TargetLowering.h revision 9d544d04166b971ab5ca1ee7ee37465b4af6bbf5
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/DebugLoc.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class AllocaInst;
44  class CallInst;
45  class Function;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class MachineBasicBlock;
49  class MachineFunction;
50  class MachineFrameInfo;
51  class MachineInstr;
52  class MachineJumpTableInfo;
53  class MCContext;
54  class MCExpr;
55  class SDNode;
56  class SDValue;
57  class SelectionDAG;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  enum BooleanContent { // How the target represents true/false values.
98    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
99    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
100    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
101  };
102
103  /// NOTE: The constructor takes ownership of TLOF.
104  explicit TargetLowering(const TargetMachine &TM,
105                          const TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  const TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// isSelectExpensive - Return true if the select operation is expensive for
118  /// this target.
119  bool isSelectExpensive() const { return SelectIsExpensive; }
120
121  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
122  /// a sequence of several shifts, adds, and multiplies for this target.
123  bool isIntDivCheap() const { return IntDivIsCheap; }
124
125  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
126  /// srl/add/sra.
127  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
128
129  /// getSetCCResultType - Return the ValueType of the result of SETCC
130  /// operations.  Also used to obtain the target's preferred type for
131  /// the condition operand of SELECT and BRCOND nodes.  In the case of
132  /// BRCOND the argument passed is MVT::Other since there are no other
133  /// operands to get a type hint from.
134  virtual
135  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
136
137  /// getCmpLibcallReturnType - Return the ValueType for comparison
138  /// libcalls. Comparions libcalls include floating point comparion calls,
139  /// and Ordered/Unordered check calls on floating point numbers.
140  virtual
141  MVT::SimpleValueType getCmpLibcallReturnType() const;
142
143  /// getBooleanContents - For targets without i1 registers, this gives the
144  /// nature of the high-bits of boolean values held in types wider than i1.
145  /// "Boolean values" are special true/false values produced by nodes like
146  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
147  /// Not to be confused with general values promoted from i1.
148  BooleanContent getBooleanContents() const { return BooleanContents;}
149
150  /// getSchedulingPreference - Return target scheduling preference.
151  Sched::Preference getSchedulingPreference() const {
152    return SchedPreferenceInfo;
153  }
154
155  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
156  /// different scheduling heuristics for different nodes. This function returns
157  /// the preference (or none) for the given node.
158  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
159    return Sched::None;
160  }
161
162  /// getRegClassFor - Return the register class that should be used for the
163  /// specified value type.
164  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
165    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
166    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
167    assert(RC && "This value type is not natively supported!");
168    return RC;
169  }
170
171  /// isTypeLegal - Return true if the target has native support for the
172  /// specified value type.  This means that it has a register that directly
173  /// holds it without promotions or expansions.
174  bool isTypeLegal(EVT VT) const {
175    assert(!VT.isSimple() ||
176           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
177    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
178  }
179
180  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
181  /// new operations of this type.  All Legal types are synthesizable except
182  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
183  bool isTypeSynthesizable(EVT VT) const {
184    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
185  }
186
187  class ValueTypeActionImpl {
188    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
189    /// that indicates how instruction selection should deal with the type.
190    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
191  public:
192    ValueTypeActionImpl() {
193      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
194    }
195    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
196      if (VT.isExtended()) {
197        if (VT.isVector()) {
198          return VT.isPow2VectorType() ? Expand : Promote;
199        }
200        if (VT.isInteger())
201          // First promote to a power-of-two size, then expand if necessary.
202          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
203        assert(0 && "Unsupported extended type!");
204        return Legal;
205      }
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      return (LegalizeAction)ValueTypeActions[I];
208    }
209    void setTypeAction(EVT VT, LegalizeAction Action) {
210      unsigned I = VT.getSimpleVT().SimpleTy;
211      ValueTypeActions[I] = Action;
212    }
213  };
214
215  const ValueTypeActionImpl &getValueTypeActions() const {
216    return ValueTypeActions;
217  }
218
219  /// getTypeAction - Return how we should legalize values of this type, either
220  /// it is already legal (return 'Legal') or we need to promote it to a larger
221  /// type (return 'Promote'), or we need to expand it into multiple registers
222  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
223  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
224    return ValueTypeActions.getTypeAction(Context, VT);
225  }
226
227  /// getTypeToTransformTo - For types supported by the target, this is an
228  /// identity function.  For types that must be promoted to larger types, this
229  /// returns the larger type to promote to.  For integer types that are larger
230  /// than the largest integer register, this contains one step in the expansion
231  /// to get to the smaller register. For illegal floating point types, this
232  /// returns the integer type to transform to.
233  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
234    if (VT.isSimple()) {
235      assert((unsigned)VT.getSimpleVT().SimpleTy <
236             array_lengthof(TransformToType));
237      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
238      assert(getTypeAction(Context, NVT) != Promote &&
239             "Promote may not follow Expand or Promote");
240      return NVT;
241    }
242
243    if (VT.isVector()) {
244      EVT NVT = VT.getPow2VectorType(Context);
245      if (NVT == VT) {
246        // Vector length is a power of 2 - split to half the size.
247        unsigned NumElts = VT.getVectorNumElements();
248        EVT EltVT = VT.getVectorElementType();
249        return (NumElts == 1) ?
250          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
251      }
252      // Promote to a power of two size, avoiding multi-step promotion.
253      return getTypeAction(Context, NVT) == Promote ?
254        getTypeToTransformTo(Context, NVT) : NVT;
255    } else if (VT.isInteger()) {
256      EVT NVT = VT.getRoundIntegerType(Context);
257      if (NVT == VT)
258        // Size is a power of two - expand to half the size.
259        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
260      else
261        // Promote to a power of two size, avoiding multi-step promotion.
262        return getTypeAction(Context, NVT) == Promote ?
263          getTypeToTransformTo(Context, NVT) : NVT;
264    }
265    assert(0 && "Unsupported extended type!");
266    return MVT(MVT::Other); // Not reached
267  }
268
269  /// getTypeToExpandTo - For types supported by the target, this is an
270  /// identity function.  For types that must be expanded (i.e. integer types
271  /// that are larger than the largest integer register or illegal floating
272  /// point types), this returns the largest legal type it will be expanded to.
273  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
274    assert(!VT.isVector());
275    while (true) {
276      switch (getTypeAction(Context, VT)) {
277      case Legal:
278        return VT;
279      case Expand:
280        VT = getTypeToTransformTo(Context, VT);
281        break;
282      default:
283        assert(false && "Type is not legal nor is it to be expanded!");
284        return VT;
285      }
286    }
287    return VT;
288  }
289
290  /// getVectorTypeBreakdown - Vector types are broken down into some number of
291  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
292  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
293  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
294  ///
295  /// This method returns the number of registers needed, and the VT for each
296  /// register.  It also returns the VT and quantity of the intermediate values
297  /// before they are promoted/expanded.
298  ///
299  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
300                                  EVT &IntermediateVT,
301                                  unsigned &NumIntermediates,
302                                  EVT &RegisterVT) const;
303
304  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
305  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
306  /// this is the case, it returns true and store the intrinsic
307  /// information into the IntrinsicInfo that was passed to the function.
308  struct IntrinsicInfo {
309    unsigned     opc;         // target opcode
310    EVT          memVT;       // memory VT
311    const Value* ptrVal;      // value representing memory location
312    int          offset;      // offset off of ptrVal
313    unsigned     align;       // alignment
314    bool         vol;         // is volatile?
315    bool         readMem;     // reads memory?
316    bool         writeMem;    // writes memory?
317  };
318
319  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
320                                  const CallInst &I, unsigned Intrinsic) const {
321    return false;
322  }
323
324  /// isFPImmLegal - Returns true if the target can instruction select the
325  /// specified FP immediate natively. If false, the legalizer will materialize
326  /// the FP immediate as a load from a constant pool.
327  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
328    return false;
329  }
330
331  /// isShuffleMaskLegal - Targets can use this to indicate that they only
332  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
333  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
334  /// are assumed to be legal.
335  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
336                                  EVT VT) const {
337    return true;
338  }
339
340  /// canOpTrap - Returns true if the operation can trap for the value type.
341  /// VT must be a legal type. By default, we optimistically assume most
342  /// operations don't trap except for divide and remainder.
343  virtual bool canOpTrap(unsigned Op, EVT VT) const;
344
345  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
346  /// used by Targets can use this to indicate if there is a suitable
347  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
348  /// pool entry.
349  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
350                                      EVT VT) const {
351    return false;
352  }
353
354  /// getOperationAction - Return how this operation should be treated: either
355  /// it is legal, needs to be promoted to a larger size, needs to be
356  /// expanded to some other code sequence, or the target has a custom expander
357  /// for it.
358  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
359    if (VT.isExtended()) return Expand;
360    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
361    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
362    return (LegalizeAction)OpActions[I][Op];
363  }
364
365  /// isOperationLegalOrCustom - Return true if the specified operation is
366  /// legal on this target or can be made legal with custom lowering. This
367  /// is used to help guide high-level lowering decisions.
368  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
369    return (VT == MVT::Other || isTypeLegal(VT)) &&
370      (getOperationAction(Op, VT) == Legal ||
371       getOperationAction(Op, VT) == Custom);
372  }
373
374  /// isOperationLegal - Return true if the specified operation is legal on this
375  /// target.
376  bool isOperationLegal(unsigned Op, EVT VT) const {
377    return (VT == MVT::Other || isTypeLegal(VT)) &&
378           getOperationAction(Op, VT) == Legal;
379  }
380
381  /// getLoadExtAction - Return how this load with extension should be treated:
382  /// either it is legal, needs to be promoted to a larger size, needs to be
383  /// expanded to some other code sequence, or the target has a custom expander
384  /// for it.
385  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
386    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
387           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
388           "Table isn't big enough!");
389    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
390  }
391
392  /// isLoadExtLegal - Return true if the specified load with extension is legal
393  /// on this target.
394  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
395    return VT.isSimple() &&
396      (getLoadExtAction(ExtType, VT) == Legal ||
397       getLoadExtAction(ExtType, VT) == Custom);
398  }
399
400  /// getTruncStoreAction - Return how this store with truncation should be
401  /// treated: either it is legal, needs to be promoted to a larger size, needs
402  /// to be expanded to some other code sequence, or the target has a custom
403  /// expander for it.
404  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
405    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
406           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
407           "Table isn't big enough!");
408    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
409                                            [MemVT.getSimpleVT().SimpleTy];
410  }
411
412  /// isTruncStoreLegal - Return true if the specified store with truncation is
413  /// legal on this target.
414  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
415    return isTypeLegal(ValVT) && MemVT.isSimple() &&
416      (getTruncStoreAction(ValVT, MemVT) == Legal ||
417       getTruncStoreAction(ValVT, MemVT) == Custom);
418  }
419
420  /// getIndexedLoadAction - Return how the indexed load should be treated:
421  /// either it is legal, needs to be promoted to a larger size, needs to be
422  /// expanded to some other code sequence, or the target has a custom expander
423  /// for it.
424  LegalizeAction
425  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
426    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
427           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
428           "Table isn't big enough!");
429    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
430    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
431  }
432
433  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
434  /// on this target.
435  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
436    return VT.isSimple() &&
437      (getIndexedLoadAction(IdxMode, VT) == Legal ||
438       getIndexedLoadAction(IdxMode, VT) == Custom);
439  }
440
441  /// getIndexedStoreAction - Return how the indexed store should be treated:
442  /// either it is legal, needs to be promoted to a larger size, needs to be
443  /// expanded to some other code sequence, or the target has a custom expander
444  /// for it.
445  LegalizeAction
446  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
447    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
448           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
449           "Table isn't big enough!");
450    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
451    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
452  }
453
454  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
455  /// on this target.
456  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
457    return VT.isSimple() &&
458      (getIndexedStoreAction(IdxMode, VT) == Legal ||
459       getIndexedStoreAction(IdxMode, VT) == Custom);
460  }
461
462  /// getCondCodeAction - Return how the condition code should be treated:
463  /// either it is legal, needs to be expanded to some other code sequence,
464  /// or the target has a custom expander for it.
465  LegalizeAction
466  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
467    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
468           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
469           "Table isn't big enough!");
470    LegalizeAction Action = (LegalizeAction)
471      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
472    assert(Action != Promote && "Can't promote condition code!");
473    return Action;
474  }
475
476  /// isCondCodeLegal - Return true if the specified condition code is legal
477  /// on this target.
478  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
479    return getCondCodeAction(CC, VT) == Legal ||
480           getCondCodeAction(CC, VT) == Custom;
481  }
482
483
484  /// getTypeToPromoteTo - If the action for this operation is to promote, this
485  /// method returns the ValueType to promote to.
486  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
487    assert(getOperationAction(Op, VT) == Promote &&
488           "This operation isn't promoted!");
489
490    // See if this has an explicit type specified.
491    std::map<std::pair<unsigned, MVT::SimpleValueType>,
492             MVT::SimpleValueType>::const_iterator PTTI =
493      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
494    if (PTTI != PromoteToType.end()) return PTTI->second;
495
496    assert((VT.isInteger() || VT.isFloatingPoint()) &&
497           "Cannot autopromote this type, add it with AddPromotedToType.");
498
499    EVT NVT = VT;
500    do {
501      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
502      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
503             "Didn't find type to promote to!");
504    } while (!isTypeLegal(NVT) ||
505              getOperationAction(Op, NVT) == Promote);
506    return NVT;
507  }
508
509  /// getValueType - Return the EVT corresponding to this LLVM type.
510  /// This is fixed by the LLVM operations except for the pointer size.  If
511  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
512  /// counterpart (e.g. structs), otherwise it will assert.
513  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
514    EVT VT = EVT::getEVT(Ty, AllowUnknown);
515    return VT == MVT::iPTR ? PointerTy : VT;
516  }
517
518  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
519  /// function arguments in the caller parameter area.  This is the actual
520  /// alignment, not its logarithm.
521  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
522
523  /// getRegisterType - Return the type of registers that this ValueType will
524  /// eventually require.
525  EVT getRegisterType(MVT VT) const {
526    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
527    return RegisterTypeForVT[VT.SimpleTy];
528  }
529
530  /// getRegisterType - Return the type of registers that this ValueType will
531  /// eventually require.
532  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
533    if (VT.isSimple()) {
534      assert((unsigned)VT.getSimpleVT().SimpleTy <
535                array_lengthof(RegisterTypeForVT));
536      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
537    }
538    if (VT.isVector()) {
539      EVT VT1, RegisterVT;
540      unsigned NumIntermediates;
541      (void)getVectorTypeBreakdown(Context, VT, VT1,
542                                   NumIntermediates, RegisterVT);
543      return RegisterVT;
544    }
545    if (VT.isInteger()) {
546      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
547    }
548    assert(0 && "Unsupported extended type!");
549    return EVT(MVT::Other); // Not reached
550  }
551
552  /// getNumRegisters - Return the number of registers that this ValueType will
553  /// eventually require.  This is one for any types promoted to live in larger
554  /// registers, but may be more than one for types (like i64) that are split
555  /// into pieces.  For types like i140, which are first promoted then expanded,
556  /// it is the number of registers needed to hold all the bits of the original
557  /// type.  For an i140 on a 32 bit machine this means 5 registers.
558  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
559    if (VT.isSimple()) {
560      assert((unsigned)VT.getSimpleVT().SimpleTy <
561                array_lengthof(NumRegistersForVT));
562      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
563    }
564    if (VT.isVector()) {
565      EVT VT1, VT2;
566      unsigned NumIntermediates;
567      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
568    }
569    if (VT.isInteger()) {
570      unsigned BitWidth = VT.getSizeInBits();
571      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
572      return (BitWidth + RegWidth - 1) / RegWidth;
573    }
574    assert(0 && "Unsupported extended type!");
575    return 0; // Not reached
576  }
577
578  /// ShouldShrinkFPConstant - If true, then instruction selection should
579  /// seek to shrink the FP constant of the specified type to a smaller type
580  /// in order to save space and / or reduce runtime.
581  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
582
583  /// hasTargetDAGCombine - If true, the target has custom DAG combine
584  /// transformations that it can perform for the specified node.
585  bool hasTargetDAGCombine(ISD::NodeType NT) const {
586    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
587    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
588  }
589
590  /// This function returns the maximum number of store operations permitted
591  /// to replace a call to llvm.memset. The value is set by the target at the
592  /// performance threshold for such a replacement.
593  /// @brief Get maximum # of store operations permitted for llvm.memset
594  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
595
596  /// This function returns the maximum number of store operations permitted
597  /// to replace a call to llvm.memcpy. The value is set by the target at the
598  /// performance threshold for such a replacement.
599  /// @brief Get maximum # of store operations permitted for llvm.memcpy
600  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
601
602  /// This function returns the maximum number of store operations permitted
603  /// to replace a call to llvm.memmove. The value is set by the target at the
604  /// performance threshold for such a replacement.
605  /// @brief Get maximum # of store operations permitted for llvm.memmove
606  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
607
608  /// This function returns true if the target allows unaligned memory accesses.
609  /// of the specified type. This is used, for example, in situations where an
610  /// array copy/move/set is  converted to a sequence of store operations. It's
611  /// use helps to ensure that such replacements don't generate code that causes
612  /// an alignment error  (trap) on the target machine.
613  /// @brief Determine if the target supports unaligned memory accesses.
614  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
615    return false;
616  }
617
618  /// This function returns true if the target would benefit from code placement
619  /// optimization.
620  /// @brief Determine if the target should perform code placement optimization.
621  bool shouldOptimizeCodePlacement() const {
622    return benefitFromCodePlacementOpt;
623  }
624
625  /// getOptimalMemOpType - Returns the target specific optimal type for load
626  /// and store operations as a result of memset, memcpy, and memmove
627  /// lowering. If DstAlign is zero that means it's safe to destination
628  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
629  /// means there isn't a need to check it against alignment requirement,
630  /// probably because the source does not need to be loaded. If
631  /// 'NonScalarIntSafe' is true, that means it's safe to return a
632  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
633  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
634  /// constant so it does not need to be loaded.
635  /// It returns EVT::Other if the type should be determined using generic
636  /// target-independent logic.
637  virtual EVT getOptimalMemOpType(uint64_t Size,
638                                  unsigned DstAlign, unsigned SrcAlign,
639                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
640                                  MachineFunction &MF) const {
641    return MVT::Other;
642  }
643
644  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
645  /// to implement llvm.setjmp.
646  bool usesUnderscoreSetJmp() const {
647    return UseUnderscoreSetJmp;
648  }
649
650  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
651  /// to implement llvm.longjmp.
652  bool usesUnderscoreLongJmp() const {
653    return UseUnderscoreLongJmp;
654  }
655
656  /// getStackPointerRegisterToSaveRestore - If a physical register, this
657  /// specifies the register that llvm.savestack/llvm.restorestack should save
658  /// and restore.
659  unsigned getStackPointerRegisterToSaveRestore() const {
660    return StackPointerRegisterToSaveRestore;
661  }
662
663  /// getExceptionAddressRegister - If a physical register, this returns
664  /// the register that receives the exception address on entry to a landing
665  /// pad.
666  unsigned getExceptionAddressRegister() const {
667    return ExceptionPointerRegister;
668  }
669
670  /// getExceptionSelectorRegister - If a physical register, this returns
671  /// the register that receives the exception typeid on entry to a landing
672  /// pad.
673  unsigned getExceptionSelectorRegister() const {
674    return ExceptionSelectorRegister;
675  }
676
677  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
678  /// set, the default is 200)
679  unsigned getJumpBufSize() const {
680    return JumpBufSize;
681  }
682
683  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
684  /// (if never set, the default is 0)
685  unsigned getJumpBufAlignment() const {
686    return JumpBufAlignment;
687  }
688
689  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
690  /// argument.
691  unsigned getMinStackArgumentAlignment() const {
692    return MinStackArgumentAlignment;
693  }
694
695  /// getPrefLoopAlignment - return the preferred loop alignment.
696  ///
697  unsigned getPrefLoopAlignment() const {
698    return PrefLoopAlignment;
699  }
700
701  /// getShouldFoldAtomicFences - return whether the combiner should fold
702  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
703  ///
704  bool getShouldFoldAtomicFences() const {
705    return ShouldFoldAtomicFences;
706  }
707
708  /// getPreIndexedAddressParts - returns true by value, base pointer and
709  /// offset pointer and addressing mode by reference if the node's address
710  /// can be legally represented as pre-indexed load / store address.
711  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
712                                         SDValue &Offset,
713                                         ISD::MemIndexedMode &AM,
714                                         SelectionDAG &DAG) const {
715    return false;
716  }
717
718  /// getPostIndexedAddressParts - returns true by value, base pointer and
719  /// offset pointer and addressing mode by reference if this node can be
720  /// combined with a load / store to form a post-indexed load / store.
721  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
722                                          SDValue &Base, SDValue &Offset,
723                                          ISD::MemIndexedMode &AM,
724                                          SelectionDAG &DAG) const {
725    return false;
726  }
727
728  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
729  /// current function.  The returned value is a member of the
730  /// MachineJumpTableInfo::JTEntryKind enum.
731  virtual unsigned getJumpTableEncoding() const;
732
733  virtual const MCExpr *
734  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
735                            const MachineBasicBlock *MBB, unsigned uid,
736                            MCContext &Ctx) const {
737    assert(0 && "Need to implement this hook if target has custom JTIs");
738    return 0;
739  }
740
741  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
742  /// jumptable.
743  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
744                                           SelectionDAG &DAG) const;
745
746  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
747  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
748  /// MCExpr.
749  virtual const MCExpr *
750  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
751                               unsigned JTI, MCContext &Ctx) const;
752
753  /// isOffsetFoldingLegal - Return true if folding a constant offset
754  /// with the given GlobalAddress is legal.  It is frequently not legal in
755  /// PIC relocation models.
756  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
757
758  /// getFunctionAlignment - Return the Log2 alignment of this function.
759  virtual unsigned getFunctionAlignment(const Function *) const = 0;
760
761  /// getStackCookieLocation - Return true if the target stores stack
762  /// protector cookies at a fixed offset in some non-standard address
763  /// space, and populates the address space and offset as
764  /// appropriate.
765  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
766    return false;
767  }
768
769  //===--------------------------------------------------------------------===//
770  // TargetLowering Optimization Methods
771  //
772
773  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
774  /// SDValues for returning information from TargetLowering to its clients
775  /// that want to combine
776  struct TargetLoweringOpt {
777    SelectionDAG &DAG;
778    bool LegalTys;
779    bool LegalOps;
780    SDValue Old;
781    SDValue New;
782
783    explicit TargetLoweringOpt(SelectionDAG &InDAG,
784                               bool LT, bool LO) :
785      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
786
787    bool LegalTypes() const { return LegalTys; }
788    bool LegalOperations() const { return LegalOps; }
789
790    bool CombineTo(SDValue O, SDValue N) {
791      Old = O;
792      New = N;
793      return true;
794    }
795
796    /// ShrinkDemandedConstant - Check to see if the specified operand of the
797    /// specified instruction is a constant integer.  If so, check to see if
798    /// there are any bits set in the constant that are not demanded.  If so,
799    /// shrink the constant and return true.
800    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
801
802    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
803    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
804    /// cast, but it could be generalized for targets with other types of
805    /// implicit widening casts.
806    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
807                          DebugLoc dl);
808  };
809
810  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
811  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
812  /// use this information to simplify Op, create a new simplified DAG node and
813  /// return true, returning the original and new nodes in Old and New.
814  /// Otherwise, analyze the expression and return a mask of KnownOne and
815  /// KnownZero bits for the expression (used to simplify the caller).
816  /// The KnownZero/One bits may only be accurate for those bits in the
817  /// DemandedMask.
818  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
819                            APInt &KnownZero, APInt &KnownOne,
820                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
821
822  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
823  /// Mask are known to be either zero or one and return them in the
824  /// KnownZero/KnownOne bitsets.
825  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
826                                              const APInt &Mask,
827                                              APInt &KnownZero,
828                                              APInt &KnownOne,
829                                              const SelectionDAG &DAG,
830                                              unsigned Depth = 0) const;
831
832  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
833  /// targets that want to expose additional information about sign bits to the
834  /// DAG Combiner.
835  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
836                                                   unsigned Depth = 0) const;
837
838  struct DAGCombinerInfo {
839    void *DC;  // The DAG Combiner object.
840    bool BeforeLegalize;
841    bool BeforeLegalizeOps;
842    bool CalledByLegalizer;
843  public:
844    SelectionDAG &DAG;
845
846    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
847      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
848        CalledByLegalizer(cl), DAG(dag) {}
849
850    bool isBeforeLegalize() const { return BeforeLegalize; }
851    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
852    bool isCalledByLegalizer() const { return CalledByLegalizer; }
853
854    void AddToWorklist(SDNode *N);
855    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
856                      bool AddTo = true);
857    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
858    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
859
860    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
861  };
862
863  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
864  /// and cc. If it is unable to simplify it, return a null SDValue.
865  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
866                          ISD::CondCode Cond, bool foldBooleans,
867                          DAGCombinerInfo &DCI, DebugLoc dl) const;
868
869  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
870  /// node is a GlobalAddress + offset.
871  virtual bool
872  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
873
874  /// PerformDAGCombine - This method will be invoked for all target nodes and
875  /// for any target-independent nodes that the target has registered with
876  /// invoke it for.
877  ///
878  /// The semantics are as follows:
879  /// Return Value:
880  ///   SDValue.Val == 0   - No change was made
881  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
882  ///   otherwise          - N should be replaced by the returned Operand.
883  ///
884  /// In addition, methods provided by DAGCombinerInfo may be used to perform
885  /// more complex transformations.
886  ///
887  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
888
889  /// isTypeDesirableForOp - Return true if the target has native support for
890  /// the specified value type and it is 'desirable' to use the type for the
891  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
892  /// instruction encodings are longer and some i16 instructions are slow.
893  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
894    // By default, assume all legal types are desirable.
895    return isTypeLegal(VT);
896  }
897
898  /// IsDesirableToPromoteOp - This method query the target whether it is
899  /// beneficial for dag combiner to promote the specified node. If true, it
900  /// should return the desired promotion type by reference.
901  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
902    return false;
903  }
904
905  //===--------------------------------------------------------------------===//
906  // TargetLowering Configuration Methods - These methods should be invoked by
907  // the derived class constructor to configure this object for the target.
908  //
909
910protected:
911  /// setShiftAmountType - Describe the type that should be used for shift
912  /// amounts.  This type defaults to the pointer type.
913  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
914
915  /// setBooleanContents - Specify how the target extends the result of a
916  /// boolean value from i1 to a wider type.  See getBooleanContents.
917  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
918
919  /// setSchedulingPreference - Specify the target scheduling preference.
920  void setSchedulingPreference(Sched::Preference Pref) {
921    SchedPreferenceInfo = Pref;
922  }
923
924  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
925  /// use _setjmp to implement llvm.setjmp or the non _ version.
926  /// Defaults to false.
927  void setUseUnderscoreSetJmp(bool Val) {
928    UseUnderscoreSetJmp = Val;
929  }
930
931  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
932  /// use _longjmp to implement llvm.longjmp or the non _ version.
933  /// Defaults to false.
934  void setUseUnderscoreLongJmp(bool Val) {
935    UseUnderscoreLongJmp = Val;
936  }
937
938  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
939  /// specifies the register that llvm.savestack/llvm.restorestack should save
940  /// and restore.
941  void setStackPointerRegisterToSaveRestore(unsigned R) {
942    StackPointerRegisterToSaveRestore = R;
943  }
944
945  /// setExceptionPointerRegister - If set to a physical register, this sets
946  /// the register that receives the exception address on entry to a landing
947  /// pad.
948  void setExceptionPointerRegister(unsigned R) {
949    ExceptionPointerRegister = R;
950  }
951
952  /// setExceptionSelectorRegister - If set to a physical register, this sets
953  /// the register that receives the exception typeid on entry to a landing
954  /// pad.
955  void setExceptionSelectorRegister(unsigned R) {
956    ExceptionSelectorRegister = R;
957  }
958
959  /// SelectIsExpensive - Tells the code generator not to expand operations
960  /// into sequences that use the select operations if possible.
961  void setSelectIsExpensive() { SelectIsExpensive = true; }
962
963  /// setIntDivIsCheap - Tells the code generator that integer divide is
964  /// expensive, and if possible, should be replaced by an alternate sequence
965  /// of instructions not containing an integer divide.
966  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
967
968  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
969  /// srl/add/sra for a signed divide by power of two, and let the target handle
970  /// it.
971  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
972
973  /// addRegisterClass - Add the specified register class as an available
974  /// regclass for the specified value type.  This indicates the selector can
975  /// handle values of that class natively.
976  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
977                        bool isSynthesizable = true) {
978    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
979    AvailableRegClasses.push_back(std::make_pair(VT, RC));
980    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
981    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
982  }
983
984  /// computeRegisterProperties - Once all of the register classes are added,
985  /// this allows us to compute derived properties we expose.
986  void computeRegisterProperties();
987
988  /// setOperationAction - Indicate that the specified operation does not work
989  /// with the specified type and indicate what to do about it.
990  void setOperationAction(unsigned Op, MVT VT,
991                          LegalizeAction Action) {
992    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
993    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
994  }
995
996  /// setLoadExtAction - Indicate that the specified load with extension does
997  /// not work with the specified type and indicate what to do about it.
998  void setLoadExtAction(unsigned ExtType, MVT VT,
999                        LegalizeAction Action) {
1000    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
1001           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1002           "Table isn't big enough!");
1003    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1004  }
1005
1006  /// setTruncStoreAction - Indicate that the specified truncating store does
1007  /// not work with the specified type and indicate what to do about it.
1008  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1009                           LegalizeAction Action) {
1010    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1011           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1012           "Table isn't big enough!");
1013    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1014  }
1015
1016  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1017  /// does not work with the specified type and indicate what to do abort
1018  /// it. NOTE: All indexed mode loads are initialized to Expand in
1019  /// TargetLowering.cpp
1020  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1021                            LegalizeAction Action) {
1022    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1023           IdxMode < ISD::LAST_INDEXED_MODE &&
1024           (unsigned)Action < 0xf &&
1025           "Table isn't big enough!");
1026    // Load action are kept in the upper half.
1027    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1028    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1029  }
1030
1031  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1032  /// does not work with the specified type and indicate what to do about
1033  /// it. NOTE: All indexed mode stores are initialized to Expand in
1034  /// TargetLowering.cpp
1035  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1036                             LegalizeAction Action) {
1037    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1038           IdxMode < ISD::LAST_INDEXED_MODE &&
1039           (unsigned)Action < 0xf &&
1040           "Table isn't big enough!");
1041    // Store action are kept in the lower half.
1042    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1043    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1044  }
1045
1046  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1047  /// supported on the target and indicate what to do about it.
1048  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1049                         LegalizeAction Action) {
1050    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1051           (unsigned)CC < array_lengthof(CondCodeActions) &&
1052           "Table isn't big enough!");
1053    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1054    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1055  }
1056
1057  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1058  /// promotion code defaults to trying a larger integer/fp until it can find
1059  /// one that works.  If that default is insufficient, this method can be used
1060  /// by the target to override the default.
1061  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1062    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1063  }
1064
1065  /// setTargetDAGCombine - Targets should invoke this method for each target
1066  /// independent node that they want to provide a custom DAG combiner for by
1067  /// implementing the PerformDAGCombine virtual method.
1068  void setTargetDAGCombine(ISD::NodeType NT) {
1069    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1070    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1071  }
1072
1073  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1074  /// bytes); default is 200
1075  void setJumpBufSize(unsigned Size) {
1076    JumpBufSize = Size;
1077  }
1078
1079  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1080  /// alignment (in bytes); default is 0
1081  void setJumpBufAlignment(unsigned Align) {
1082    JumpBufAlignment = Align;
1083  }
1084
1085  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1086  /// alignment is zero, it means the target does not care about loop alignment.
1087  void setPrefLoopAlignment(unsigned Align) {
1088    PrefLoopAlignment = Align;
1089  }
1090
1091  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1092  /// argument.
1093  void setMinStackArgumentAlignment(unsigned Align) {
1094    MinStackArgumentAlignment = Align;
1095  }
1096
1097  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1098  /// atomic operation intrinsics includes locking. Default is false.
1099  void setShouldFoldAtomicFences(bool fold) {
1100    ShouldFoldAtomicFences = fold;
1101  }
1102
1103public:
1104  //===--------------------------------------------------------------------===//
1105  // Lowering methods - These methods must be implemented by targets so that
1106  // the SelectionDAGLowering code knows how to lower these.
1107  //
1108
1109  /// LowerFormalArguments - This hook must be implemented to lower the
1110  /// incoming (formal) arguments, described by the Ins array, into the
1111  /// specified DAG. The implementation should fill in the InVals array
1112  /// with legal-type argument values, and return the resulting token
1113  /// chain value.
1114  ///
1115  virtual SDValue
1116    LowerFormalArguments(SDValue Chain,
1117                         CallingConv::ID CallConv, bool isVarArg,
1118                         const SmallVectorImpl<ISD::InputArg> &Ins,
1119                         DebugLoc dl, SelectionDAG &DAG,
1120                         SmallVectorImpl<SDValue> &InVals) const {
1121    assert(0 && "Not Implemented");
1122    return SDValue();    // this is here to silence compiler errors
1123  }
1124
1125  /// LowerCallTo - This function lowers an abstract call to a function into an
1126  /// actual call.  This returns a pair of operands.  The first element is the
1127  /// return value for the function (if RetTy is not VoidTy).  The second
1128  /// element is the outgoing token chain. It calls LowerCall to do the actual
1129  /// lowering.
1130  struct ArgListEntry {
1131    SDValue Node;
1132    const Type* Ty;
1133    bool isSExt  : 1;
1134    bool isZExt  : 1;
1135    bool isInReg : 1;
1136    bool isSRet  : 1;
1137    bool isNest  : 1;
1138    bool isByVal : 1;
1139    uint16_t Alignment;
1140
1141    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1142      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1143  };
1144  typedef std::vector<ArgListEntry> ArgListTy;
1145  std::pair<SDValue, SDValue>
1146  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1147              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1148              CallingConv::ID CallConv, bool isTailCall,
1149              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1150              SelectionDAG &DAG, DebugLoc dl) const;
1151
1152  /// LowerCall - This hook must be implemented to lower calls into the
1153  /// the specified DAG. The outgoing arguments to the call are described
1154  /// by the Outs array, and the values to be returned by the call are
1155  /// described by the Ins array. The implementation should fill in the
1156  /// InVals array with legal-type return values from the call, and return
1157  /// the resulting token chain value.
1158  virtual SDValue
1159    LowerCall(SDValue Chain, SDValue Callee,
1160              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1161              const SmallVectorImpl<ISD::OutputArg> &Outs,
1162              const SmallVectorImpl<SDValue> &OutVals,
1163              const SmallVectorImpl<ISD::InputArg> &Ins,
1164              DebugLoc dl, SelectionDAG &DAG,
1165              SmallVectorImpl<SDValue> &InVals) const {
1166    assert(0 && "Not Implemented");
1167    return SDValue();    // this is here to silence compiler errors
1168  }
1169
1170  /// CanLowerReturn - This hook should be implemented to check whether the
1171  /// return values described by the Outs array can fit into the return
1172  /// registers.  If false is returned, an sret-demotion is performed.
1173  ///
1174  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1175               const SmallVectorImpl<ISD::OutputArg> &Outs,
1176               LLVMContext &Context) const
1177  {
1178    // Return true by default to get preexisting behavior.
1179    return true;
1180  }
1181
1182  /// LowerReturn - This hook must be implemented to lower outgoing
1183  /// return values, described by the Outs array, into the specified
1184  /// DAG. The implementation should return the resulting token chain
1185  /// value.
1186  ///
1187  virtual SDValue
1188    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1189                const SmallVectorImpl<ISD::OutputArg> &Outs,
1190                const SmallVectorImpl<SDValue> &OutVals,
1191                DebugLoc dl, SelectionDAG &DAG) const {
1192    assert(0 && "Not Implemented");
1193    return SDValue();    // this is here to silence compiler errors
1194  }
1195
1196  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1197  /// to legalize nodes with an illegal operand type but legal result types.
1198  /// It replaces the LowerOperation callback in the type Legalizer.
1199  /// The reason we can not do away with LowerOperation entirely is that
1200  /// LegalizeDAG isn't yet ready to use this callback.
1201  /// TODO: Consider merging with ReplaceNodeResults.
1202
1203  /// The target places new result values for the node in Results (their number
1204  /// and types must exactly match those of the original return values of
1205  /// the node), or leaves Results empty, which indicates that the node is not
1206  /// to be custom lowered after all.
1207  /// The default implementation calls LowerOperation.
1208  virtual void LowerOperationWrapper(SDNode *N,
1209                                     SmallVectorImpl<SDValue> &Results,
1210                                     SelectionDAG &DAG) const;
1211
1212  /// LowerOperation - This callback is invoked for operations that are
1213  /// unsupported by the target, which are registered to use 'custom' lowering,
1214  /// and whose defined values are all legal.
1215  /// If the target has no operations that require custom lowering, it need not
1216  /// implement this.  The default implementation of this aborts.
1217  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1218
1219  /// ReplaceNodeResults - This callback is invoked when a node result type is
1220  /// illegal for the target, and the operation was registered to use 'custom'
1221  /// lowering for that result type.  The target places new result values for
1222  /// the node in Results (their number and types must exactly match those of
1223  /// the original return values of the node), or leaves Results empty, which
1224  /// indicates that the node is not to be custom lowered after all.
1225  ///
1226  /// If the target has no operations that require custom lowering, it need not
1227  /// implement this.  The default implementation aborts.
1228  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1229                                  SelectionDAG &DAG) const {
1230    assert(0 && "ReplaceNodeResults not implemented for this target!");
1231  }
1232
1233  /// getTargetNodeName() - This method returns the name of a target specific
1234  /// DAG node.
1235  virtual const char *getTargetNodeName(unsigned Opcode) const;
1236
1237  /// createFastISel - This method returns a target specific FastISel object,
1238  /// or null if the target does not support "fast" ISel.
1239  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1240    return 0;
1241  }
1242
1243  //===--------------------------------------------------------------------===//
1244  // Inline Asm Support hooks
1245  //
1246
1247  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1248  /// call to be explicit llvm code if it wants to.  This is useful for
1249  /// turning simple inline asms into LLVM intrinsics, which gives the
1250  /// compiler more information about the behavior of the code.
1251  virtual bool ExpandInlineAsm(CallInst *CI) const {
1252    return false;
1253  }
1254
1255  enum ConstraintType {
1256    C_Register,            // Constraint represents specific register(s).
1257    C_RegisterClass,       // Constraint represents any of register(s) in class.
1258    C_Memory,              // Memory constraint.
1259    C_Other,               // Something else.
1260    C_Unknown              // Unsupported constraint.
1261  };
1262
1263  /// AsmOperandInfo - This contains information for each constraint that we are
1264  /// lowering.
1265  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1266    /// ConstraintCode - This contains the actual string for the code, like "m".
1267    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1268    /// most closely matches the operand.
1269    std::string ConstraintCode;
1270
1271    /// ConstraintType - Information about the constraint code, e.g. Register,
1272    /// RegisterClass, Memory, Other, Unknown.
1273    TargetLowering::ConstraintType ConstraintType;
1274
1275    /// CallOperandval - If this is the result output operand or a
1276    /// clobber, this is null, otherwise it is the incoming operand to the
1277    /// CallInst.  This gets modified as the asm is processed.
1278    Value *CallOperandVal;
1279
1280    /// ConstraintVT - The ValueType for the operand value.
1281    EVT ConstraintVT;
1282
1283    /// isMatchingInputConstraint - Return true of this is an input operand that
1284    /// is a matching constraint like "4".
1285    bool isMatchingInputConstraint() const;
1286
1287    /// getMatchedOperand - If this is an input matching constraint, this method
1288    /// returns the output operand it matches.
1289    unsigned getMatchedOperand() const;
1290
1291    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1292      : InlineAsm::ConstraintInfo(info),
1293        ConstraintType(TargetLowering::C_Unknown),
1294        CallOperandVal(0), ConstraintVT(MVT::Other) {
1295    }
1296  };
1297
1298  /// ComputeConstraintToUse - Determines the constraint code and constraint
1299  /// type to use for the specific AsmOperandInfo, setting
1300  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1301  /// being passed in is available, it can be passed in as Op, otherwise an
1302  /// empty SDValue can be passed.
1303  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1304                                      SDValue Op,
1305                                      SelectionDAG *DAG = 0) const;
1306
1307  /// getConstraintType - Given a constraint, return the type of constraint it
1308  /// is for this target.
1309  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1310
1311  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1312  /// return a list of registers that can be used to satisfy the constraint.
1313  /// This should only be used for C_RegisterClass constraints.
1314  virtual std::vector<unsigned>
1315  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1316                                    EVT VT) const;
1317
1318  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1319  /// {edx}), return the register number and the register class for the
1320  /// register.
1321  ///
1322  /// Given a register class constraint, like 'r', if this corresponds directly
1323  /// to an LLVM register class, return a register of 0 and the register class
1324  /// pointer.
1325  ///
1326  /// This should only be used for C_Register constraints.  On error,
1327  /// this returns a register number of 0 and a null register class pointer..
1328  virtual std::pair<unsigned, const TargetRegisterClass*>
1329    getRegForInlineAsmConstraint(const std::string &Constraint,
1330                                 EVT VT) const;
1331
1332  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1333  /// with another that has more specific requirements based on the type of the
1334  /// corresponding operand.  This returns null if there is no replacement to
1335  /// make.
1336  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1337
1338  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1339  /// vector.  If it is invalid, don't add anything to Ops.
1340  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1341                                            std::vector<SDValue> &Ops,
1342                                            SelectionDAG &DAG) const;
1343
1344  //===--------------------------------------------------------------------===//
1345  // Instruction Emitting Hooks
1346  //
1347
1348  // EmitInstrWithCustomInserter - This method should be implemented by targets
1349  // that mark instructions with the 'usesCustomInserter' flag.  These
1350  // instructions are special in various ways, which require special support to
1351  // insert.  The specified MachineInstr is created but not inserted into any
1352  // basic blocks, and this method is called to expand it into a sequence of
1353  // instructions, potentially also creating new basic blocks and control flow.
1354  virtual MachineBasicBlock *
1355    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1356
1357  //===--------------------------------------------------------------------===//
1358  // Addressing mode description hooks (used by LSR etc).
1359  //
1360
1361  /// AddrMode - This represents an addressing mode of:
1362  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1363  /// If BaseGV is null,  there is no BaseGV.
1364  /// If BaseOffs is zero, there is no base offset.
1365  /// If HasBaseReg is false, there is no base register.
1366  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1367  /// no scale.
1368  ///
1369  struct AddrMode {
1370    GlobalValue *BaseGV;
1371    int64_t      BaseOffs;
1372    bool         HasBaseReg;
1373    int64_t      Scale;
1374    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1375  };
1376
1377  /// isLegalAddressingMode - Return true if the addressing mode represented by
1378  /// AM is legal for this target, for a load/store of the specified type.
1379  /// The type may be VoidTy, in which case only return true if the addressing
1380  /// mode is legal for a load/store of any legal type.
1381  /// TODO: Handle pre/postinc as well.
1382  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1383
1384  /// isTruncateFree - Return true if it's free to truncate a value of
1385  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1386  /// register EAX to i16 by referencing its sub-register AX.
1387  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1388    return false;
1389  }
1390
1391  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1392    return false;
1393  }
1394
1395  /// isZExtFree - Return true if any actual instruction that defines a
1396  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1397  /// register. This does not necessarily include registers defined in
1398  /// unknown ways, such as incoming arguments, or copies from unknown
1399  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1400  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1401  /// all instructions that define 32-bit values implicit zero-extend the
1402  /// result out to 64 bits.
1403  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1404    return false;
1405  }
1406
1407  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1408    return false;
1409  }
1410
1411  /// isNarrowingProfitable - Return true if it's profitable to narrow
1412  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1413  /// from i32 to i8 but not from i32 to i16.
1414  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1415    return false;
1416  }
1417
1418  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1419  /// icmp immediate, that is the target has icmp instructions which can compare
1420  /// a register against the immediate without having to materialize the
1421  /// immediate into a register.
1422  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1423    return true;
1424  }
1425
1426  //===--------------------------------------------------------------------===//
1427  // Div utility functions
1428  //
1429  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1430                      std::vector<SDNode*>* Created) const;
1431  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1432                      std::vector<SDNode*>* Created) const;
1433
1434
1435  //===--------------------------------------------------------------------===//
1436  // Runtime Library hooks
1437  //
1438
1439  /// setLibcallName - Rename the default libcall routine name for the specified
1440  /// libcall.
1441  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1442    LibcallRoutineNames[Call] = Name;
1443  }
1444
1445  /// getLibcallName - Get the libcall routine name for the specified libcall.
1446  ///
1447  const char *getLibcallName(RTLIB::Libcall Call) const {
1448    return LibcallRoutineNames[Call];
1449  }
1450
1451  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1452  /// result of the comparison libcall against zero.
1453  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1454    CmpLibcallCCs[Call] = CC;
1455  }
1456
1457  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1458  /// the comparison libcall against zero.
1459  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1460    return CmpLibcallCCs[Call];
1461  }
1462
1463  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1464  /// specified libcall.
1465  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1466    LibcallCallingConvs[Call] = CC;
1467  }
1468
1469  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1470  /// specified libcall.
1471  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1472    return LibcallCallingConvs[Call];
1473  }
1474
1475private:
1476  const TargetMachine &TM;
1477  const TargetData *TD;
1478  const TargetLoweringObjectFile &TLOF;
1479
1480  /// PointerTy - The type to use for pointers, usually i32 or i64.
1481  ///
1482  MVT PointerTy;
1483
1484  /// IsLittleEndian - True if this is a little endian target.
1485  ///
1486  bool IsLittleEndian;
1487
1488  /// SelectIsExpensive - Tells the code generator not to expand operations
1489  /// into sequences that use the select operations if possible.
1490  bool SelectIsExpensive;
1491
1492  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1493  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1494  /// a real cost model is in place.  If we ever optimize for size, this will be
1495  /// set to true unconditionally.
1496  bool IntDivIsCheap;
1497
1498  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1499  /// srl/add/sra for a signed divide by power of two, and let the target handle
1500  /// it.
1501  bool Pow2DivIsCheap;
1502
1503  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1504  /// llvm.setjmp.  Defaults to false.
1505  bool UseUnderscoreSetJmp;
1506
1507  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1508  /// llvm.longjmp.  Defaults to false.
1509  bool UseUnderscoreLongJmp;
1510
1511  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1512  /// PointerTy is.
1513  MVT ShiftAmountTy;
1514
1515  /// BooleanContents - Information about the contents of the high-bits in
1516  /// boolean values held in a type wider than i1.  See getBooleanContents.
1517  BooleanContent BooleanContents;
1518
1519  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1520  /// total cycles or lowest register usage.
1521  Sched::Preference SchedPreferenceInfo;
1522
1523  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1524  unsigned JumpBufSize;
1525
1526  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1527  /// buffers
1528  unsigned JumpBufAlignment;
1529
1530  /// MinStackArgumentAlignment - The minimum alignment that any argument
1531  /// on the stack needs to have.
1532  ///
1533  unsigned MinStackArgumentAlignment;
1534
1535  /// PrefLoopAlignment - The perferred loop alignment.
1536  ///
1537  unsigned PrefLoopAlignment;
1538
1539  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1540  /// be folded into the enclosed atomic intrinsic instruction by the
1541  /// combiner.
1542  bool ShouldFoldAtomicFences;
1543
1544  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1545  /// specifies the register that llvm.savestack/llvm.restorestack should save
1546  /// and restore.
1547  unsigned StackPointerRegisterToSaveRestore;
1548
1549  /// ExceptionPointerRegister - If set to a physical register, this specifies
1550  /// the register that receives the exception address on entry to a landing
1551  /// pad.
1552  unsigned ExceptionPointerRegister;
1553
1554  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1555  /// the register that receives the exception typeid on entry to a landing
1556  /// pad.
1557  unsigned ExceptionSelectorRegister;
1558
1559  /// RegClassForVT - This indicates the default register class to use for
1560  /// each ValueType the target supports natively.
1561  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1562  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1563  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1564
1565  /// Synthesizable indicates whether it is OK for the compiler to create new
1566  /// operations using this type.  All Legal types are Synthesizable except
1567  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1568  bool Synthesizable[MVT::LAST_VALUETYPE];
1569
1570  /// TransformToType - For any value types we are promoting or expanding, this
1571  /// contains the value type that we are changing to.  For Expanded types, this
1572  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1573  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1574  /// by the system, this holds the same type (e.g. i32 -> i32).
1575  EVT TransformToType[MVT::LAST_VALUETYPE];
1576
1577  /// OpActions - For each operation and each value type, keep a LegalizeAction
1578  /// that indicates how instruction selection should deal with the operation.
1579  /// Most operations are Legal (aka, supported natively by the target), but
1580  /// operations that are not should be described.  Note that operations on
1581  /// non-legal value types are not described here.
1582  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1583
1584  /// LoadExtActions - For each load extension type and each value type,
1585  /// keep a LegalizeAction that indicates how instruction selection should deal
1586  /// with a load of a specific value type and extension type.
1587  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1588
1589  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1590  /// indicates whether a truncating store of a specific value type and
1591  /// truncating type is legal.
1592  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1593
1594  /// IndexedModeActions - For each indexed mode and each value type,
1595  /// keep a pair of LegalizeAction that indicates how instruction
1596  /// selection should deal with the load / store.  The first dimension is the
1597  /// value_type for the reference. The second dimension represents the various
1598  /// modes for load store.
1599  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1600
1601  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1602  /// LegalizeAction that indicates how instruction selection should
1603  /// deal with the condition code.
1604  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1605
1606  ValueTypeActionImpl ValueTypeActions;
1607
1608  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1609
1610  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1611  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1612  /// which sets a bit in this array.
1613  unsigned char
1614  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1615
1616  /// PromoteToType - For operations that must be promoted to a specific type,
1617  /// this holds the destination type.  This map should be sparse, so don't hold
1618  /// it as an array.
1619  ///
1620  /// Targets add entries to this map with AddPromotedToType(..), clients access
1621  /// this with getTypeToPromoteTo(..).
1622  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1623    PromoteToType;
1624
1625  /// LibcallRoutineNames - Stores the name each libcall.
1626  ///
1627  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1628
1629  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1630  /// of each of the comparison libcall against zero.
1631  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1632
1633  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1634  /// libcall.
1635  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1636
1637protected:
1638  /// When lowering \@llvm.memset this field specifies the maximum number of
1639  /// store operations that may be substituted for the call to memset. Targets
1640  /// must set this value based on the cost threshold for that target. Targets
1641  /// should assume that the memset will be done using as many of the largest
1642  /// store operations first, followed by smaller ones, if necessary, per
1643  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1644  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1645  /// store.  This only applies to setting a constant array of a constant size.
1646  /// @brief Specify maximum number of store instructions per memset call.
1647  unsigned maxStoresPerMemset;
1648
1649  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1650  /// store operations that may be substituted for a call to memcpy. Targets
1651  /// must set this value based on the cost threshold for that target. Targets
1652  /// should assume that the memcpy will be done using as many of the largest
1653  /// store operations first, followed by smaller ones, if necessary, per
1654  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1655  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1656  /// and one 1-byte store. This only applies to copying a constant array of
1657  /// constant size.
1658  /// @brief Specify maximum bytes of store instructions per memcpy call.
1659  unsigned maxStoresPerMemcpy;
1660
1661  /// When lowering \@llvm.memmove this field specifies the maximum number of
1662  /// store instructions that may be substituted for a call to memmove. Targets
1663  /// must set this value based on the cost threshold for that target. Targets
1664  /// should assume that the memmove will be done using as many of the largest
1665  /// store operations first, followed by smaller ones, if necessary, per
1666  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1667  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1668  /// applies to copying a constant array of constant size.
1669  /// @brief Specify maximum bytes of store instructions per memmove call.
1670  unsigned maxStoresPerMemmove;
1671
1672  /// This field specifies whether the target can benefit from code placement
1673  /// optimization.
1674  bool benefitFromCodePlacementOpt;
1675};
1676
1677/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1678/// compute the return value EVTs and flags, and optionally also
1679/// the offsets, if the return value is being lowered to memory.
1680void GetReturnInfo(const Type* ReturnType, Attributes attr,
1681                   SmallVectorImpl<ISD::OutputArg> &Outs,
1682                   const TargetLowering &TLI,
1683                   SmallVectorImpl<uint64_t> *Offsets = 0);
1684
1685} // end llvm namespace
1686
1687#endif
1688