------------------------------------------------------------===//
1316  // Inline Asm Support hooks
1317  //
1318
1319  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1320  /// call to be explicit llvm code if it wants to.  This is useful for
1321  /// turning simple inline asms into LLVM intrinsics, which gives the
1322  /// compiler more information about the behavior of the code.
1323  virtual bool ExpandInlineAsm(CallInst *CI) const {
1324    return false;
1325  }
1326
1327  enum ConstraintType {
1328    C_Register,            // Constraint represents specific register(s).
1329    C_RegisterClass,       // Constraint represents any of register(s) in class.
1330    C_Memory,              // Memory constraint.
1331    C_Other,               // Something else.
1332    C_Unknown              // Unsupported constraint.
1333  };
1334
1335  /// AsmOperandInfo - This contains information for each constraint that we are
1336  /// lowering.
1337  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1338    /// ConstraintCode - This contains the actual string for the code, like "m".
1339    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1340    /// most closely matches the operand.
1341    std::string ConstraintCode;
1342
1343    /// ConstraintType - Information about the constraint code, e.g. Register,
1344    /// RegisterClass, Memory, Other, Unknown.
1345    TargetLowering::ConstraintType ConstraintType;
1346
1347    /// CallOperandval - If this is the result output operand or a
1348    /// clobber, this is null, otherwise it is the incoming operand to the
1349    /// CallInst.  This gets modified as the asm is processed.
1350    Value *CallOperandVal;
1351
1352    /// ConstraintVT - The ValueType for the operand value.
1353    EVT ConstraintVT;
1354
1355    /// isMatchingInputConstraint - Return true of this is an input operand that
1356    /// is a matching constraint like "4".
1357    bool isMatchingInputConstraint() const;
1358
1359    /// getMatchedOperand - If this is an input matching constraint, this method
1360    /// returns the output operand it matches.
1361    unsigned getMatchedOperand() const;
1362
1363    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1364      : InlineAsm::ConstraintInfo(info),
1365        ConstraintType(TargetLowering::C_Unknown),
1366        CallOperandVal(0), ConstraintVT(MVT::Other) {
1367    }
1368  };
1369
1370  /// ComputeConstraintToUse - Determines the constraint code and constraint
1371  /// type to use for the specific AsmOperandInfo, setting
1372  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1373  /// being passed in is available, it can be passed in as Op, otherwise an
1374  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1375  /// constraint of the inline asm instruction being processed is 'm'.
1376  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1377                                      SDValue Op,
1378                                      bool hasMemory,
1379                                      SelectionDAG *DAG = 0) const;
1380
1381  /// getConstraintType - Given a constraint, return the type of constraint it
1382  /// is for this target.
1383  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1384
1385  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1386  /// return a list of registers that can be used to satisfy the constraint.
1387  /// This should only be used for C_RegisterClass constraints.
1388  virtual std::vector<unsigned>
1389  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1390                                    EVT VT) const;
1391
1392  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1393  /// {edx}), return the register number and the register class for the
1394  /// register.
1395  ///
1396  /// Given a register class constraint, like 'r', if this corresponds directly
1397  /// to an LLVM register class, return a register of 0 and the register class
1398  /// pointer.
1399  ///
1400  /// This should only be used for C_Register constraints.  On error,
1401  /// this returns a register number of 0 and a null register class pointer..
1402  virtual std::pair<unsigned, const TargetRegisterClass*>
1403    getRegForInlineAsmConstraint(const std::string &Constraint,
1404                                 EVT VT) const;
1405
1406  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1407  /// with another that has more specific requirements based on the type of the
1408  /// corresponding operand.  This returns null if there is no replacement to
1409  /// make.
1410  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1411
1412  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1413  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1414  /// it means one of the asm constraint of the inline asm instruction being
1415  /// processed is 'm'.
1416  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1417                                            bool hasMemory,
1418                                            std::vector<SDValue> &Ops,
1419                                            SelectionDAG &DAG) const;
1420
1421  //===--------------------------------------------------------------------===//
1422  // Scheduler hooks
1423  //
1424
1425  // EmitInstrWithCustomInserter - This method should be implemented by targets
1426  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1427  // instructions are special in various ways, which require special support to
1428  // insert.  The specified MachineInstr is created but not inserted into any
1429  // basic blocks, and the scheduler passes ownership of it to this method.
1430  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1431                                                  MachineBasicBlock *MBB) const;
1432
1433  //===--------------------------------------------------------------------===//
1434  // Addressing mode description hooks (used by LSR etc).
1435  //
1436
1437  /// AddrMode - This represents an addressing mode of:
1438  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1439  /// If BaseGV is null,  there is no BaseGV.
1440  /// If BaseOffs is zero, there is no base offset.
1441  /// If HasBaseReg is false, there is no base register.
1442  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1443  /// no scale.
1444  ///
1445  struct AddrMode {
1446    GlobalValue *BaseGV;
1447    int64_t      BaseOffs;
1448    bool         HasBaseReg;
1449    int64_t      Scale;
1450    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1451  };
1452
1453  /// isLegalAddressingMode - Return true if the addressing mode represented by
1454  /// AM is legal for this target, for a load/store of the specified type.
1455  /// The type may be VoidTy, in which case only return true if the addressing
1456  /// mode is legal for a load/store of any legal type.
1457  /// TODO: Handle pre/postinc as well.
1458  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1459
1460  /// isTruncateFree - Return true if it's free to truncate a value of
1461  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1462  /// register EAX to i16 by referencing its sub-register AX.
1463  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1464    return false;
1465  }
1466
1467  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1468    return false;
1469  }
1470
1471  /// isZExtFree - Return true if any actual instruction that defines a
1472  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1473  /// register. This does not necessarily include registers defined in
1474  /// unknown ways, such as incoming arguments, or copies from unknown
1475  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1476  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1477  /// all instructions that define 32-bit values implicit zero-extend the
1478  /// result out to 64 bits.
1479  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1480    return false;
1481  }
1482
1483  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1484    return false;
1485  }
1486
1487  /// isNarrowingProfitable - Return true if it's profitable to narrow
1488  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1489  /// from i32 to i8 but not from i32 to i16.
1490  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1491    return false;
1492  }
1493
1494  //===--------------------------------------------------------------------===//
1495  // Div utility functions
1496  //
1497  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1498                      std::vector<SDNode*>* Created) const;
1499  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1500                      std::vector<SDNode*>* Created) const;
1501
1502
1503  //===--------------------------------------------------------------------===//
1504  // Runtime Library hooks
1505  //
1506
1507  /// setLibcallName - Rename the default libcall routine name for the specified
1508  /// libcall.
1509  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1510    LibcallRoutineNames[Call] = Name;
1511  }
1512
1513  /// getLibcallName - Get the libcall routine name for the specified libcall.
1514  ///
1515  const char *getLibcallName(RTLIB::Libcall Call) const {
1516    return LibcallRoutineNames[Call];
1517  }
1518
1519  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1520  /// result of the comparison libcall against zero.
1521  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1522    CmpLibcallCCs[Call] = CC;
1523  }
1524
1525  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1526  /// the comparison libcall against zero.
1527  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1528    return CmpLibcallCCs[Call];
1529  }
1530
1531private:
1532  TargetMachine &TM;
1533  const TargetData *TD;
1534  TargetLoweringObjectFile &TLOF;
1535
1536  /// PointerTy - The type to use for pointers, usually i32 or i64.
1537  ///
1538  MVT PointerTy;
1539
1540  /// IsLittleEndian - True if this is a little endian target.
1541  ///
1542  bool IsLittleEndian;
1543
1544  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1545  ///
1546  bool UsesGlobalOffsetTable;
1547
1548  /// SelectIsExpensive - Tells the code generator not to expand operations
1549  /// into sequences that use the select operations if possible.
1550  bool SelectIsExpensive;
1551
1552  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1553  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1554  /// a real cost model is in place.  If we ever optimize for size, this will be
1555  /// set to true unconditionally.
1556  bool IntDivIsCheap;
1557
1558  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1559  /// srl/add/sra for a signed divide by power of two, and let the target handle
1560  /// it.
1561  bool Pow2DivIsCheap;
1562
1563  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1564  /// llvm.setjmp.  Defaults to false.
1565  bool UseUnderscoreSetJmp;
1566
1567  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1568  /// llvm.longjmp.  Defaults to false.
1569  bool UseUnderscoreLongJmp;
1570
1571  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1572  /// PointerTy is.
1573  MVT ShiftAmountTy;
1574
1575  /// BooleanContents - Information about the contents of the high-bits in
1576  /// boolean values held in a type wider than i1.  See getBooleanContents.
1577  BooleanContent BooleanContents;
1578
1579  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1580  /// total cycles or lowest register usage.
1581  SchedPreference SchedPreferenceInfo;
1582
1583  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1584  unsigned JumpBufSize;
1585
1586  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1587  /// buffers
1588  unsigned JumpBufAlignment;
1589
1590  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1591  /// if-converted.
1592  unsigned IfCvtBlockSizeLimit;
1593
1594  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1595  /// duplicated during if-conversion.
1596  unsigned IfCvtDupBlockSizeLimit;
1597
1598  /// PrefLoopAlignment - The perferred loop alignment.
1599  ///
1600  unsigned PrefLoopAlignment;
1601
1602  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1603  /// specifies the register that llvm.savestack/llvm.restorestack should save
1604  /// and restore.
1605  unsigned StackPointerRegisterToSaveRestore;
1606
1607  /// ExceptionPointerRegister - If set to a physical register, this specifies
1608  /// the register that receives the exception address on entry to a landing
1609  /// pad.
1610  unsigned ExceptionPointerRegister;
1611
1612  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1613  /// the register that receives the exception typeid on entry to a landing
1614  /// pad.
1615  unsigned ExceptionSelectorRegister;
1616
1617  /// RegClassForVT - This indicates the default register class to use for
1618  /// each ValueType the target supports natively.
1619  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1620  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1621  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1622
1623  /// TransformToType - For any value types we are promoting or expanding, this
1624  /// contains the value type that we are changing to.  For Expanded types, this
1625  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1626  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1627  /// by the system, this holds the same type (e.g. i32 -> i32).
1628  EVT TransformToType[MVT::LAST_VALUETYPE];
1629
1630  /// OpActions - For each operation and each value type, keep a LegalizeAction
1631  /// that indicates how instruction selection should deal with the operation.
1632  /// Most operations are Legal (aka, supported natively by the target), but
1633  /// operations that are not should be described.  Note that operations on
1634  /// non-legal value types are not described here.
1635  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1636  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1637  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1638
1639  /// LoadExtActions - For each load of load extension type and each value type,
1640  /// keep a LegalizeAction that indicates how instruction selection should deal
1641  /// with the load.
1642  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1643
1644  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1645  /// indicates how instruction selection should deal with the store.
1646  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1647
1648  /// IndexedModeActions - For each indexed mode and each value type,
1649  /// keep a pair of LegalizeAction that indicates how instruction
1650  /// selection should deal with the load / store.  The first
1651  /// dimension is now the value_type for the reference.  The second
1652  /// dimension is the load [0] vs. store[1].  The third dimension
1653  /// represents the various modes for load store.
1654  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1655
1656  /// ConvertActions - For each conversion from source type to destination type,
1657  /// keep a LegalizeAction that indicates how instruction selection should
1658  /// deal with the conversion.
1659  /// Currently, this is used only for floating->floating conversions
1660  /// (FP_EXTEND and FP_ROUND).
1661  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1662
1663  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1664  /// LegalizeAction that indicates how instruction selection should
1665  /// deal with the condition code.
1666  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1667
1668  ValueTypeActionImpl ValueTypeActions;
1669
1670  std::vector<APFloat> LegalFPImmediates;
1671
1672  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1673
1674  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1675  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1676  /// which sets a bit in this array.
1677  unsigned char
1678  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1679
1680  /// PromoteToType - For operations that must be promoted to a specific type,
1681  /// this holds the destination type.  This map should be sparse, so don't hold
1682  /// it as an array.
1683  ///
1684  /// Targets add entries to this map with AddPromotedToType(..), clients access
1685  /// this with getTypeToPromoteTo(..).
1686  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1687    PromoteToType;
1688
1689  /// LibcallRoutineNames - Stores the name each libcall.
1690  ///
1691  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1692
1693  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1694  /// of each of the comparison libcall against zero.
1695  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1696
1697protected:
1698  /// When lowering \@llvm.memset this field specifies the maximum number of
1699  /// store operations that may be substituted for the call to memset. Targets
1700  /// must set this value based on the cost threshold for that target. Targets
1701  /// should assume that the memset will be done using as many of the largest
1702  /// store operations first, followed by smaller ones, if necessary, per
1703  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1704  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1705  /// store.  This only applies to setting a constant array of a constant size.
1706  /// @brief Specify maximum number of store instructions per memset call.
1707  unsigned maxStoresPerMemset;
1708
1709  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1710  /// store operations that may be substituted for a call to memcpy. Targets
1711  /// must set this value based on the cost threshold for that target. Targets
1712  /// should assume that the memcpy will be done using as many of the largest
1713  /// store operations first, followed by smaller ones, if necessary, per
1714  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1715  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1716  /// and one 1-byte store. This only applies to copying a constant array of
1717  /// constant size.
1718  /// @brief Specify maximum bytes of store instructions per memcpy call.
1719  unsigned maxStoresPerMemcpy;
1720
1721  /// When lowering \@llvm.memmove this field specifies the maximum number of
1722  /// store instructions that may be substituted for a call to memmove. Targets
1723  /// must set this value based on the cost threshold for that target. Targets
1724  /// should assume that the memmove will be done using as many of the largest
1725  /// store operations first, followed by smaller ones, if necessary, per
1726  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1727  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1728  /// applies to copying a constant array of constant size.
1729  /// @brief Specify maximum bytes of store instructions per memmove call.
1730  unsigned maxStoresPerMemmove;
1731
1732  /// This field specifies whether the target machine permits unaligned memory
1733  /// accesses.  This is used, for example, to determine the size of store
1734  /// operations when copying small arrays and other similar tasks.
1735  /// @brief Indicate whether the target permits unaligned memory accesses.
1736  bool allowUnalignedMemoryAccesses;
1737
1738  /// This field specifies whether the target can benefit from code placement
1739  /// optimization.
1740  bool benefitFromCodePlacementOpt;
1741};
1742} // end llvm namespace
1743
1744#endif
1745