TargetLowering.h revision a1eaa3c52b75d4fe2bcd4f7c52e56c405ee91d3c
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineModuleInfo;
50  class DwarfWriter;
51  class SDNode;
52  class SDValue;
53  class SelectionDAG;
54  class TargetData;
55  class TargetMachine;
56  class TargetRegisterClass;
57  class TargetSubtarget;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  enum SchedPreference {
101    SchedulingForLatency,          // Scheduling for shortest total latency.
102    SchedulingForRegPressure       // Scheduling for lowest register pressure.
103  };
104
105  /// NOTE: The constructor takes ownership of TLOF.
106  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
119  /// codegen.
120  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
121
122  /// isSelectExpensive - Return true if the select operation is expensive for
123  /// this target.
124  bool isSelectExpensive() const { return SelectIsExpensive; }
125
126  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
127  /// a sequence of several shifts, adds, and multiplies for this target.
128  bool isIntDivCheap() const { return IntDivIsCheap; }
129
130  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
131  /// srl/add/sra.
132  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
133
134  /// getSetCCResultType - Return the ValueType of the result of SETCC
135  /// operations.  Also used to obtain the target's preferred type for
136  /// the condition operand of SELECT and BRCOND nodes.  In the case of
137  /// BRCOND the argument passed is MVT::Other since there are no other
138  /// operands to get a type hint from.
139  virtual
140  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(EVT VT) const {
157    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(EVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
177    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
178  public:
179    ValueTypeActionImpl() {
180      ValueTypeActions[0] = ValueTypeActions[1] = 0;
181      ValueTypeActions[2] = ValueTypeActions[3] = 0;
182    }
183    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
184      ValueTypeActions[0] = RHS.ValueTypeActions[0];
185      ValueTypeActions[1] = RHS.ValueTypeActions[1];
186      ValueTypeActions[2] = RHS.ValueTypeActions[2];
187      ValueTypeActions[3] = RHS.ValueTypeActions[3];
188    }
189
190    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
191      if (VT.isExtended()) {
192        if (VT.isVector()) {
193          return VT.isPow2VectorType() ? Expand : Promote;
194        }
195        if (VT.isInteger())
196          // First promote to a power-of-two size, then expand if necessary.
197          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
198        assert(0 && "Unsupported extended type!");
199        return Legal;
200      }
201      unsigned I = VT.getSimpleVT().SimpleTy;
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
204    }
205    void setTypeAction(EVT VT, LegalizeAction Action) {
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
221    return ValueTypeActions.getTypeAction(Context, VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT().SimpleTy <
233             array_lengthof(TransformToType));
234      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
235      assert(getTypeAction(Context, NVT) != Promote &&
236             "Promote may not follow Expand or Promote");
237      return NVT;
238    }
239
240    if (VT.isVector()) {
241      EVT NVT = VT.getPow2VectorType(Context);
242      if (NVT == VT) {
243        // Vector length is a power of 2 - split to half the size.
244        unsigned NumElts = VT.getVectorNumElements();
245        EVT EltVT = VT.getVectorElementType();
246        return (NumElts == 1) ?
247          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
248      }
249      // Promote to a power of two size, avoiding multi-step promotion.
250      return getTypeAction(Context, NVT) == Promote ?
251        getTypeToTransformTo(Context, NVT) : NVT;
252    } else if (VT.isInteger()) {
253      EVT NVT = VT.getRoundIntegerType(Context);
254      if (NVT == VT)
255        // Size is a power of two - expand to half the size.
256        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
257      else
258        // Promote to a power of two size, avoiding multi-step promotion.
259        return getTypeAction(Context, NVT) == Promote ?
260          getTypeToTransformTo(Context, NVT) : NVT;
261    }
262    assert(0 && "Unsupported extended type!");
263    return MVT(MVT::Other); // Not reached
264  }
265
266  /// getTypeToExpandTo - For types supported by the target, this is an
267  /// identity function.  For types that must be expanded (i.e. integer types
268  /// that are larger than the largest integer register or illegal floating
269  /// point types), this returns the largest legal type it will be expanded to.
270  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
271    assert(!VT.isVector());
272    while (true) {
273      switch (getTypeAction(Context, VT)) {
274      case Legal:
275        return VT;
276      case Expand:
277        VT = getTypeToTransformTo(Context, VT);
278        break;
279      default:
280        assert(false && "Type is not legal nor is it to be expanded!");
281        return VT;
282      }
283    }
284    return VT;
285  }
286
287  /// getVectorTypeBreakdown - Vector types are broken down into some number of
288  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
289  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
290  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
291  ///
292  /// This method returns the number of registers needed, and the VT for each
293  /// register.  It also returns the VT and quantity of the intermediate values
294  /// before they are promoted/expanded.
295  ///
296  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
297                                  EVT &IntermediateVT,
298                                  unsigned &NumIntermediates,
299                                  EVT &RegisterVT) const;
300
301  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
302  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
303  /// this is the case, it returns true and store the intrinsic
304  /// information into the IntrinsicInfo that was passed to the function.
305  typedef struct IntrinsicInfo {
306    unsigned     opc;         // target opcode
307    EVT          memVT;       // memory VT
308    const Value* ptrVal;      // value representing memory location
309    int          offset;      // offset off of ptrVal
310    unsigned     align;       // alignment
311    bool         vol;         // is volatile?
312    bool         readMem;     // reads memory?
313    bool         writeMem;    // writes memory?
314  } IntrinisicInfo;
315
316  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
317                                  CallInst &I, unsigned Intrinsic) {
318    return false;
319  }
320
321  /// getWidenVectorType: given a vector type, returns the type to widen to
322  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
323  /// If there is no vector type that we want to widen to, returns MVT::Other
324  /// When and were to widen is target dependent based on the cost of
325  /// scalarizing vs using the wider vector type.
326  virtual EVT getWidenVectorType(EVT VT) const;
327
328  /// isFPImmLegal - Returns true if the target can instruction select the
329  /// specified FP immediate natively. If false, the legalizer will materialize
330  /// the FP immediate as a load from a constant pool.
331  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
332    return false;
333  }
334
335  /// isShuffleMaskLegal - Targets can use this to indicate that they only
336  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
337  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
338  /// are assumed to be legal.
339  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
340                                  EVT VT) const {
341    return true;
342  }
343
344  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
345  /// used by Targets can use this to indicate if there is a suitable
346  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
347  /// pool entry.
348  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
349                                      EVT VT) const {
350    return false;
351  }
352
353  /// getOperationAction - Return how this operation should be treated: either
354  /// it is legal, needs to be promoted to a larger size, needs to be
355  /// expanded to some other code sequence, or the target has a custom expander
356  /// for it.
357  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
358    if (VT.isExtended()) return Expand;
359    assert(Op < array_lengthof(OpActions[0]) &&
360           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
361           "Table isn't big enough!");
362    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
363    unsigned J = I & 31;
364    I = I >> 5;
365    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
366  }
367
368  /// isOperationLegalOrCustom - Return true if the specified operation is
369  /// legal on this target or can be made legal with custom lowering. This
370  /// is used to help guide high-level lowering decisions.
371  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
372    return (VT == MVT::Other || isTypeLegal(VT)) &&
373      (getOperationAction(Op, VT) == Legal ||
374       getOperationAction(Op, VT) == Custom);
375  }
376
377  /// isOperationLegal - Return true if the specified operation is legal on this
378  /// target.
379  bool isOperationLegal(unsigned Op, EVT VT) const {
380    return (VT == MVT::Other || isTypeLegal(VT)) &&
381           getOperationAction(Op, VT) == Legal;
382  }
383
384  /// getLoadExtAction - Return how this load with extension should be treated:
385  /// either it is legal, needs to be promoted to a larger size, needs to be
386  /// expanded to some other code sequence, or the target has a custom expander
387  /// for it.
388  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
389    assert(LType < array_lengthof(LoadExtActions) &&
390           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
391           "Table isn't big enough!");
392    return (LegalizeAction)((LoadExtActions[LType] >>
393              (2*VT.getSimpleVT().SimpleTy)) & 3);
394  }
395
396  /// isLoadExtLegal - Return true if the specified load with extension is legal
397  /// on this target.
398  bool isLoadExtLegal(unsigned LType, EVT VT) const {
399    return VT.isSimple() &&
400      (getLoadExtAction(LType, VT) == Legal ||
401       getLoadExtAction(LType, VT) == Custom);
402  }
403
404  /// getTruncStoreAction - Return how this store with truncation should be
405  /// treated: either it is legal, needs to be promoted to a larger size, needs
406  /// to be expanded to some other code sequence, or the target has a custom
407  /// expander for it.
408  LegalizeAction getTruncStoreAction(EVT ValVT,
409                                     EVT MemVT) const {
410    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
411             array_lengthof(TruncStoreActions) &&
412           (unsigned)MemVT.getSimpleVT().SimpleTy <
413             sizeof(TruncStoreActions[0])*4 &&
414           "Table isn't big enough!");
415    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
416                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
417  }
418
419  /// isTruncStoreLegal - Return true if the specified store with truncation is
420  /// legal on this target.
421  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
422    return isTypeLegal(ValVT) && MemVT.isSimple() &&
423      (getTruncStoreAction(ValVT, MemVT) == Legal ||
424       getTruncStoreAction(ValVT, MemVT) == Custom);
425  }
426
427  /// getIndexedLoadAction - Return how the indexed load should be treated:
428  /// either it is legal, needs to be promoted to a larger size, needs to be
429  /// expanded to some other code sequence, or the target has a custom expander
430  /// for it.
431  LegalizeAction
432  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
433    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
434           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
435           "Table isn't big enough!");
436    return (LegalizeAction)((IndexedModeActions[
437                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
438  }
439
440  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
441  /// on this target.
442  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
443    return VT.isSimple() &&
444      (getIndexedLoadAction(IdxMode, VT) == Legal ||
445       getIndexedLoadAction(IdxMode, VT) == Custom);
446  }
447
448  /// getIndexedStoreAction - Return how the indexed store should be treated:
449  /// either it is legal, needs to be promoted to a larger size, needs to be
450  /// expanded to some other code sequence, or the target has a custom expander
451  /// for it.
452  LegalizeAction
453  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
454    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
455           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
456           "Table isn't big enough!");
457    return (LegalizeAction)((IndexedModeActions[
458              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
459  }
460
461  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
462  /// on this target.
463  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
464    return VT.isSimple() &&
465      (getIndexedStoreAction(IdxMode, VT) == Legal ||
466       getIndexedStoreAction(IdxMode, VT) == Custom);
467  }
468
469  /// getConvertAction - Return how the conversion should be treated:
470  /// either it is legal, needs to be promoted to a larger size, needs to be
471  /// expanded to some other code sequence, or the target has a custom expander
472  /// for it.
473  LegalizeAction
474  getConvertAction(EVT FromVT, EVT ToVT) const {
475    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
476              array_lengthof(ConvertActions) &&
477           (unsigned)ToVT.getSimpleVT().SimpleTy <
478              sizeof(ConvertActions[0])*4 &&
479           "Table isn't big enough!");
480    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
481                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
482  }
483
484  /// isConvertLegal - Return true if the specified conversion is legal
485  /// on this target.
486  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
487    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
488      (getConvertAction(FromVT, ToVT) == Legal ||
489       getConvertAction(FromVT, ToVT) == Custom);
490  }
491
492  /// getCondCodeAction - Return how the condition code should be treated:
493  /// either it is legal, needs to be expanded to some other code sequence,
494  /// or the target has a custom expander for it.
495  LegalizeAction
496  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
497    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
498           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
499           "Table isn't big enough!");
500    LegalizeAction Action = (LegalizeAction)
501      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
502    assert(Action != Promote && "Can't promote condition code!");
503    return Action;
504  }
505
506  /// isCondCodeLegal - Return true if the specified condition code is legal
507  /// on this target.
508  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
509    return getCondCodeAction(CC, VT) == Legal ||
510           getCondCodeAction(CC, VT) == Custom;
511  }
512
513
514  /// getTypeToPromoteTo - If the action for this operation is to promote, this
515  /// method returns the ValueType to promote to.
516  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
517    assert(getOperationAction(Op, VT) == Promote &&
518           "This operation isn't promoted!");
519
520    // See if this has an explicit type specified.
521    std::map<std::pair<unsigned, MVT::SimpleValueType>,
522             MVT::SimpleValueType>::const_iterator PTTI =
523      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
524    if (PTTI != PromoteToType.end()) return PTTI->second;
525
526    assert((VT.isInteger() || VT.isFloatingPoint()) &&
527           "Cannot autopromote this type, add it with AddPromotedToType.");
528
529    EVT NVT = VT;
530    do {
531      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
532      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
533             "Didn't find type to promote to!");
534    } while (!isTypeLegal(NVT) ||
535              getOperationAction(Op, NVT) == Promote);
536    return NVT;
537  }
538
539  /// getValueType - Return the EVT corresponding to this LLVM type.
540  /// This is fixed by the LLVM operations except for the pointer size.  If
541  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
542  /// counterpart (e.g. structs), otherwise it will assert.
543  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
544    EVT VT = EVT::getEVT(Ty, AllowUnknown);
545    return VT == MVT:: iPTR ? PointerTy : VT;
546  }
547
548  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
549  /// function arguments in the caller parameter area.  This is the actual
550  /// alignment, not its logarithm.
551  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
552
553  /// getRegisterType - Return the type of registers that this ValueType will
554  /// eventually require.
555  EVT getRegisterType(MVT VT) const {
556    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
557    return RegisterTypeForVT[VT.SimpleTy];
558  }
559
560  /// getRegisterType - Return the type of registers that this ValueType will
561  /// eventually require.
562  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
563    if (VT.isSimple()) {
564      assert((unsigned)VT.getSimpleVT().SimpleTy <
565                array_lengthof(RegisterTypeForVT));
566      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
567    }
568    if (VT.isVector()) {
569      EVT VT1, RegisterVT;
570      unsigned NumIntermediates;
571      (void)getVectorTypeBreakdown(Context, VT, VT1,
572                                   NumIntermediates, RegisterVT);
573      return RegisterVT;
574    }
575    if (VT.isInteger()) {
576      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
577    }
578    assert(0 && "Unsupported extended type!");
579    return EVT(MVT::Other); // Not reached
580  }
581
582  /// getNumRegisters - Return the number of registers that this ValueType will
583  /// eventually require.  This is one for any types promoted to live in larger
584  /// registers, but may be more than one for types (like i64) that are split
585  /// into pieces.  For types like i140, which are first promoted then expanded,
586  /// it is the number of registers needed to hold all the bits of the original
587  /// type.  For an i140 on a 32 bit machine this means 5 registers.
588  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
589    if (VT.isSimple()) {
590      assert((unsigned)VT.getSimpleVT().SimpleTy <
591                array_lengthof(NumRegistersForVT));
592      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
593    }
594    if (VT.isVector()) {
595      EVT VT1, VT2;
596      unsigned NumIntermediates;
597      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
598    }
599    if (VT.isInteger()) {
600      unsigned BitWidth = VT.getSizeInBits();
601      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
602      return (BitWidth + RegWidth - 1) / RegWidth;
603    }
604    assert(0 && "Unsupported extended type!");
605    return 0; // Not reached
606  }
607
608  /// ShouldShrinkFPConstant - If true, then instruction selection should
609  /// seek to shrink the FP constant of the specified type to a smaller type
610  /// in order to save space and / or reduce runtime.
611  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
612
613  /// hasTargetDAGCombine - If true, the target has custom DAG combine
614  /// transformations that it can perform for the specified node.
615  bool hasTargetDAGCombine(ISD::NodeType NT) const {
616    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
617    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
618  }
619
620  /// This function returns the maximum number of store operations permitted
621  /// to replace a call to llvm.memset. The value is set by the target at the
622  /// performance threshold for such a replacement.
623  /// @brief Get maximum # of store operations permitted for llvm.memset
624  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
625
626  /// This function returns the maximum number of store operations permitted
627  /// to replace a call to llvm.memcpy. The value is set by the target at the
628  /// performance threshold for such a replacement.
629  /// @brief Get maximum # of store operations permitted for llvm.memcpy
630  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
631
632  /// This function returns the maximum number of store operations permitted
633  /// to replace a call to llvm.memmove. The value is set by the target at the
634  /// performance threshold for such a replacement.
635  /// @brief Get maximum # of store operations permitted for llvm.memmove
636  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
637
638  /// This function returns true if the target allows unaligned memory accesses.
639  /// of the specified type. This is used, for example, in situations where an
640  /// array copy/move/set is  converted to a sequence of store operations. It's
641  /// use helps to ensure that such replacements don't generate code that causes
642  /// an alignment error  (trap) on the target machine.
643  /// @brief Determine if the target supports unaligned memory accesses.
644  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
645    return false;
646  }
647
648  /// This function returns true if the target would benefit from code placement
649  /// optimization.
650  /// @brief Determine if the target should perform code placement optimization.
651  bool shouldOptimizeCodePlacement() const {
652    return benefitFromCodePlacementOpt;
653  }
654
655  /// getOptimalMemOpType - Returns the target specific optimal type for load
656  /// and store operations as a result of memset, memcpy, and memmove lowering.
657  /// It returns EVT::iAny if SelectionDAG should be responsible for
658  /// determining it.
659  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
660                                  bool isSrcConst, bool isSrcStr,
661                                  SelectionDAG &DAG) const {
662    return MVT::iAny;
663  }
664
665  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
666  /// to implement llvm.setjmp.
667  bool usesUnderscoreSetJmp() const {
668    return UseUnderscoreSetJmp;
669  }
670
671  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
672  /// to implement llvm.longjmp.
673  bool usesUnderscoreLongJmp() const {
674    return UseUnderscoreLongJmp;
675  }
676
677  /// getStackPointerRegisterToSaveRestore - If a physical register, this
678  /// specifies the register that llvm.savestack/llvm.restorestack should save
679  /// and restore.
680  unsigned getStackPointerRegisterToSaveRestore() const {
681    return StackPointerRegisterToSaveRestore;
682  }
683
684  /// getExceptionAddressRegister - If a physical register, this returns
685  /// the register that receives the exception address on entry to a landing
686  /// pad.
687  unsigned getExceptionAddressRegister() const {
688    return ExceptionPointerRegister;
689  }
690
691  /// getExceptionSelectorRegister - If a physical register, this returns
692  /// the register that receives the exception typeid on entry to a landing
693  /// pad.
694  unsigned getExceptionSelectorRegister() const {
695    return ExceptionSelectorRegister;
696  }
697
698  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
699  /// set, the default is 200)
700  unsigned getJumpBufSize() const {
701    return JumpBufSize;
702  }
703
704  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
705  /// (if never set, the default is 0)
706  unsigned getJumpBufAlignment() const {
707    return JumpBufAlignment;
708  }
709
710  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
711  /// limit. Any block whose size is greater should not be predicated.
712  unsigned getIfCvtBlockSizeLimit() const {
713    return IfCvtBlockSizeLimit;
714  }
715
716  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
717  /// block to be considered for duplication. Any block whose size is greater
718  /// should not be duplicated to facilitate its predication.
719  unsigned getIfCvtDupBlockSizeLimit() const {
720    return IfCvtDupBlockSizeLimit;
721  }
722
723  /// getPrefLoopAlignment - return the preferred loop alignment.
724  ///
725  unsigned getPrefLoopAlignment() const {
726    return PrefLoopAlignment;
727  }
728
729  /// getPreIndexedAddressParts - returns true by value, base pointer and
730  /// offset pointer and addressing mode by reference if the node's address
731  /// can be legally represented as pre-indexed load / store address.
732  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
733                                         SDValue &Offset,
734                                         ISD::MemIndexedMode &AM,
735                                         SelectionDAG &DAG) const {
736    return false;
737  }
738
739  /// getPostIndexedAddressParts - returns true by value, base pointer and
740  /// offset pointer and addressing mode by reference if this node can be
741  /// combined with a load / store to form a post-indexed load / store.
742  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
743                                          SDValue &Base, SDValue &Offset,
744                                          ISD::MemIndexedMode &AM,
745                                          SelectionDAG &DAG) const {
746    return false;
747  }
748
749  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
750  /// jumptable.
751  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
752                                             SelectionDAG &DAG) const;
753
754  /// isOffsetFoldingLegal - Return true if folding a constant offset
755  /// with the given GlobalAddress is legal.  It is frequently not legal in
756  /// PIC relocation models.
757  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
758
759  /// getFunctionAlignment - Return the Log2 alignment of this function.
760  virtual unsigned getFunctionAlignment(const Function *) const = 0;
761
762  //===--------------------------------------------------------------------===//
763  // TargetLowering Optimization Methods
764  //
765
766  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
767  /// SDValues for returning information from TargetLowering to its clients
768  /// that want to combine
769  struct TargetLoweringOpt {
770    SelectionDAG &DAG;
771    SDValue Old;
772    SDValue New;
773
774    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
775
776    bool CombineTo(SDValue O, SDValue N) {
777      Old = O;
778      New = N;
779      return true;
780    }
781
782    /// ShrinkDemandedConstant - Check to see if the specified operand of the
783    /// specified instruction is a constant integer.  If so, check to see if
784    /// there are any bits set in the constant that are not demanded.  If so,
785    /// shrink the constant and return true.
786    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
787
788    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
789    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
790    /// cast, but it could be generalized for targets with other types of
791    /// implicit widening casts.
792    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
793                          DebugLoc dl);
794  };
795
796  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
797  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
798  /// use this information to simplify Op, create a new simplified DAG node and
799  /// return true, returning the original and new nodes in Old and New.
800  /// Otherwise, analyze the expression and return a mask of KnownOne and
801  /// KnownZero bits for the expression (used to simplify the caller).
802  /// The KnownZero/One bits may only be accurate for those bits in the
803  /// DemandedMask.
804  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
805                            APInt &KnownZero, APInt &KnownOne,
806                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
807
808  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
809  /// Mask are known to be either zero or one and return them in the
810  /// KnownZero/KnownOne bitsets.
811  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
812                                              const APInt &Mask,
813                                              APInt &KnownZero,
814                                              APInt &KnownOne,
815                                              const SelectionDAG &DAG,
816                                              unsigned Depth = 0) const;
817
818  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
819  /// targets that want to expose additional information about sign bits to the
820  /// DAG Combiner.
821  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
822                                                   unsigned Depth = 0) const;
823
824  struct DAGCombinerInfo {
825    void *DC;  // The DAG Combiner object.
826    bool BeforeLegalize;
827    bool BeforeLegalizeOps;
828    bool CalledByLegalizer;
829  public:
830    SelectionDAG &DAG;
831
832    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
833      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
834        CalledByLegalizer(cl), DAG(dag) {}
835
836    bool isBeforeLegalize() const { return BeforeLegalize; }
837    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
838    bool isCalledByLegalizer() const { return CalledByLegalizer; }
839
840    void AddToWorklist(SDNode *N);
841    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
842                      bool AddTo = true);
843    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
844    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
845
846    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
847  };
848
849  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
850  /// and cc. If it is unable to simplify it, return a null SDValue.
851  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
852                          ISD::CondCode Cond, bool foldBooleans,
853                          DAGCombinerInfo &DCI, DebugLoc dl) const;
854
855  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
856  /// node is a GlobalAddress + offset.
857  virtual bool
858  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
859
860  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
861  /// location that is 'Dist' units away from the location that the 'Base' load
862  /// is loading from.
863  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
864                         int Dist, const MachineFrameInfo *MFI) const;
865
866  /// PerformDAGCombine - This method will be invoked for all target nodes and
867  /// for any target-independent nodes that the target has registered with
868  /// invoke it for.
869  ///
870  /// The semantics are as follows:
871  /// Return Value:
872  ///   SDValue.Val == 0   - No change was made
873  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
874  ///   otherwise          - N should be replaced by the returned Operand.
875  ///
876  /// In addition, methods provided by DAGCombinerInfo may be used to perform
877  /// more complex transformations.
878  ///
879  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
880
881  //===--------------------------------------------------------------------===//
882  // TargetLowering Configuration Methods - These methods should be invoked by
883  // the derived class constructor to configure this object for the target.
884  //
885
886protected:
887  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
888  /// GOT for PC-relative code.
889  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
890
891  /// setShiftAmountType - Describe the type that should be used for shift
892  /// amounts.  This type defaults to the pointer type.
893  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
894
895  /// setBooleanContents - Specify how the target extends the result of a
896  /// boolean value from i1 to a wider type.  See getBooleanContents.
897  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
898
899  /// setSchedulingPreference - Specify the target scheduling preference.
900  void setSchedulingPreference(SchedPreference Pref) {
901    SchedPreferenceInfo = Pref;
902  }
903
904  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
905  /// use _setjmp to implement llvm.setjmp or the non _ version.
906  /// Defaults to false.
907  void setUseUnderscoreSetJmp(bool Val) {
908    UseUnderscoreSetJmp = Val;
909  }
910
911  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
912  /// use _longjmp to implement llvm.longjmp or the non _ version.
913  /// Defaults to false.
914  void setUseUnderscoreLongJmp(bool Val) {
915    UseUnderscoreLongJmp = Val;
916  }
917
918  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
919  /// specifies the register that llvm.savestack/llvm.restorestack should save
920  /// and restore.
921  void setStackPointerRegisterToSaveRestore(unsigned R) {
922    StackPointerRegisterToSaveRestore = R;
923  }
924
925  /// setExceptionPointerRegister - If set to a physical register, this sets
926  /// the register that receives the exception address on entry to a landing
927  /// pad.
928  void setExceptionPointerRegister(unsigned R) {
929    ExceptionPointerRegister = R;
930  }
931
932  /// setExceptionSelectorRegister - If set to a physical register, this sets
933  /// the register that receives the exception typeid on entry to a landing
934  /// pad.
935  void setExceptionSelectorRegister(unsigned R) {
936    ExceptionSelectorRegister = R;
937  }
938
939  /// SelectIsExpensive - Tells the code generator not to expand operations
940  /// into sequences that use the select operations if possible.
941  void setSelectIsExpensive() { SelectIsExpensive = true; }
942
943  /// setIntDivIsCheap - Tells the code generator that integer divide is
944  /// expensive, and if possible, should be replaced by an alternate sequence
945  /// of instructions not containing an integer divide.
946  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
947
948  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
949  /// srl/add/sra for a signed divide by power of two, and let the target handle
950  /// it.
951  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
952
953  /// addRegisterClass - Add the specified register class as an available
954  /// regclass for the specified value type.  This indicates the selector can
955  /// handle values of that class natively.
956  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
957    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
958    AvailableRegClasses.push_back(std::make_pair(VT, RC));
959    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
960  }
961
962  /// computeRegisterProperties - Once all of the register classes are added,
963  /// this allows us to compute derived properties we expose.
964  void computeRegisterProperties();
965
966  /// setOperationAction - Indicate that the specified operation does not work
967  /// with the specified type and indicate what to do about it.
968  void setOperationAction(unsigned Op, MVT VT,
969                          LegalizeAction Action) {
970    unsigned I = (unsigned)VT.SimpleTy;
971    unsigned J = I & 31;
972    I = I >> 5;
973    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
974    OpActions[I][Op] |= (uint64_t)Action << (J*2);
975  }
976
977  /// setLoadExtAction - Indicate that the specified load with extension does
978  /// not work with the with specified type and indicate what to do about it.
979  void setLoadExtAction(unsigned ExtType, MVT VT,
980                      LegalizeAction Action) {
981    assert((unsigned)VT.SimpleTy < sizeof(LoadExtActions[0])*4 &&
982           ExtType < array_lengthof(LoadExtActions) &&
983           "Table isn't big enough!");
984    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
985    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
986  }
987
988  /// setTruncStoreAction - Indicate that the specified truncating store does
989  /// not work with the with specified type and indicate what to do about it.
990  void setTruncStoreAction(MVT ValVT, MVT MemVT,
991                           LegalizeAction Action) {
992    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
993           (unsigned)MemVT.SimpleTy < sizeof(TruncStoreActions[0])*4 &&
994           "Table isn't big enough!");
995    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
996    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
997  }
998
999  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1000  /// does not work with the with specified type and indicate what to do abort
1001  /// it. NOTE: All indexed mode loads are initialized to Expand in
1002  /// TargetLowering.cpp
1003  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1004                            LegalizeAction Action) {
1005    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1006           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1007           "Table isn't big enough!");
1008    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1009  }
1010
1011  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1012  /// does not work with the with specified type and indicate what to do about
1013  /// it. NOTE: All indexed mode stores are initialized to Expand in
1014  /// TargetLowering.cpp
1015  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1016                             LegalizeAction Action) {
1017    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1018           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1019           "Table isn't big enough!");
1020    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1021  }
1022
1023  /// setConvertAction - Indicate that the specified conversion does or does
1024  /// not work with the with specified type and indicate what to do about it.
1025  void setConvertAction(MVT FromVT, MVT ToVT,
1026                        LegalizeAction Action) {
1027    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1028           (unsigned)ToVT.SimpleTy < sizeof(ConvertActions[0])*4 &&
1029           "Table isn't big enough!");
1030    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1031    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1032  }
1033
1034  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1035  /// supported on the target and indicate what to do about it.
1036  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1037                         LegalizeAction Action) {
1038    assert((unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
1039           (unsigned)CC < array_lengthof(CondCodeActions) &&
1040           "Table isn't big enough!");
1041    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1042    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1043  }
1044
1045  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1046  /// promotion code defaults to trying a larger integer/fp until it can find
1047  /// one that works.  If that default is insufficient, this method can be used
1048  /// by the target to override the default.
1049  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1050    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1051  }
1052
1053  /// setTargetDAGCombine - Targets should invoke this method for each target
1054  /// independent node that they want to provide a custom DAG combiner for by
1055  /// implementing the PerformDAGCombine virtual method.
1056  void setTargetDAGCombine(ISD::NodeType NT) {
1057    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1058    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1059  }
1060
1061  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1062  /// bytes); default is 200
1063  void setJumpBufSize(unsigned Size) {
1064    JumpBufSize = Size;
1065  }
1066
1067  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1068  /// alignment (in bytes); default is 0
1069  void setJumpBufAlignment(unsigned Align) {
1070    JumpBufAlignment = Align;
1071  }
1072
1073  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1074  /// limit (in number of instructions); default is 2.
1075  void setIfCvtBlockSizeLimit(unsigned Limit) {
1076    IfCvtBlockSizeLimit = Limit;
1077  }
1078
1079  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1080  /// of instructions) to be considered for code duplication during
1081  /// if-conversion; default is 2.
1082  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1083    IfCvtDupBlockSizeLimit = Limit;
1084  }
1085
1086  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1087  /// alignment is zero, it means the target does not care about loop alignment.
1088  void setPrefLoopAlignment(unsigned Align) {
1089    PrefLoopAlignment = Align;
1090  }
1091
1092public:
1093
1094  virtual const TargetSubtarget *getSubtarget() {
1095    assert(0 && "Not Implemented");
1096    return NULL;    // this is here to silence compiler errors
1097  }
1098
1099  //===--------------------------------------------------------------------===//
1100  // Lowering methods - These methods must be implemented by targets so that
1101  // the SelectionDAGLowering code knows how to lower these.
1102  //
1103
1104  /// LowerFormalArguments - This hook must be implemented to lower the
1105  /// incoming (formal) arguments, described by the Ins array, into the
1106  /// specified DAG. The implementation should fill in the InVals array
1107  /// with legal-type argument values, and return the resulting token
1108  /// chain value.
1109  ///
1110  virtual SDValue
1111    LowerFormalArguments(SDValue Chain,
1112                         CallingConv::ID CallConv, bool isVarArg,
1113                         const SmallVectorImpl<ISD::InputArg> &Ins,
1114                         DebugLoc dl, SelectionDAG &DAG,
1115                         SmallVectorImpl<SDValue> &InVals) {
1116    assert(0 && "Not Implemented");
1117    return SDValue();    // this is here to silence compiler errors
1118  }
1119
1120  /// LowerCallTo - This function lowers an abstract call to a function into an
1121  /// actual call.  This returns a pair of operands.  The first element is the
1122  /// return value for the function (if RetTy is not VoidTy).  The second
1123  /// element is the outgoing token chain. It calls LowerCall to do the actual
1124  /// lowering.
1125  struct ArgListEntry {
1126    SDValue Node;
1127    const Type* Ty;
1128    bool isSExt  : 1;
1129    bool isZExt  : 1;
1130    bool isInReg : 1;
1131    bool isSRet  : 1;
1132    bool isNest  : 1;
1133    bool isByVal : 1;
1134    uint16_t Alignment;
1135
1136    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1137      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1138  };
1139  typedef std::vector<ArgListEntry> ArgListTy;
1140  std::pair<SDValue, SDValue>
1141  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1142              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1143              CallingConv::ID CallConv, bool isTailCall,
1144              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1145              SelectionDAG &DAG, DebugLoc dl);
1146
1147  /// LowerCall - This hook must be implemented to lower calls into the
1148  /// the specified DAG. The outgoing arguments to the call are described
1149  /// by the Outs array, and the values to be returned by the call are
1150  /// described by the Ins array. The implementation should fill in the
1151  /// InVals array with legal-type return values from the call, and return
1152  /// the resulting token chain value.
1153  ///
1154  /// The isTailCall flag here is normative. If it is true, the
1155  /// implementation must emit a tail call. The
1156  /// IsEligibleForTailCallOptimization hook should be used to catch
1157  /// cases that cannot be handled.
1158  ///
1159  virtual SDValue
1160    LowerCall(SDValue Chain, SDValue Callee,
1161              CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
1162              const SmallVectorImpl<ISD::OutputArg> &Outs,
1163              const SmallVectorImpl<ISD::InputArg> &Ins,
1164              DebugLoc dl, SelectionDAG &DAG,
1165              SmallVectorImpl<SDValue> &InVals) {
1166    assert(0 && "Not Implemented");
1167    return SDValue();    // this is here to silence compiler errors
1168  }
1169
1170  /// LowerReturn - This hook must be implemented to lower outgoing
1171  /// return values, described by the Outs array, into the specified
1172  /// DAG. The implementation should return the resulting token chain
1173  /// value.
1174  ///
1175  virtual SDValue
1176    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1177                const SmallVectorImpl<ISD::OutputArg> &Outs,
1178                DebugLoc dl, SelectionDAG &DAG) {
1179    assert(0 && "Not Implemented");
1180    return SDValue();    // this is here to silence compiler errors
1181  }
1182
1183  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1184  /// memcpy. This can be used by targets to provide code sequences for cases
1185  /// that don't fit the target's parameters for simple loads/stores and can be
1186  /// more efficient than using a library call. This function can return a null
1187  /// SDValue if the target declines to use custom code and a different
1188  /// lowering strategy should be used.
1189  ///
1190  /// If AlwaysInline is true, the size is constant and the target should not
1191  /// emit any calls and is strongly encouraged to attempt to emit inline code
1192  /// even if it is beyond the usual threshold because this intrinsic is being
1193  /// expanded in a place where calls are not feasible (e.g. within the prologue
1194  /// for another call). If the target chooses to decline an AlwaysInline
1195  /// request here, legalize will resort to using simple loads and stores.
1196  virtual SDValue
1197  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1198                          SDValue Chain,
1199                          SDValue Op1, SDValue Op2,
1200                          SDValue Op3, unsigned Align,
1201                          bool AlwaysInline,
1202                          const Value *DstSV, uint64_t DstOff,
1203                          const Value *SrcSV, uint64_t SrcOff) {
1204    return SDValue();
1205  }
1206
1207  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1208  /// memmove. This can be used by targets to provide code sequences for cases
1209  /// that don't fit the target's parameters for simple loads/stores and can be
1210  /// more efficient than using a library call. This function can return a null
1211  /// SDValue if the target declines to use custom code and a different
1212  /// lowering strategy should be used.
1213  virtual SDValue
1214  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1215                           SDValue Chain,
1216                           SDValue Op1, SDValue Op2,
1217                           SDValue Op3, unsigned Align,
1218                           const Value *DstSV, uint64_t DstOff,
1219                           const Value *SrcSV, uint64_t SrcOff) {
1220    return SDValue();
1221  }
1222
1223  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1224  /// memset. This can be used by targets to provide code sequences for cases
1225  /// that don't fit the target's parameters for simple stores and can be more
1226  /// efficient than using a library call. This function can return a null
1227  /// SDValue if the target declines to use custom code and a different
1228  /// lowering strategy should be used.
1229  virtual SDValue
1230  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1231                          SDValue Chain,
1232                          SDValue Op1, SDValue Op2,
1233                          SDValue Op3, unsigned Align,
1234                          const Value *DstSV, uint64_t DstOff) {
1235    return SDValue();
1236  }
1237
1238  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1239  /// to legalize nodes with an illegal operand type but legal result types.
1240  /// It replaces the LowerOperation callback in the type Legalizer.
1241  /// The reason we can not do away with LowerOperation entirely is that
1242  /// LegalizeDAG isn't yet ready to use this callback.
1243  /// TODO: Consider merging with ReplaceNodeResults.
1244
1245  /// The target places new result values for the node in Results (their number
1246  /// and types must exactly match those of the original return values of
1247  /// the node), or leaves Results empty, which indicates that the node is not
1248  /// to be custom lowered after all.
1249  /// The default implementation calls LowerOperation.
1250  virtual void LowerOperationWrapper(SDNode *N,
1251                                     SmallVectorImpl<SDValue> &Results,
1252                                     SelectionDAG &DAG);
1253
1254  /// LowerOperation - This callback is invoked for operations that are
1255  /// unsupported by the target, which are registered to use 'custom' lowering,
1256  /// and whose defined values are all legal.
1257  /// If the target has no operations that require custom lowering, it need not
1258  /// implement this.  The default implementation of this aborts.
1259  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1260
1261  /// ReplaceNodeResults - This callback is invoked when a node result type is
1262  /// illegal for the target, and the operation was registered to use 'custom'
1263  /// lowering for that result type.  The target places new result values for
1264  /// the node in Results (their number and types must exactly match those of
1265  /// the original return values of the node), or leaves Results empty, which
1266  /// indicates that the node is not to be custom lowered after all.
1267  ///
1268  /// If the target has no operations that require custom lowering, it need not
1269  /// implement this.  The default implementation aborts.
1270  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1271                                  SelectionDAG &DAG) {
1272    assert(0 && "ReplaceNodeResults not implemented for this target!");
1273  }
1274
1275  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1276  /// tail call optimization. Targets which want to do tail call optimization
1277  /// should override this function.
1278  virtual bool
1279  IsEligibleForTailCallOptimization(SDValue Callee,
1280                                    CallingConv::ID CalleeCC,
1281                                    bool isVarArg,
1282                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1283                                    SelectionDAG& DAG) const {
1284    // Conservative default: no calls are eligible.
1285    return false;
1286  }
1287
1288  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1289  /// it exists. Skip a possible ISD::TokenFactor.
1290  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1291                                                 unsigned TailCallNodeOpCode) {
1292    if (Chain.getOpcode() == TailCallNodeOpCode) {
1293      return Chain;
1294    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1295      if (Chain.getNumOperands() &&
1296          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1297        return Chain.getOperand(0);
1298    }
1299    return Chain;
1300  }
1301
1302  /// getTargetNodeName() - This method returns the name of a target specific
1303  /// DAG node.
1304  virtual const char *getTargetNodeName(unsigned Opcode) const;
1305
1306  /// createFastISel - This method returns a target specific FastISel object,
1307  /// or null if the target does not support "fast" ISel.
1308  virtual FastISel *
1309  createFastISel(MachineFunction &,
1310                 MachineModuleInfo *, DwarfWriter *,
1311                 DenseMap<const Value *, unsigned> &,
1312                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1313                 DenseMap<const AllocaInst *, int> &
1314#ifndef NDEBUG
1315                 , SmallSet<Instruction*, 8> &CatchInfoLost
1316#endif
1317                 ) {
1318    return 0;
1319  }
1320
1321  //===--------------------------------------------------------------------===//
1322  // Inline Asm Support hooks
1323  //
1324
1325  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1326  /// call to be explicit llvm code if it wants to.  This is useful for
1327  /// turning simple inline asms into LLVM intrinsics, which gives the
1328  /// compiler more information about the behavior of the code.
1329  virtual bool ExpandInlineAsm(CallInst *CI) const {
1330    return false;
1331  }
1332
1333  enum ConstraintType {
1334    C_Register,            // Constraint represents specific register(s).
1335    C_RegisterClass,       // Constraint represents any of register(s) in class.
1336    C_Memory,              // Memory constraint.
1337    C_Other,               // Something else.
1338    C_Unknown              // Unsupported constraint.
1339  };
1340
1341  /// AsmOperandInfo - This contains information for each constraint that we are
1342  /// lowering.
1343  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1344    /// ConstraintCode - This contains the actual string for the code, like "m".
1345    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1346    /// most closely matches the operand.
1347    std::string ConstraintCode;
1348
1349    /// ConstraintType - Information about the constraint code, e.g. Register,
1350    /// RegisterClass, Memory, Other, Unknown.
1351    TargetLowering::ConstraintType ConstraintType;
1352
1353    /// CallOperandval - If this is the result output operand or a
1354    /// clobber, this is null, otherwise it is the incoming operand to the
1355    /// CallInst.  This gets modified as the asm is processed.
1356    Value *CallOperandVal;
1357
1358    /// ConstraintVT - The ValueType for the operand value.
1359    EVT ConstraintVT;
1360
1361    /// isMatchingInputConstraint - Return true of this is an input operand that
1362    /// is a matching constraint like "4".
1363    bool isMatchingInputConstraint() const;
1364
1365    /// getMatchedOperand - If this is an input matching constraint, this method
1366    /// returns the output operand it matches.
1367    unsigned getMatchedOperand() const;
1368
1369    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1370      : InlineAsm::ConstraintInfo(info),
1371        ConstraintType(TargetLowering::C_Unknown),
1372        CallOperandVal(0), ConstraintVT(MVT::Other) {
1373    }
1374  };
1375
1376  /// ComputeConstraintToUse - Determines the constraint code and constraint
1377  /// type to use for the specific AsmOperandInfo, setting
1378  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1379  /// being passed in is available, it can be passed in as Op, otherwise an
1380  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1381  /// constraint of the inline asm instruction being processed is 'm'.
1382  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1383                                      SDValue Op,
1384                                      bool hasMemory,
1385                                      SelectionDAG *DAG = 0) const;
1386
1387  /// getConstraintType - Given a constraint, return the type of constraint it
1388  /// is for this target.
1389  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1390
1391  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1392  /// return a list of registers that can be used to satisfy the constraint.
1393  /// This should only be used for C_RegisterClass constraints.
1394  virtual std::vector<unsigned>
1395  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1396                                    EVT VT) const;
1397
1398  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1399  /// {edx}), return the register number and the register class for the
1400  /// register.
1401  ///
1402  /// Given a register class constraint, like 'r', if this corresponds directly
1403  /// to an LLVM register class, return a register of 0 and the register class
1404  /// pointer.
1405  ///
1406  /// This should only be used for C_Register constraints.  On error,
1407  /// this returns a register number of 0 and a null register class pointer..
1408  virtual std::pair<unsigned, const TargetRegisterClass*>
1409    getRegForInlineAsmConstraint(const std::string &Constraint,
1410                                 EVT VT) const;
1411
1412  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1413  /// with another that has more specific requirements based on the type of the
1414  /// corresponding operand.  This returns null if there is no replacement to
1415  /// make.
1416  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1417
1418  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1419  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1420  /// it means one of the asm constraint of the inline asm instruction being
1421  /// processed is 'm'.
1422  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1423                                            bool hasMemory,
1424                                            std::vector<SDValue> &Ops,
1425                                            SelectionDAG &DAG) const;
1426
1427  //===--------------------------------------------------------------------===//
1428  // Scheduler hooks
1429  //
1430
1431  // EmitInstrWithCustomInserter - This method should be implemented by targets
1432  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1433  // instructions are special in various ways, which require special support to
1434  // insert.  The specified MachineInstr is created but not inserted into any
1435  // basic blocks, and the scheduler passes ownership of it to this method.
1436  // When new basic blocks are inserted and the edges from MBB to its successors
1437  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1438  // DenseMap.
1439  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1440                                                         MachineBasicBlock *MBB,
1441                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1442
1443  //===--------------------------------------------------------------------===//
1444  // Addressing mode description hooks (used by LSR etc).
1445  //
1446
1447  /// AddrMode - This represents an addressing mode of:
1448  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1449  /// If BaseGV is null,  there is no BaseGV.
1450  /// If BaseOffs is zero, there is no base offset.
1451  /// If HasBaseReg is false, there is no base register.
1452  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1453  /// no scale.
1454  ///
1455  struct AddrMode {
1456    GlobalValue *BaseGV;
1457    int64_t      BaseOffs;
1458    bool         HasBaseReg;
1459    int64_t      Scale;
1460    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1461  };
1462
1463  /// isLegalAddressingMode - Return true if the addressing mode represented by
1464  /// AM is legal for this target, for a load/store of the specified type.
1465  /// The type may be VoidTy, in which case only return true if the addressing
1466  /// mode is legal for a load/store of any legal type.
1467  /// TODO: Handle pre/postinc as well.
1468  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1469
1470  /// isTruncateFree - Return true if it's free to truncate a value of
1471  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1472  /// register EAX to i16 by referencing its sub-register AX.
1473  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1474    return false;
1475  }
1476
1477  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1478    return false;
1479  }
1480
1481  /// isZExtFree - Return true if any actual instruction that defines a
1482  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1483  /// register. This does not necessarily include registers defined in
1484  /// unknown ways, such as incoming arguments, or copies from unknown
1485  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1486  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1487  /// all instructions that define 32-bit values implicit zero-extend the
1488  /// result out to 64 bits.
1489  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1490    return false;
1491  }
1492
1493  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1494    return false;
1495  }
1496
1497  /// isNarrowingProfitable - Return true if it's profitable to narrow
1498  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1499  /// from i32 to i8 but not from i32 to i16.
1500  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1501    return false;
1502  }
1503
1504  //===--------------------------------------------------------------------===//
1505  // Div utility functions
1506  //
1507  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1508                      std::vector<SDNode*>* Created) const;
1509  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1510                      std::vector<SDNode*>* Created) const;
1511
1512
1513  //===--------------------------------------------------------------------===//
1514  // Runtime Library hooks
1515  //
1516
1517  /// setLibcallName - Rename the default libcall routine name for the specified
1518  /// libcall.
1519  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1520    LibcallRoutineNames[Call] = Name;
1521  }
1522
1523  /// getLibcallName - Get the libcall routine name for the specified libcall.
1524  ///
1525  const char *getLibcallName(RTLIB::Libcall Call) const {
1526    return LibcallRoutineNames[Call];
1527  }
1528
1529  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1530  /// result of the comparison libcall against zero.
1531  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1532    CmpLibcallCCs[Call] = CC;
1533  }
1534
1535  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1536  /// the comparison libcall against zero.
1537  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1538    return CmpLibcallCCs[Call];
1539  }
1540
1541  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1542  /// specified libcall.
1543  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1544    LibcallCallingConvs[Call] = CC;
1545  }
1546
1547  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1548  /// specified libcall.
1549  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1550    return LibcallCallingConvs[Call];
1551  }
1552
1553private:
1554  TargetMachine &TM;
1555  const TargetData *TD;
1556  TargetLoweringObjectFile &TLOF;
1557
1558  /// PointerTy - The type to use for pointers, usually i32 or i64.
1559  ///
1560  MVT PointerTy;
1561
1562  /// IsLittleEndian - True if this is a little endian target.
1563  ///
1564  bool IsLittleEndian;
1565
1566  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1567  ///
1568  bool UsesGlobalOffsetTable;
1569
1570  /// SelectIsExpensive - Tells the code generator not to expand operations
1571  /// into sequences that use the select operations if possible.
1572  bool SelectIsExpensive;
1573
1574  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1575  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1576  /// a real cost model is in place.  If we ever optimize for size, this will be
1577  /// set to true unconditionally.
1578  bool IntDivIsCheap;
1579
1580  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1581  /// srl/add/sra for a signed divide by power of two, and let the target handle
1582  /// it.
1583  bool Pow2DivIsCheap;
1584
1585  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1586  /// llvm.setjmp.  Defaults to false.
1587  bool UseUnderscoreSetJmp;
1588
1589  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1590  /// llvm.longjmp.  Defaults to false.
1591  bool UseUnderscoreLongJmp;
1592
1593  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1594  /// PointerTy is.
1595  MVT ShiftAmountTy;
1596
1597  /// BooleanContents - Information about the contents of the high-bits in
1598  /// boolean values held in a type wider than i1.  See getBooleanContents.
1599  BooleanContent BooleanContents;
1600
1601  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1602  /// total cycles or lowest register usage.
1603  SchedPreference SchedPreferenceInfo;
1604
1605  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1606  unsigned JumpBufSize;
1607
1608  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1609  /// buffers
1610  unsigned JumpBufAlignment;
1611
1612  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1613  /// if-converted.
1614  unsigned IfCvtBlockSizeLimit;
1615
1616  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1617  /// duplicated during if-conversion.
1618  unsigned IfCvtDupBlockSizeLimit;
1619
1620  /// PrefLoopAlignment - The perferred loop alignment.
1621  ///
1622  unsigned PrefLoopAlignment;
1623
1624  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1625  /// specifies the register that llvm.savestack/llvm.restorestack should save
1626  /// and restore.
1627  unsigned StackPointerRegisterToSaveRestore;
1628
1629  /// ExceptionPointerRegister - If set to a physical register, this specifies
1630  /// the register that receives the exception address on entry to a landing
1631  /// pad.
1632  unsigned ExceptionPointerRegister;
1633
1634  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1635  /// the register that receives the exception typeid on entry to a landing
1636  /// pad.
1637  unsigned ExceptionSelectorRegister;
1638
1639  /// RegClassForVT - This indicates the default register class to use for
1640  /// each ValueType the target supports natively.
1641  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1642  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1643  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1644
1645  /// TransformToType - For any value types we are promoting or expanding, this
1646  /// contains the value type that we are changing to.  For Expanded types, this
1647  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1648  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1649  /// by the system, this holds the same type (e.g. i32 -> i32).
1650  EVT TransformToType[MVT::LAST_VALUETYPE];
1651
1652  /// OpActions - For each operation and each value type, keep a LegalizeAction
1653  /// that indicates how instruction selection should deal with the operation.
1654  /// Most operations are Legal (aka, supported natively by the target), but
1655  /// operations that are not should be described.  Note that operations on
1656  /// non-legal value types are not described here.
1657  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1658  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1659  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1660
1661  /// LoadExtActions - For each load of load extension type and each value type,
1662  /// keep a LegalizeAction that indicates how instruction selection should deal
1663  /// with the load.
1664  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1665
1666  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1667  /// indicates how instruction selection should deal with the store.
1668  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1669
1670  /// IndexedModeActions - For each indexed mode and each value type,
1671  /// keep a pair of LegalizeAction that indicates how instruction
1672  /// selection should deal with the load / store.  The first
1673  /// dimension is now the value_type for the reference.  The second
1674  /// dimension is the load [0] vs. store[1].  The third dimension
1675  /// represents the various modes for load store.
1676  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1677
1678  /// ConvertActions - For each conversion from source type to destination type,
1679  /// keep a LegalizeAction that indicates how instruction selection should
1680  /// deal with the conversion.
1681  /// Currently, this is used only for floating->floating conversions
1682  /// (FP_EXTEND and FP_ROUND).
1683  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1684
1685  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1686  /// LegalizeAction that indicates how instruction selection should
1687  /// deal with the condition code.
1688  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1689
1690  ValueTypeActionImpl ValueTypeActions;
1691
1692  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1693
1694  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1695  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1696  /// which sets a bit in this array.
1697  unsigned char
1698  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1699
1700  /// PromoteToType - For operations that must be promoted to a specific type,
1701  /// this holds the destination type.  This map should be sparse, so don't hold
1702  /// it as an array.
1703  ///
1704  /// Targets add entries to this map with AddPromotedToType(..), clients access
1705  /// this with getTypeToPromoteTo(..).
1706  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1707    PromoteToType;
1708
1709  /// LibcallRoutineNames - Stores the name each libcall.
1710  ///
1711  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1712
1713  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1714  /// of each of the comparison libcall against zero.
1715  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1716
1717  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1718  /// libcall.
1719  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1720
1721protected:
1722  /// When lowering \@llvm.memset this field specifies the maximum number of
1723  /// store operations that may be substituted for the call to memset. Targets
1724  /// must set this value based on the cost threshold for that target. Targets
1725  /// should assume that the memset will be done using as many of the largest
1726  /// store operations first, followed by smaller ones, if necessary, per
1727  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1728  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1729  /// store.  This only applies to setting a constant array of a constant size.
1730  /// @brief Specify maximum number of store instructions per memset call.
1731  unsigned maxStoresPerMemset;
1732
1733  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1734  /// store operations that may be substituted for a call to memcpy. Targets
1735  /// must set this value based on the cost threshold for that target. Targets
1736  /// should assume that the memcpy will be done using as many of the largest
1737  /// store operations first, followed by smaller ones, if necessary, per
1738  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1739  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1740  /// and one 1-byte store. This only applies to copying a constant array of
1741  /// constant size.
1742  /// @brief Specify maximum bytes of store instructions per memcpy call.
1743  unsigned maxStoresPerMemcpy;
1744
1745  /// When lowering \@llvm.memmove this field specifies the maximum number of
1746  /// store instructions that may be substituted for a call to memmove. Targets
1747  /// must set this value based on the cost threshold for that target. Targets
1748  /// should assume that the memmove will be done using as many of the largest
1749  /// store operations first, followed by smaller ones, if necessary, per
1750  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1751  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1752  /// applies to copying a constant array of constant size.
1753  /// @brief Specify maximum bytes of store instructions per memmove call.
1754  unsigned maxStoresPerMemmove;
1755
1756  /// This field specifies whether the target can benefit from code placement
1757  /// optimization.
1758  bool benefitFromCodePlacementOpt;
1759};
1760} // end llvm namespace
1761
1762#endif
1763