TargetLowering.h revision a61b17c18a67f1b3faef2f2108379c4337ce9bb7
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/AddressingMode.h"
27#include "llvm/Attributes.h"
28#include "llvm/CallingConv.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
82  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
94  /// target, and if not, what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector      // This vector should be widened into a larger vector.
104  };
105
106  /// LegalizeKind holds the legalization kind that needs to happen to EVT
107  /// in order to type-legalize it.
108  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  enum SelectSupportKind {
117    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
118    ScalarCondVectorVal,  // The target supports selects with a scalar condition
119                          // and vector values (ex: cmov).
120    VectorMaskSelect      // The target supports vector selects with a vector
121                          // mask (ex: x86 blends).
122  };
123
124  static ISD::NodeType getExtendForContent(BooleanContent Content) {
125    switch (Content) {
126    case UndefinedBooleanContent:
127      // Extend by adding rubbish bits.
128      return ISD::ANY_EXTEND;
129    case ZeroOrOneBooleanContent:
130      // Extend by adding zero bits.
131      return ISD::ZERO_EXTEND;
132    case ZeroOrNegativeOneBooleanContent:
133      // Extend by copying the sign bit.
134      return ISD::SIGN_EXTEND;
135    }
136    llvm_unreachable("Invalid content kind");
137  }
138
139  /// NOTE: The constructor takes ownership of TLOF.
140  explicit TargetLowering(const TargetMachine &TM,
141                          const TargetLoweringObjectFile *TLOF);
142  virtual ~TargetLowering();
143
144  const TargetMachine &getTargetMachine() const { return TM; }
145  const DataLayout *getDataLayout() const { return TD; }
146  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
147
148  bool isBigEndian() const { return !IsLittleEndian; }
149  bool isLittleEndian() const { return IsLittleEndian; }
150  // Return the pointer type for the given address space, defaults to
151  // the pointer type from the data layout.
152  // FIXME: The default needs to be removed once all the code is updated.
153  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
154  virtual MVT getShiftAmountTy(EVT LHSTy) const;
155
156  /// isSelectExpensive - Return true if the select operation is expensive for
157  /// this target.
158  bool isSelectExpensive() const { return SelectIsExpensive; }
159
160  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
161
162  /// shouldSplitVectorElementType - Return true if a vector of the given type
163  /// should be split (TypeSplitVector) instead of promoted
164  /// (TypePromoteInteger) during type legalization.
165  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
166
167  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
168  /// a sequence of several shifts, adds, and multiplies for this target.
169  bool isIntDivCheap() const { return IntDivIsCheap; }
170
171  /// isSlowDivBypassed - Returns true if target has indicated at least one
172  /// type should be bypassed.
173  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
174
175  /// getBypassSlowDivTypes - Returns map of slow types for division or
176  /// remainder with corresponding fast types
177  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
178    return BypassSlowDivWidths;
179  }
180
181  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
182  /// srl/add/sra.
183  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
184
185  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
186  /// that should be avoided.
187  bool isJumpExpensive() const { return JumpIsExpensive; }
188
189  /// isPredictableSelectExpensive - Return true if selects are only cheaper
190  /// than branches if the branch is unlikely to be predicted right.
191  bool isPredictableSelectExpensive() const {
192    return predictableSelectIsExpensive;
193  }
194
195  /// getSetCCResultType - Return the ValueType of the result of SETCC
196  /// operations.  Also used to obtain the target's preferred type for
197  /// the condition operand of SELECT and BRCOND nodes.  In the case of
198  /// BRCOND the argument passed is MVT::Other since there are no other
199  /// operands to get a type hint from.
200  virtual EVT getSetCCResultType(EVT VT) const;
201
202  /// getCmpLibcallReturnType - Return the ValueType for comparison
203  /// libcalls. Comparions libcalls include floating point comparion calls,
204  /// and Ordered/Unordered check calls on floating point numbers.
205  virtual
206  MVT::SimpleValueType getCmpLibcallReturnType() const;
207
208  /// getBooleanContents - For targets without i1 registers, this gives the
209  /// nature of the high-bits of boolean values held in types wider than i1.
210  /// "Boolean values" are special true/false values produced by nodes like
211  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
212  /// Not to be confused with general values promoted from i1.
213  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
214  /// parameter selects between the two kinds.  For example on X86 a scalar
215  /// boolean should be zero extended from i1, while the elements of a vector
216  /// of booleans should be sign extended from i1.
217  BooleanContent getBooleanContents(bool isVec) const {
218    return isVec ? BooleanVectorContents : BooleanContents;
219  }
220
221  /// getSchedulingPreference - Return target scheduling preference.
222  Sched::Preference getSchedulingPreference() const {
223    return SchedPreferenceInfo;
224  }
225
226  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
227  /// different scheduling heuristics for different nodes. This function returns
228  /// the preference (or none) for the given node.
229  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
230    return Sched::None;
231  }
232
233  /// getRegClassFor - Return the register class that should be used for the
234  /// specified value type.
235  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
236    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
237    assert(RC && "This value type is not natively supported!");
238    return RC;
239  }
240
241  /// getRepRegClassFor - Return the 'representative' register class for the
242  /// specified value type. The 'representative' register class is the largest
243  /// legal super-reg register class for the register class of the value type.
244  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
245  /// while the rep register class is GR64 on x86_64.
246  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
247    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
248    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
249    return RC;
250  }
251
252  /// getRepRegClassCostFor - Return the cost of the 'representative' register
253  /// class for the specified value type.
254  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
255    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
256    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
257  }
258
259  /// isTypeLegal - Return true if the target has native support for the
260  /// specified value type.  This means that it has a register that directly
261  /// holds it without promotions or expansions.
262  bool isTypeLegal(EVT VT) const {
263    assert(!VT.isSimple() ||
264           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
265    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
266  }
267
268  class ValueTypeActionImpl {
269    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
270    /// that indicates how instruction selection should deal with the type.
271    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
272
273  public:
274    ValueTypeActionImpl() {
275      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
276    }
277
278    LegalizeTypeAction getTypeAction(MVT VT) const {
279      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
280    }
281
282    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
283      unsigned I = VT.getSimpleVT().SimpleTy;
284      ValueTypeActions[I] = Action;
285    }
286  };
287
288  const ValueTypeActionImpl &getValueTypeActions() const {
289    return ValueTypeActions;
290  }
291
292  /// getTypeAction - Return how we should legalize values of this type, either
293  /// it is already legal (return 'Legal') or we need to promote it to a larger
294  /// type (return 'Promote'), or we need to expand it into multiple registers
295  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
296  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
297    return getTypeConversion(Context, VT).first;
298  }
299  LegalizeTypeAction getTypeAction(MVT VT) const {
300    return ValueTypeActions.getTypeAction(VT);
301  }
302
303  /// getTypeToTransformTo - For types supported by the target, this is an
304  /// identity function.  For types that must be promoted to larger types, this
305  /// returns the larger type to promote to.  For integer types that are larger
306  /// than the largest integer register, this contains one step in the expansion
307  /// to get to the smaller register. For illegal floating point types, this
308  /// returns the integer type to transform to.
309  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
310    return getTypeConversion(Context, VT).second;
311  }
312
313  /// getTypeToExpandTo - For types supported by the target, this is an
314  /// identity function.  For types that must be expanded (i.e. integer types
315  /// that are larger than the largest integer register or illegal floating
316  /// point types), this returns the largest legal type it will be expanded to.
317  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
318    assert(!VT.isVector());
319    while (true) {
320      switch (getTypeAction(Context, VT)) {
321      case TypeLegal:
322        return VT;
323      case TypeExpandInteger:
324        VT = getTypeToTransformTo(Context, VT);
325        break;
326      default:
327        llvm_unreachable("Type is not legal nor is it to be expanded!");
328      }
329    }
330  }
331
332  /// getVectorTypeBreakdown - Vector types are broken down into some number of
333  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
334  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
335  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
336  ///
337  /// This method returns the number of registers needed, and the VT for each
338  /// register.  It also returns the VT and quantity of the intermediate values
339  /// before they are promoted/expanded.
340  ///
341  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
342                                  EVT &IntermediateVT,
343                                  unsigned &NumIntermediates,
344                                  EVT &RegisterVT) const;
345
346  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
347  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
348  /// this is the case, it returns true and store the intrinsic
349  /// information into the IntrinsicInfo that was passed to the function.
350  struct IntrinsicInfo {
351    unsigned     opc;         // target opcode
352    EVT          memVT;       // memory VT
353    const Value* ptrVal;      // value representing memory location
354    int          offset;      // offset off of ptrVal
355    unsigned     align;       // alignment
356    bool         vol;         // is volatile?
357    bool         readMem;     // reads memory?
358    bool         writeMem;    // writes memory?
359  };
360
361  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
362                                  unsigned /*Intrinsic*/) const {
363    return false;
364  }
365
366  /// isFPImmLegal - Returns true if the target can instruction select the
367  /// specified FP immediate natively. If false, the legalizer will materialize
368  /// the FP immediate as a load from a constant pool.
369  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
370    return false;
371  }
372
373  /// isShuffleMaskLegal - Targets can use this to indicate that they only
374  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
375  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
376  /// are assumed to be legal.
377  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
378                                  EVT /*VT*/) const {
379    return true;
380  }
381
382  /// canOpTrap - Returns true if the operation can trap for the value type.
383  /// VT must be a legal type. By default, we optimistically assume most
384  /// operations don't trap except for divide and remainder.
385  virtual bool canOpTrap(unsigned Op, EVT VT) const;
386
387  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
388  /// used by Targets can use this to indicate if there is a suitable
389  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
390  /// pool entry.
391  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
392                                      EVT /*VT*/) const {
393    return false;
394  }
395
396  /// getOperationAction - Return how this operation should be treated: either
397  /// it is legal, needs to be promoted to a larger size, needs to be
398  /// expanded to some other code sequence, or the target has a custom expander
399  /// for it.
400  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
401    if (VT.isExtended()) return Expand;
402    // If a target-specific SDNode requires legalization, require the target
403    // to provide custom legalization for it.
404    if (Op > array_lengthof(OpActions[0])) return Custom;
405    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
406    return (LegalizeAction)OpActions[I][Op];
407  }
408
409  /// isOperationLegalOrCustom - Return true if the specified operation is
410  /// legal on this target or can be made legal with custom lowering. This
411  /// is used to help guide high-level lowering decisions.
412  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
413    return (VT == MVT::Other || isTypeLegal(VT)) &&
414      (getOperationAction(Op, VT) == Legal ||
415       getOperationAction(Op, VT) == Custom);
416  }
417
418  /// isOperationExpand - Return true if the specified operation is illegal on
419  /// this target or unlikely to be made legal with custom lowering. This is
420  /// used to help guide high-level lowering decisions.
421  bool isOperationExpand(unsigned Op, EVT VT) const {
422    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
423  }
424
425  /// isOperationLegal - Return true if the specified operation is legal on this
426  /// target.
427  bool isOperationLegal(unsigned Op, EVT VT) const {
428    return (VT == MVT::Other || isTypeLegal(VT)) &&
429           getOperationAction(Op, VT) == Legal;
430  }
431
432  /// getLoadExtAction - Return how this load with extension should be treated:
433  /// either it is legal, needs to be promoted to a larger size, needs to be
434  /// expanded to some other code sequence, or the target has a custom expander
435  /// for it.
436  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
437    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
438           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
439           "Table isn't big enough!");
440    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
441  }
442
443  /// isLoadExtLegal - Return true if the specified load with extension is legal
444  /// on this target.
445  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
446    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
447  }
448
449  /// getTruncStoreAction - Return how this store with truncation should be
450  /// treated: either it is legal, needs to be promoted to a larger size, needs
451  /// to be expanded to some other code sequence, or the target has a custom
452  /// expander for it.
453  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
454    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
455           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
456           "Table isn't big enough!");
457    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
458                                            [MemVT.getSimpleVT().SimpleTy];
459  }
460
461  /// isTruncStoreLegal - Return true if the specified store with truncation is
462  /// legal on this target.
463  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
464    return isTypeLegal(ValVT) && MemVT.isSimple() &&
465           getTruncStoreAction(ValVT, MemVT) == Legal;
466  }
467
468  /// getIndexedLoadAction - Return how the indexed load should be treated:
469  /// either it is legal, needs to be promoted to a larger size, needs to be
470  /// expanded to some other code sequence, or the target has a custom expander
471  /// for it.
472  LegalizeAction
473  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
474    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
475           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
476           "Table isn't big enough!");
477    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
478    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
479  }
480
481  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
482  /// on this target.
483  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
484    return VT.isSimple() &&
485      (getIndexedLoadAction(IdxMode, VT) == Legal ||
486       getIndexedLoadAction(IdxMode, VT) == Custom);
487  }
488
489  /// getIndexedStoreAction - Return how the indexed store should be treated:
490  /// either it is legal, needs to be promoted to a larger size, needs to be
491  /// expanded to some other code sequence, or the target has a custom expander
492  /// for it.
493  LegalizeAction
494  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
495    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
496           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
497           "Table isn't big enough!");
498    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
499    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
500  }
501
502  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
503  /// on this target.
504  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
505    return VT.isSimple() &&
506      (getIndexedStoreAction(IdxMode, VT) == Legal ||
507       getIndexedStoreAction(IdxMode, VT) == Custom);
508  }
509
510  /// getCondCodeAction - Return how the condition code should be treated:
511  /// either it is legal, needs to be expanded to some other code sequence,
512  /// or the target has a custom expander for it.
513  LegalizeAction
514  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
515    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
516           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
517           "Table isn't big enough!");
518    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
519    /// value and the upper 27 bits index into the second dimension of the
520    /// array to select what 64bit value to use.
521    LegalizeAction Action = (LegalizeAction)
522      ((CondCodeActions[CC][VT.getSimpleVT().SimpleTy >> 5]
523        >> (2*(VT.getSimpleVT().SimpleTy & 0x1F))) & 3);
524    assert(Action != Promote && "Can't promote condition code!");
525    return Action;
526  }
527
528  /// isCondCodeLegal - Return true if the specified condition code is legal
529  /// on this target.
530  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
531    return getCondCodeAction(CC, VT) == Legal ||
532           getCondCodeAction(CC, VT) == Custom;
533  }
534
535
536  /// getTypeToPromoteTo - If the action for this operation is to promote, this
537  /// method returns the ValueType to promote to.
538  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
539    assert(getOperationAction(Op, VT) == Promote &&
540           "This operation isn't promoted!");
541
542    // See if this has an explicit type specified.
543    std::map<std::pair<unsigned, MVT::SimpleValueType>,
544             MVT::SimpleValueType>::const_iterator PTTI =
545      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
546    if (PTTI != PromoteToType.end()) return PTTI->second;
547
548    assert((VT.isInteger() || VT.isFloatingPoint()) &&
549           "Cannot autopromote this type, add it with AddPromotedToType.");
550
551    EVT NVT = VT;
552    do {
553      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
554      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
555             "Didn't find type to promote to!");
556    } while (!isTypeLegal(NVT) ||
557              getOperationAction(Op, NVT) == Promote);
558    return NVT;
559  }
560
561  /// getValueType - Return the EVT corresponding to this LLVM type.
562  /// This is fixed by the LLVM operations except for the pointer size.  If
563  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
564  /// counterpart (e.g. structs), otherwise it will assert.
565  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
566    // Lower scalar pointers to native pointer types.
567    if (Ty->isPointerTy()) return PointerTy;
568
569    if (Ty->isVectorTy()) {
570      VectorType *VTy = cast<VectorType>(Ty);
571      Type *Elm = VTy->getElementType();
572      // Lower vectors of pointers to native pointer types.
573      if (Elm->isPointerTy())
574        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
575      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
576                       VTy->getNumElements());
577    }
578    return EVT::getEVT(Ty, AllowUnknown);
579  }
580
581  /// Return the MVT corresponding to this LLVM type. See getValueType.
582  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
583    return getValueType(Ty, AllowUnknown).getSimpleVT();
584  }
585
586  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
587  /// function arguments in the caller parameter area.  This is the actual
588  /// alignment, not its logarithm.
589  virtual unsigned getByValTypeAlignment(Type *Ty) const;
590
591  /// getRegisterType - Return the type of registers that this ValueType will
592  /// eventually require.
593  EVT getRegisterType(MVT VT) const {
594    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
595    return RegisterTypeForVT[VT.SimpleTy];
596  }
597
598  /// getRegisterType - Return the type of registers that this ValueType will
599  /// eventually require.
600  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
601    if (VT.isSimple()) {
602      assert((unsigned)VT.getSimpleVT().SimpleTy <
603                array_lengthof(RegisterTypeForVT));
604      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
605    }
606    if (VT.isVector()) {
607      EVT VT1, RegisterVT;
608      unsigned NumIntermediates;
609      (void)getVectorTypeBreakdown(Context, VT, VT1,
610                                   NumIntermediates, RegisterVT);
611      return RegisterVT;
612    }
613    if (VT.isInteger()) {
614      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
615    }
616    llvm_unreachable("Unsupported extended type!");
617  }
618
619  /// getNumRegisters - Return the number of registers that this ValueType will
620  /// eventually require.  This is one for any types promoted to live in larger
621  /// registers, but may be more than one for types (like i64) that are split
622  /// into pieces.  For types like i140, which are first promoted then expanded,
623  /// it is the number of registers needed to hold all the bits of the original
624  /// type.  For an i140 on a 32 bit machine this means 5 registers.
625  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
626    if (VT.isSimple()) {
627      assert((unsigned)VT.getSimpleVT().SimpleTy <
628                array_lengthof(NumRegistersForVT));
629      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
630    }
631    if (VT.isVector()) {
632      EVT VT1, VT2;
633      unsigned NumIntermediates;
634      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
635    }
636    if (VT.isInteger()) {
637      unsigned BitWidth = VT.getSizeInBits();
638      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
639      return (BitWidth + RegWidth - 1) / RegWidth;
640    }
641    llvm_unreachable("Unsupported extended type!");
642  }
643
644  /// ShouldShrinkFPConstant - If true, then instruction selection should
645  /// seek to shrink the FP constant of the specified type to a smaller type
646  /// in order to save space and / or reduce runtime.
647  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
648
649  /// hasTargetDAGCombine - If true, the target has custom DAG combine
650  /// transformations that it can perform for the specified node.
651  bool hasTargetDAGCombine(ISD::NodeType NT) const {
652    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
653    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
654  }
655
656  /// This function returns the maximum number of store operations permitted
657  /// to replace a call to llvm.memset. The value is set by the target at the
658  /// performance threshold for such a replacement. If OptSize is true,
659  /// return the limit for functions that have OptSize attribute.
660  /// @brief Get maximum # of store operations permitted for llvm.memset
661  unsigned getMaxStoresPerMemset(bool OptSize) const {
662    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
663  }
664
665  /// This function returns the maximum number of store operations permitted
666  /// to replace a call to llvm.memcpy. The value is set by the target at the
667  /// performance threshold for such a replacement. If OptSize is true,
668  /// return the limit for functions that have OptSize attribute.
669  /// @brief Get maximum # of store operations permitted for llvm.memcpy
670  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
671    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
672  }
673
674  /// This function returns the maximum number of store operations permitted
675  /// to replace a call to llvm.memmove. The value is set by the target at the
676  /// performance threshold for such a replacement. If OptSize is true,
677  /// return the limit for functions that have OptSize attribute.
678  /// @brief Get maximum # of store operations permitted for llvm.memmove
679  unsigned getMaxStoresPerMemmove(bool OptSize) const {
680    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
681  }
682
683  /// This function returns true if the target allows unaligned memory accesses.
684  /// of the specified type. If true, it also returns whether the unaligned
685  /// memory access is "fast" in the second argument by reference. This is used,
686  /// for example, in situations where an array copy/move/set is  converted to a
687  /// sequence of store operations. It's use helps to ensure that such
688  /// replacements don't generate code that causes an alignment error  (trap) on
689  /// the target machine.
690  /// @brief Determine if the target supports unaligned memory accesses.
691  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
692    return false;
693  }
694
695  /// This function returns true if the target would benefit from code placement
696  /// optimization.
697  /// @brief Determine if the target should perform code placement optimization.
698  bool shouldOptimizeCodePlacement() const {
699    return benefitFromCodePlacementOpt;
700  }
701
702  /// getOptimalMemOpType - Returns the target specific optimal type for load
703  /// and store operations as a result of memset, memcpy, and memmove
704  /// lowering. If DstAlign is zero that means it's safe to destination
705  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
706  /// means there isn't a need to check it against alignment requirement,
707  /// probably because the source does not need to be loaded. If 'IsMemset' is
708  /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
709  /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
710  /// source is constant so it does not need to be loaded.
711  /// It returns EVT::Other if the type should be determined using generic
712  /// target-independent logic.
713  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
714                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
715                                  bool /*IsMemset*/,
716                                  bool /*ZeroMemset*/,
717                                  bool /*MemcpyStrSrc*/,
718                                  MachineFunction &/*MF*/) const {
719    return MVT::Other;
720  }
721
722  /// isSafeMemOpType - Returns true if it's safe to use load / store of the
723  /// specified type to expand memcpy / memset inline. This is mostly true
724  /// for all types except for some special cases. For example, on X86
725  /// targets without SSE2 f64 load / store are done with fldl / fstpl which
726  /// also does type conversion. Note the specified type doesn't have to be
727  /// legal as the hook is used before type legalization.
728  virtual bool isSafeMemOpType(MVT VT) const {
729    return true;
730  }
731
732  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
733  /// to implement llvm.setjmp.
734  bool usesUnderscoreSetJmp() const {
735    return UseUnderscoreSetJmp;
736  }
737
738  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
739  /// to implement llvm.longjmp.
740  bool usesUnderscoreLongJmp() const {
741    return UseUnderscoreLongJmp;
742  }
743
744  /// supportJumpTables - return whether the target can generate code for
745  /// jump tables.
746  bool supportJumpTables() const {
747    return SupportJumpTables;
748  }
749
750  /// getMinimumJumpTableEntries - return integer threshold on number of
751  /// blocks to use jump tables rather than if sequence.
752  int getMinimumJumpTableEntries() const {
753    return MinimumJumpTableEntries;
754  }
755
756  /// getStackPointerRegisterToSaveRestore - If a physical register, this
757  /// specifies the register that llvm.savestack/llvm.restorestack should save
758  /// and restore.
759  unsigned getStackPointerRegisterToSaveRestore() const {
760    return StackPointerRegisterToSaveRestore;
761  }
762
763  /// getExceptionPointerRegister - If a physical register, this returns
764  /// the register that receives the exception address on entry to a landing
765  /// pad.
766  unsigned getExceptionPointerRegister() const {
767    return ExceptionPointerRegister;
768  }
769
770  /// getExceptionSelectorRegister - If a physical register, this returns
771  /// the register that receives the exception typeid on entry to a landing
772  /// pad.
773  unsigned getExceptionSelectorRegister() const {
774    return ExceptionSelectorRegister;
775  }
776
777  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
778  /// set, the default is 200)
779  unsigned getJumpBufSize() const {
780    return JumpBufSize;
781  }
782
783  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
784  /// (if never set, the default is 0)
785  unsigned getJumpBufAlignment() const {
786    return JumpBufAlignment;
787  }
788
789  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
790  /// argument.
791  unsigned getMinStackArgumentAlignment() const {
792    return MinStackArgumentAlignment;
793  }
794
795  /// getMinFunctionAlignment - return the minimum function alignment.
796  ///
797  unsigned getMinFunctionAlignment() const {
798    return MinFunctionAlignment;
799  }
800
801  /// getPrefFunctionAlignment - return the preferred function alignment.
802  ///
803  unsigned getPrefFunctionAlignment() const {
804    return PrefFunctionAlignment;
805  }
806
807  /// getPrefLoopAlignment - return the preferred loop alignment.
808  ///
809  unsigned getPrefLoopAlignment() const {
810    return PrefLoopAlignment;
811  }
812
813  /// getShouldFoldAtomicFences - return whether the combiner should fold
814  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
815  ///
816  bool getShouldFoldAtomicFences() const {
817    return ShouldFoldAtomicFences;
818  }
819
820  /// getInsertFencesFor - return whether the DAG builder should automatically
821  /// insert fences and reduce ordering for atomics.
822  ///
823  bool getInsertFencesForAtomic() const {
824    return InsertFencesForAtomic;
825  }
826
827  /// getPreIndexedAddressParts - returns true by value, base pointer and
828  /// offset pointer and addressing mode by reference if the node's address
829  /// can be legally represented as pre-indexed load / store address.
830  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
831                                         SDValue &/*Offset*/,
832                                         ISD::MemIndexedMode &/*AM*/,
833                                         SelectionDAG &/*DAG*/) const {
834    return false;
835  }
836
837  /// getPostIndexedAddressParts - returns true by value, base pointer and
838  /// offset pointer and addressing mode by reference if this node can be
839  /// combined with a load / store to form a post-indexed load / store.
840  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
841                                          SDValue &/*Base*/, SDValue &/*Offset*/,
842                                          ISD::MemIndexedMode &/*AM*/,
843                                          SelectionDAG &/*DAG*/) const {
844    return false;
845  }
846
847  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
848  /// current function.  The returned value is a member of the
849  /// MachineJumpTableInfo::JTEntryKind enum.
850  virtual unsigned getJumpTableEncoding() const;
851
852  virtual const MCExpr *
853  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
854                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
855                            MCContext &/*Ctx*/) const {
856    llvm_unreachable("Need to implement this hook if target has custom JTIs");
857  }
858
859  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
860  /// jumptable.
861  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
862                                           SelectionDAG &DAG) const;
863
864  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
865  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
866  /// MCExpr.
867  virtual const MCExpr *
868  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
869                               unsigned JTI, MCContext &Ctx) const;
870
871  /// isOffsetFoldingLegal - Return true if folding a constant offset
872  /// with the given GlobalAddress is legal.  It is frequently not legal in
873  /// PIC relocation models.
874  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
875
876  /// getStackCookieLocation - Return true if the target stores stack
877  /// protector cookies at a fixed offset in some non-standard address
878  /// space, and populates the address space and offset as
879  /// appropriate.
880  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
881                                      unsigned &/*Offset*/) const {
882    return false;
883  }
884
885  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
886  /// used for loads / stores from the global.
887  virtual unsigned getMaximalGlobalOffset() const {
888    return 0;
889  }
890
891  //===--------------------------------------------------------------------===//
892  // TargetLowering Optimization Methods
893  //
894
895  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
896  /// SDValues for returning information from TargetLowering to its clients
897  /// that want to combine
898  struct TargetLoweringOpt {
899    SelectionDAG &DAG;
900    bool LegalTys;
901    bool LegalOps;
902    SDValue Old;
903    SDValue New;
904
905    explicit TargetLoweringOpt(SelectionDAG &InDAG,
906                               bool LT, bool LO) :
907      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
908
909    bool LegalTypes() const { return LegalTys; }
910    bool LegalOperations() const { return LegalOps; }
911
912    bool CombineTo(SDValue O, SDValue N) {
913      Old = O;
914      New = N;
915      return true;
916    }
917
918    /// ShrinkDemandedConstant - Check to see if the specified operand of the
919    /// specified instruction is a constant integer.  If so, check to see if
920    /// there are any bits set in the constant that are not demanded.  If so,
921    /// shrink the constant and return true.
922    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
923
924    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
925    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
926    /// cast, but it could be generalized for targets with other types of
927    /// implicit widening casts.
928    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
929                          DebugLoc dl);
930  };
931
932  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
933  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
934  /// use this information to simplify Op, create a new simplified DAG node and
935  /// return true, returning the original and new nodes in Old and New.
936  /// Otherwise, analyze the expression and return a mask of KnownOne and
937  /// KnownZero bits for the expression (used to simplify the caller).
938  /// The KnownZero/One bits may only be accurate for those bits in the
939  /// DemandedMask.
940  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
941                            APInt &KnownZero, APInt &KnownOne,
942                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
943
944  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
945  /// Mask are known to be either zero or one and return them in the
946  /// KnownZero/KnownOne bitsets.
947  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
948                                              APInt &KnownZero,
949                                              APInt &KnownOne,
950                                              const SelectionDAG &DAG,
951                                              unsigned Depth = 0) const;
952
953  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
954  /// targets that want to expose additional information about sign bits to the
955  /// DAG Combiner.
956  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
957                                                   unsigned Depth = 0) const;
958
959  struct DAGCombinerInfo {
960    void *DC;  // The DAG Combiner object.
961    bool BeforeLegalize;
962    bool BeforeLegalizeOps;
963    bool CalledByLegalizer;
964  public:
965    SelectionDAG &DAG;
966
967    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
968      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
969        CalledByLegalizer(cl), DAG(dag) {}
970
971    bool isBeforeLegalize() const { return BeforeLegalize; }
972    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
973    bool isCalledByLegalizer() const { return CalledByLegalizer; }
974
975    void AddToWorklist(SDNode *N);
976    void RemoveFromWorklist(SDNode *N);
977    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
978                      bool AddTo = true);
979    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
980    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
981
982    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
983  };
984
985  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
986  /// and cc. If it is unable to simplify it, return a null SDValue.
987  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
988                          ISD::CondCode Cond, bool foldBooleans,
989                          DAGCombinerInfo &DCI, DebugLoc dl) const;
990
991  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
992  /// node is a GlobalAddress + offset.
993  virtual bool
994  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
995
996  /// PerformDAGCombine - This method will be invoked for all target nodes and
997  /// for any target-independent nodes that the target has registered with
998  /// invoke it for.
999  ///
1000  /// The semantics are as follows:
1001  /// Return Value:
1002  ///   SDValue.Val == 0   - No change was made
1003  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1004  ///   otherwise          - N should be replaced by the returned Operand.
1005  ///
1006  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1007  /// more complex transformations.
1008  ///
1009  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1010
1011  /// isTypeDesirableForOp - Return true if the target has native support for
1012  /// the specified value type and it is 'desirable' to use the type for the
1013  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1014  /// instruction encodings are longer and some i16 instructions are slow.
1015  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1016    // By default, assume all legal types are desirable.
1017    return isTypeLegal(VT);
1018  }
1019
1020  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1021  /// to transform a floating point op of specified opcode to a equivalent op of
1022  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1023  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1024                                                 EVT /*VT*/) const {
1025    return false;
1026  }
1027
1028  /// IsDesirableToPromoteOp - This method query the target whether it is
1029  /// beneficial for dag combiner to promote the specified node. If true, it
1030  /// should return the desired promotion type by reference.
1031  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1032    return false;
1033  }
1034
1035  //===--------------------------------------------------------------------===//
1036  // TargetLowering Configuration Methods - These methods should be invoked by
1037  // the derived class constructor to configure this object for the target.
1038  //
1039
1040protected:
1041  /// setBooleanContents - Specify how the target extends the result of a
1042  /// boolean value from i1 to a wider type.  See getBooleanContents.
1043  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1044  /// setBooleanVectorContents - Specify how the target extends the result
1045  /// of a vector boolean value from a vector of i1 to a wider type.  See
1046  /// getBooleanContents.
1047  void setBooleanVectorContents(BooleanContent Ty) {
1048    BooleanVectorContents = Ty;
1049  }
1050
1051  /// setSchedulingPreference - Specify the target scheduling preference.
1052  void setSchedulingPreference(Sched::Preference Pref) {
1053    SchedPreferenceInfo = Pref;
1054  }
1055
1056  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1057  /// use _setjmp to implement llvm.setjmp or the non _ version.
1058  /// Defaults to false.
1059  void setUseUnderscoreSetJmp(bool Val) {
1060    UseUnderscoreSetJmp = Val;
1061  }
1062
1063  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1064  /// use _longjmp to implement llvm.longjmp or the non _ version.
1065  /// Defaults to false.
1066  void setUseUnderscoreLongJmp(bool Val) {
1067    UseUnderscoreLongJmp = Val;
1068  }
1069
1070  /// setSupportJumpTables - Indicate whether the target can generate code for
1071  /// jump tables.
1072  void setSupportJumpTables(bool Val) {
1073    SupportJumpTables = Val;
1074  }
1075
1076  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1077  /// jump tables rather than if sequence.
1078  void setMinimumJumpTableEntries(int Val) {
1079    MinimumJumpTableEntries = Val;
1080  }
1081
1082  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1083  /// specifies the register that llvm.savestack/llvm.restorestack should save
1084  /// and restore.
1085  void setStackPointerRegisterToSaveRestore(unsigned R) {
1086    StackPointerRegisterToSaveRestore = R;
1087  }
1088
1089  /// setExceptionPointerRegister - If set to a physical register, this sets
1090  /// the register that receives the exception address on entry to a landing
1091  /// pad.
1092  void setExceptionPointerRegister(unsigned R) {
1093    ExceptionPointerRegister = R;
1094  }
1095
1096  /// setExceptionSelectorRegister - If set to a physical register, this sets
1097  /// the register that receives the exception typeid on entry to a landing
1098  /// pad.
1099  void setExceptionSelectorRegister(unsigned R) {
1100    ExceptionSelectorRegister = R;
1101  }
1102
1103  /// SelectIsExpensive - Tells the code generator not to expand operations
1104  /// into sequences that use the select operations if possible.
1105  void setSelectIsExpensive(bool isExpensive = true) {
1106    SelectIsExpensive = isExpensive;
1107  }
1108
1109  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1110  /// operations into a separate sequences that increases the amount of
1111  /// flow control.
1112  void setJumpIsExpensive(bool isExpensive = true) {
1113    JumpIsExpensive = isExpensive;
1114  }
1115
1116  /// setIntDivIsCheap - Tells the code generator that integer divide is
1117  /// expensive, and if possible, should be replaced by an alternate sequence
1118  /// of instructions not containing an integer divide.
1119  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1120
1121  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1122  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1123    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1124  }
1125
1126  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1127  /// srl/add/sra for a signed divide by power of two, and let the target handle
1128  /// it.
1129  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1130
1131  /// addRegisterClass - Add the specified register class as an available
1132  /// regclass for the specified value type.  This indicates the selector can
1133  /// handle values of that class natively.
1134  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1135    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1136    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1137    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1138  }
1139
1140  /// findRepresentativeClass - Return the largest legal super-reg register class
1141  /// of the register class for the specified type and its associated "cost".
1142  virtual std::pair<const TargetRegisterClass*, uint8_t>
1143  findRepresentativeClass(EVT VT) const;
1144
1145  /// computeRegisterProperties - Once all of the register classes are added,
1146  /// this allows us to compute derived properties we expose.
1147  void computeRegisterProperties();
1148
1149  /// setOperationAction - Indicate that the specified operation does not work
1150  /// with the specified type and indicate what to do about it.
1151  void setOperationAction(unsigned Op, MVT VT,
1152                          LegalizeAction Action) {
1153    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1154    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1155  }
1156
1157  /// setLoadExtAction - Indicate that the specified load with extension does
1158  /// not work with the specified type and indicate what to do about it.
1159  void setLoadExtAction(unsigned ExtType, MVT VT,
1160                        LegalizeAction Action) {
1161    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1162           "Table isn't big enough!");
1163    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1164  }
1165
1166  /// setTruncStoreAction - Indicate that the specified truncating store does
1167  /// not work with the specified type and indicate what to do about it.
1168  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1169                           LegalizeAction Action) {
1170    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1171           "Table isn't big enough!");
1172    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1173  }
1174
1175  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1176  /// does not work with the specified type and indicate what to do abort
1177  /// it. NOTE: All indexed mode loads are initialized to Expand in
1178  /// TargetLowering.cpp
1179  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1180                            LegalizeAction Action) {
1181    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1182           (unsigned)Action < 0xf && "Table isn't big enough!");
1183    // Load action are kept in the upper half.
1184    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1185    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1186  }
1187
1188  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1189  /// does not work with the specified type and indicate what to do about
1190  /// it. NOTE: All indexed mode stores are initialized to Expand in
1191  /// TargetLowering.cpp
1192  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1193                             LegalizeAction Action) {
1194    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1195           (unsigned)Action < 0xf && "Table isn't big enough!");
1196    // Store action are kept in the lower half.
1197    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1198    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1199  }
1200
1201  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1202  /// supported on the target and indicate what to do about it.
1203  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1204                         LegalizeAction Action) {
1205    assert(VT < MVT::LAST_VALUETYPE &&
1206           (unsigned)CC < array_lengthof(CondCodeActions) &&
1207           "Table isn't big enough!");
1208    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1209    /// value and the upper 27 bits index into the second dimension of the
1210    /// array to select what 64bit value to use.
1211    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1212      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1213    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1214      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1215  }
1216
1217  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1218  /// promotion code defaults to trying a larger integer/fp until it can find
1219  /// one that works.  If that default is insufficient, this method can be used
1220  /// by the target to override the default.
1221  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1222    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1223  }
1224
1225  /// setTargetDAGCombine - Targets should invoke this method for each target
1226  /// independent node that they want to provide a custom DAG combiner for by
1227  /// implementing the PerformDAGCombine virtual method.
1228  void setTargetDAGCombine(ISD::NodeType NT) {
1229    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1230    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1231  }
1232
1233  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1234  /// bytes); default is 200
1235  void setJumpBufSize(unsigned Size) {
1236    JumpBufSize = Size;
1237  }
1238
1239  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1240  /// alignment (in bytes); default is 0
1241  void setJumpBufAlignment(unsigned Align) {
1242    JumpBufAlignment = Align;
1243  }
1244
1245  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1246  /// log2(bytes))
1247  void setMinFunctionAlignment(unsigned Align) {
1248    MinFunctionAlignment = Align;
1249  }
1250
1251  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1252  /// This should be set if there is a performance benefit to
1253  /// higher-than-minimum alignment (in log2(bytes))
1254  void setPrefFunctionAlignment(unsigned Align) {
1255    PrefFunctionAlignment = Align;
1256  }
1257
1258  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1259  /// alignment is zero, it means the target does not care about loop alignment.
1260  /// The alignment is specified in log2(bytes).
1261  void setPrefLoopAlignment(unsigned Align) {
1262    PrefLoopAlignment = Align;
1263  }
1264
1265  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1266  /// argument (in log2(bytes)).
1267  void setMinStackArgumentAlignment(unsigned Align) {
1268    MinStackArgumentAlignment = Align;
1269  }
1270
1271  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1272  /// atomic operation intrinsics includes locking. Default is false.
1273  void setShouldFoldAtomicFences(bool fold) {
1274    ShouldFoldAtomicFences = fold;
1275  }
1276
1277  /// setInsertFencesForAtomic - Set if the DAG builder should
1278  /// automatically insert fences and reduce the order of atomic memory
1279  /// operations to Monotonic.
1280  void setInsertFencesForAtomic(bool fence) {
1281    InsertFencesForAtomic = fence;
1282  }
1283
1284public:
1285  //===--------------------------------------------------------------------===//
1286  // Lowering methods - These methods must be implemented by targets so that
1287  // the SelectionDAGBuilder code knows how to lower these.
1288  //
1289
1290  /// LowerFormalArguments - This hook must be implemented to lower the
1291  /// incoming (formal) arguments, described by the Ins array, into the
1292  /// specified DAG. The implementation should fill in the InVals array
1293  /// with legal-type argument values, and return the resulting token
1294  /// chain value.
1295  ///
1296  virtual SDValue
1297    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1298                         bool /*isVarArg*/,
1299                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1300                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1301                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1302    llvm_unreachable("Not Implemented");
1303  }
1304
1305  struct ArgListEntry {
1306    SDValue Node;
1307    Type* Ty;
1308    bool isSExt  : 1;
1309    bool isZExt  : 1;
1310    bool isInReg : 1;
1311    bool isSRet  : 1;
1312    bool isNest  : 1;
1313    bool isByVal : 1;
1314    uint16_t Alignment;
1315
1316    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1317      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1318  };
1319  typedef std::vector<ArgListEntry> ArgListTy;
1320
1321  /// CallLoweringInfo - This structure contains all information that is
1322  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1323  /// SelectionDAG builder needs to lower a call, and targets will see this
1324  /// struct in their LowerCall implementation.
1325  struct CallLoweringInfo {
1326    SDValue Chain;
1327    Type *RetTy;
1328    bool RetSExt           : 1;
1329    bool RetZExt           : 1;
1330    bool IsVarArg          : 1;
1331    bool IsInReg           : 1;
1332    bool DoesNotReturn     : 1;
1333    bool IsReturnValueUsed : 1;
1334
1335    // IsTailCall should be modified by implementations of
1336    // TargetLowering::LowerCall that perform tail call conversions.
1337    bool IsTailCall;
1338
1339    unsigned NumFixedArgs;
1340    CallingConv::ID CallConv;
1341    SDValue Callee;
1342    ArgListTy &Args;
1343    SelectionDAG &DAG;
1344    DebugLoc DL;
1345    ImmutableCallSite *CS;
1346    SmallVector<ISD::OutputArg, 32> Outs;
1347    SmallVector<SDValue, 32> OutVals;
1348    SmallVector<ISD::InputArg, 32> Ins;
1349
1350
1351    /// CallLoweringInfo - Constructs a call lowering context based on the
1352    /// ImmutableCallSite \p cs.
1353    CallLoweringInfo(SDValue chain, Type *retTy,
1354                     FunctionType *FTy, bool isTailCall, SDValue callee,
1355                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1356                     ImmutableCallSite &cs)
1357    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attributes::SExt)),
1358      RetZExt(cs.paramHasAttr(0, Attributes::ZExt)), IsVarArg(FTy->isVarArg()),
1359      IsInReg(cs.paramHasAttr(0, Attributes::InReg)),
1360      DoesNotReturn(cs.doesNotReturn()),
1361      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1362      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1363      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1364      DL(dl), CS(&cs) {}
1365
1366    /// CallLoweringInfo - Constructs a call lowering context based on the
1367    /// provided call information.
1368    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1369                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1370                     CallingConv::ID callConv, bool isTailCall,
1371                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1372                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1373    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1374      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1375      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1376      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1377      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1378  };
1379
1380  /// LowerCallTo - This function lowers an abstract call to a function into an
1381  /// actual call.  This returns a pair of operands.  The first element is the
1382  /// return value for the function (if RetTy is not VoidTy).  The second
1383  /// element is the outgoing token chain. It calls LowerCall to do the actual
1384  /// lowering.
1385  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1386
1387  /// LowerCall - This hook must be implemented to lower calls into the
1388  /// the specified DAG. The outgoing arguments to the call are described
1389  /// by the Outs array, and the values to be returned by the call are
1390  /// described by the Ins array. The implementation should fill in the
1391  /// InVals array with legal-type return values from the call, and return
1392  /// the resulting token chain value.
1393  virtual SDValue
1394    LowerCall(CallLoweringInfo &/*CLI*/,
1395              SmallVectorImpl<SDValue> &/*InVals*/) const {
1396    llvm_unreachable("Not Implemented");
1397  }
1398
1399  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1400  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
1401
1402  /// CanLowerReturn - This hook should be implemented to check whether the
1403  /// return values described by the Outs array can fit into the return
1404  /// registers.  If false is returned, an sret-demotion is performed.
1405  ///
1406  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1407                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1408               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1409               LLVMContext &/*Context*/) const
1410  {
1411    // Return true by default to get preexisting behavior.
1412    return true;
1413  }
1414
1415  /// LowerReturn - This hook must be implemented to lower outgoing
1416  /// return values, described by the Outs array, into the specified
1417  /// DAG. The implementation should return the resulting token chain
1418  /// value.
1419  ///
1420  virtual SDValue
1421    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1422                bool /*isVarArg*/,
1423                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1424                const SmallVectorImpl<SDValue> &/*OutVals*/,
1425                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1426    llvm_unreachable("Not Implemented");
1427  }
1428
1429  /// isUsedByReturnOnly - Return true if result of the specified node is used
1430  /// by a return node only. It also compute and return the input chain for the
1431  /// tail call.
1432  /// This is used to determine whether it is possible
1433  /// to codegen a libcall as tail call at legalization time.
1434  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1435    return false;
1436  }
1437
1438  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1439  /// call instruction as a tail call. This is used by optimization passes to
1440  /// determine if it's profitable to duplicate return instructions to enable
1441  /// tailcall optimization.
1442  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1443    return false;
1444  }
1445
1446  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1447  /// sign extend a zeroext/signext integer argument or return value.
1448  /// FIXME: Most C calling convention requires the return type to be promoted,
1449  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1450  /// necessary for non-C calling conventions. The frontend should handle this
1451  /// and include all of the necessary information.
1452  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1453                                       ISD::NodeType /*ExtendKind*/) const {
1454    EVT MinVT = getRegisterType(Context, MVT::i32);
1455    return VT.bitsLT(MinVT) ? MinVT : VT;
1456  }
1457
1458  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1459  /// to legalize nodes with an illegal operand type but legal result types.
1460  /// It replaces the LowerOperation callback in the type Legalizer.
1461  /// The reason we can not do away with LowerOperation entirely is that
1462  /// LegalizeDAG isn't yet ready to use this callback.
1463  /// TODO: Consider merging with ReplaceNodeResults.
1464
1465  /// The target places new result values for the node in Results (their number
1466  /// and types must exactly match those of the original return values of
1467  /// the node), or leaves Results empty, which indicates that the node is not
1468  /// to be custom lowered after all.
1469  /// The default implementation calls LowerOperation.
1470  virtual void LowerOperationWrapper(SDNode *N,
1471                                     SmallVectorImpl<SDValue> &Results,
1472                                     SelectionDAG &DAG) const;
1473
1474  /// LowerOperation - This callback is invoked for operations that are
1475  /// unsupported by the target, which are registered to use 'custom' lowering,
1476  /// and whose defined values are all legal.
1477  /// If the target has no operations that require custom lowering, it need not
1478  /// implement this.  The default implementation of this aborts.
1479  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1480
1481  /// ReplaceNodeResults - This callback is invoked when a node result type is
1482  /// illegal for the target, and the operation was registered to use 'custom'
1483  /// lowering for that result type.  The target places new result values for
1484  /// the node in Results (their number and types must exactly match those of
1485  /// the original return values of the node), or leaves Results empty, which
1486  /// indicates that the node is not to be custom lowered after all.
1487  ///
1488  /// If the target has no operations that require custom lowering, it need not
1489  /// implement this.  The default implementation aborts.
1490  virtual void ReplaceNodeResults(SDNode * /*N*/,
1491                                  SmallVectorImpl<SDValue> &/*Results*/,
1492                                  SelectionDAG &/*DAG*/) const {
1493    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1494  }
1495
1496  /// getTargetNodeName() - This method returns the name of a target specific
1497  /// DAG node.
1498  virtual const char *getTargetNodeName(unsigned Opcode) const;
1499
1500  /// createFastISel - This method returns a target specific FastISel object,
1501  /// or null if the target does not support "fast" ISel.
1502  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1503                                   const TargetLibraryInfo *) const {
1504    return 0;
1505  }
1506
1507  //===--------------------------------------------------------------------===//
1508  // Inline Asm Support hooks
1509  //
1510
1511  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1512  /// call to be explicit llvm code if it wants to.  This is useful for
1513  /// turning simple inline asms into LLVM intrinsics, which gives the
1514  /// compiler more information about the behavior of the code.
1515  virtual bool ExpandInlineAsm(CallInst *) const {
1516    return false;
1517  }
1518
1519  enum ConstraintType {
1520    C_Register,            // Constraint represents specific register(s).
1521    C_RegisterClass,       // Constraint represents any of register(s) in class.
1522    C_Memory,              // Memory constraint.
1523    C_Other,               // Something else.
1524    C_Unknown              // Unsupported constraint.
1525  };
1526
1527  enum ConstraintWeight {
1528    // Generic weights.
1529    CW_Invalid  = -1,     // No match.
1530    CW_Okay     = 0,      // Acceptable.
1531    CW_Good     = 1,      // Good weight.
1532    CW_Better   = 2,      // Better weight.
1533    CW_Best     = 3,      // Best weight.
1534
1535    // Well-known weights.
1536    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1537    CW_Register     = CW_Good,    // Register operands.
1538    CW_Memory       = CW_Better,  // Memory operands.
1539    CW_Constant     = CW_Best,    // Constant operand.
1540    CW_Default      = CW_Okay     // Default or don't know type.
1541  };
1542
1543  /// AsmOperandInfo - This contains information for each constraint that we are
1544  /// lowering.
1545  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1546    /// ConstraintCode - This contains the actual string for the code, like "m".
1547    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1548    /// most closely matches the operand.
1549    std::string ConstraintCode;
1550
1551    /// ConstraintType - Information about the constraint code, e.g. Register,
1552    /// RegisterClass, Memory, Other, Unknown.
1553    TargetLowering::ConstraintType ConstraintType;
1554
1555    /// CallOperandval - If this is the result output operand or a
1556    /// clobber, this is null, otherwise it is the incoming operand to the
1557    /// CallInst.  This gets modified as the asm is processed.
1558    Value *CallOperandVal;
1559
1560    /// ConstraintVT - The ValueType for the operand value.
1561    EVT ConstraintVT;
1562
1563    /// isMatchingInputConstraint - Return true of this is an input operand that
1564    /// is a matching constraint like "4".
1565    bool isMatchingInputConstraint() const;
1566
1567    /// getMatchedOperand - If this is an input matching constraint, this method
1568    /// returns the output operand it matches.
1569    unsigned getMatchedOperand() const;
1570
1571    /// Copy constructor for copying from an AsmOperandInfo.
1572    AsmOperandInfo(const AsmOperandInfo &info)
1573      : InlineAsm::ConstraintInfo(info),
1574        ConstraintCode(info.ConstraintCode),
1575        ConstraintType(info.ConstraintType),
1576        CallOperandVal(info.CallOperandVal),
1577        ConstraintVT(info.ConstraintVT) {
1578    }
1579
1580    /// Copy constructor for copying from a ConstraintInfo.
1581    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1582      : InlineAsm::ConstraintInfo(info),
1583        ConstraintType(TargetLowering::C_Unknown),
1584        CallOperandVal(0), ConstraintVT(MVT::Other) {
1585    }
1586  };
1587
1588  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1589
1590  /// ParseConstraints - Split up the constraint string from the inline
1591  /// assembly value into the specific constraints and their prefixes,
1592  /// and also tie in the associated operand values.
1593  /// If this returns an empty vector, and if the constraint string itself
1594  /// isn't empty, there was an error parsing.
1595  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1596
1597  /// Examine constraint type and operand type and determine a weight value.
1598  /// The operand object must already have been set up with the operand type.
1599  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1600      AsmOperandInfo &info, int maIndex) const;
1601
1602  /// Examine constraint string and operand type and determine a weight value.
1603  /// The operand object must already have been set up with the operand type.
1604  virtual ConstraintWeight getSingleConstraintMatchWeight(
1605      AsmOperandInfo &info, const char *constraint) const;
1606
1607  /// ComputeConstraintToUse - Determines the constraint code and constraint
1608  /// type to use for the specific AsmOperandInfo, setting
1609  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1610  /// being passed in is available, it can be passed in as Op, otherwise an
1611  /// empty SDValue can be passed.
1612  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1613                                      SDValue Op,
1614                                      SelectionDAG *DAG = 0) const;
1615
1616  /// getConstraintType - Given a constraint, return the type of constraint it
1617  /// is for this target.
1618  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1619
1620  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1621  /// {edx}), return the register number and the register class for the
1622  /// register.
1623  ///
1624  /// Given a register class constraint, like 'r', if this corresponds directly
1625  /// to an LLVM register class, return a register of 0 and the register class
1626  /// pointer.
1627  ///
1628  /// This should only be used for C_Register constraints.  On error,
1629  /// this returns a register number of 0 and a null register class pointer..
1630  virtual std::pair<unsigned, const TargetRegisterClass*>
1631    getRegForInlineAsmConstraint(const std::string &Constraint,
1632                                 EVT VT) const;
1633
1634  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1635  /// with another that has more specific requirements based on the type of the
1636  /// corresponding operand.  This returns null if there is no replacement to
1637  /// make.
1638  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1639
1640  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1641  /// vector.  If it is invalid, don't add anything to Ops.
1642  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1643                                            std::vector<SDValue> &Ops,
1644                                            SelectionDAG &DAG) const;
1645
1646  //===--------------------------------------------------------------------===//
1647  // Instruction Emitting Hooks
1648  //
1649
1650  // EmitInstrWithCustomInserter - This method should be implemented by targets
1651  // that mark instructions with the 'usesCustomInserter' flag.  These
1652  // instructions are special in various ways, which require special support to
1653  // insert.  The specified MachineInstr is created but not inserted into any
1654  // basic blocks, and this method is called to expand it into a sequence of
1655  // instructions, potentially also creating new basic blocks and control flow.
1656  virtual MachineBasicBlock *
1657    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1658
1659  /// AdjustInstrPostInstrSelection - This method should be implemented by
1660  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1661  /// instructions must be adjusted after instruction selection by target hooks.
1662  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1663  virtual void
1664  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1665
1666  //===--------------------------------------------------------------------===//
1667  // Addressing mode description hooks (used by LSR etc).
1668  //
1669
1670  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1671  /// same BB as Load/Store instructions reading the address.  This allows as
1672  /// much computation as possible to be done in the address mode for that
1673  /// operand.  This hook lets targets also pass back when this should be done
1674  /// on intrinsics which load/store.
1675  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1676                                    SmallVectorImpl<Value*> &Ops,
1677                                    Type *&AccessTy) const {
1678    return false;
1679  }
1680
1681  /// isLegalAddressingMode - Return true if the addressing mode represented by
1682  /// AM is legal for this target, for a load/store of the specified type.
1683  /// The type may be VoidTy, in which case only return true if the addressing
1684  /// mode is legal for a load/store of any legal type.
1685  /// TODO: Handle pre/postinc as well.
1686  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1687
1688  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1689  /// icmp immediate, that is the target has icmp instructions which can compare
1690  /// a register against the immediate without having to materialize the
1691  /// immediate into a register.
1692  virtual bool isLegalICmpImmediate(int64_t) const {
1693    return true;
1694  }
1695
1696  /// isLegalAddImmediate - Return true if the specified immediate is legal
1697  /// add immediate, that is the target has add instructions which can add
1698  /// a register with the immediate without having to materialize the
1699  /// immediate into a register.
1700  virtual bool isLegalAddImmediate(int64_t) const {
1701    return true;
1702  }
1703
1704  /// isTruncateFree - Return true if it's free to truncate a value of
1705  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1706  /// register EAX to i16 by referencing its sub-register AX.
1707  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1708    return false;
1709  }
1710
1711  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1712    return false;
1713  }
1714
1715  /// isZExtFree - Return true if any actual instruction that defines a
1716  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1717  /// register. This does not necessarily include registers defined in
1718  /// unknown ways, such as incoming arguments, or copies from unknown
1719  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1720  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1721  /// all instructions that define 32-bit values implicit zero-extend the
1722  /// result out to 64 bits.
1723  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1724    return false;
1725  }
1726
1727  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1728    return false;
1729  }
1730
1731  /// isZExtFree - Return true if zero-extending the specific node Val to type
1732  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1733  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1734  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1735    return isZExtFree(Val.getValueType(), VT2);
1736  }
1737
1738  /// isFNegFree - Return true if an fneg operation is free to the point where
1739  /// it is never worthwhile to replace it with a bitwise operation.
1740  virtual bool isFNegFree(EVT) const {
1741    return false;
1742  }
1743
1744  /// isFAbsFree - Return true if an fneg operation is free to the point where
1745  /// it is never worthwhile to replace it with a bitwise operation.
1746  virtual bool isFAbsFree(EVT) const {
1747    return false;
1748  }
1749
1750  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1751  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1752  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1753  /// is expanded to mul + add.
1754  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1755    return false;
1756  }
1757
1758  /// isNarrowingProfitable - Return true if it's profitable to narrow
1759  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1760  /// from i32 to i8 but not from i32 to i16.
1761  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1762    return false;
1763  }
1764
1765  //===--------------------------------------------------------------------===//
1766  // Div utility functions
1767  //
1768  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1769                         SelectionDAG &DAG) const;
1770  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1771                      std::vector<SDNode*> *Created) const;
1772  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1773                      std::vector<SDNode*> *Created) const;
1774
1775
1776  //===--------------------------------------------------------------------===//
1777  // Runtime Library hooks
1778  //
1779
1780  /// setLibcallName - Rename the default libcall routine name for the specified
1781  /// libcall.
1782  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1783    LibcallRoutineNames[Call] = Name;
1784  }
1785
1786  /// getLibcallName - Get the libcall routine name for the specified libcall.
1787  ///
1788  const char *getLibcallName(RTLIB::Libcall Call) const {
1789    return LibcallRoutineNames[Call];
1790  }
1791
1792  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1793  /// result of the comparison libcall against zero.
1794  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1795    CmpLibcallCCs[Call] = CC;
1796  }
1797
1798  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1799  /// the comparison libcall against zero.
1800  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1801    return CmpLibcallCCs[Call];
1802  }
1803
1804  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1805  /// specified libcall.
1806  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1807    LibcallCallingConvs[Call] = CC;
1808  }
1809
1810  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1811  /// specified libcall.
1812  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1813    return LibcallCallingConvs[Call];
1814  }
1815
1816private:
1817  const TargetMachine &TM;
1818  const DataLayout *TD;
1819  const TargetLoweringObjectFile &TLOF;
1820
1821  /// PointerTy - The type to use for pointers for the default address space,
1822  /// usually i32 or i64.
1823  ///
1824  MVT PointerTy;
1825
1826  /// IsLittleEndian - True if this is a little endian target.
1827  ///
1828  bool IsLittleEndian;
1829
1830  /// SelectIsExpensive - Tells the code generator not to expand operations
1831  /// into sequences that use the select operations if possible.
1832  bool SelectIsExpensive;
1833
1834  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1835  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1836  /// a real cost model is in place.  If we ever optimize for size, this will be
1837  /// set to true unconditionally.
1838  bool IntDivIsCheap;
1839
1840  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1841  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1842  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1843  /// integer div/rem when the operands are positive and less than 256.
1844  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1845
1846  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1847  /// srl/add/sra for a signed divide by power of two, and let the target handle
1848  /// it.
1849  bool Pow2DivIsCheap;
1850
1851  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1852  /// extra flow control instructions and should attempt to combine flow
1853  /// control instructions via predication.
1854  bool JumpIsExpensive;
1855
1856  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1857  /// llvm.setjmp.  Defaults to false.
1858  bool UseUnderscoreSetJmp;
1859
1860  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1861  /// llvm.longjmp.  Defaults to false.
1862  bool UseUnderscoreLongJmp;
1863
1864  /// SupportJumpTables - Whether the target can generate code for jumptables.
1865  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1866  bool SupportJumpTables;
1867
1868  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1869  int MinimumJumpTableEntries;
1870
1871  /// BooleanContents - Information about the contents of the high-bits in
1872  /// boolean values held in a type wider than i1.  See getBooleanContents.
1873  BooleanContent BooleanContents;
1874  /// BooleanVectorContents - Information about the contents of the high-bits
1875  /// in boolean vector values when the element type is wider than i1.  See
1876  /// getBooleanContents.
1877  BooleanContent BooleanVectorContents;
1878
1879  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1880  /// total cycles or lowest register usage.
1881  Sched::Preference SchedPreferenceInfo;
1882
1883  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1884  unsigned JumpBufSize;
1885
1886  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1887  /// buffers
1888  unsigned JumpBufAlignment;
1889
1890  /// MinStackArgumentAlignment - The minimum alignment that any argument
1891  /// on the stack needs to have.
1892  ///
1893  unsigned MinStackArgumentAlignment;
1894
1895  /// MinFunctionAlignment - The minimum function alignment (used when
1896  /// optimizing for size, and to prevent explicitly provided alignment
1897  /// from leading to incorrect code).
1898  ///
1899  unsigned MinFunctionAlignment;
1900
1901  /// PrefFunctionAlignment - The preferred function alignment (used when
1902  /// alignment unspecified and optimizing for speed).
1903  ///
1904  unsigned PrefFunctionAlignment;
1905
1906  /// PrefLoopAlignment - The preferred loop alignment.
1907  ///
1908  unsigned PrefLoopAlignment;
1909
1910  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1911  /// be folded into the enclosed atomic intrinsic instruction by the
1912  /// combiner.
1913  bool ShouldFoldAtomicFences;
1914
1915  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1916  /// insert fences and reduce ordering for atomics.  (This will be set for
1917  /// for most architectures with weak memory ordering.)
1918  bool InsertFencesForAtomic;
1919
1920  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1921  /// specifies the register that llvm.savestack/llvm.restorestack should save
1922  /// and restore.
1923  unsigned StackPointerRegisterToSaveRestore;
1924
1925  /// ExceptionPointerRegister - If set to a physical register, this specifies
1926  /// the register that receives the exception address on entry to a landing
1927  /// pad.
1928  unsigned ExceptionPointerRegister;
1929
1930  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1931  /// the register that receives the exception typeid on entry to a landing
1932  /// pad.
1933  unsigned ExceptionSelectorRegister;
1934
1935  /// RegClassForVT - This indicates the default register class to use for
1936  /// each ValueType the target supports natively.
1937  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1938  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1939  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1940
1941  /// RepRegClassForVT - This indicates the "representative" register class to
1942  /// use for each ValueType the target supports natively. This information is
1943  /// used by the scheduler to track register pressure. By default, the
1944  /// representative register class is the largest legal super-reg register
1945  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1946  /// and i32's representative class would be GR32.
1947  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1948
1949  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1950  /// register class for each ValueType. The cost is used by the scheduler to
1951  /// approximate register pressure.
1952  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1953
1954  /// TransformToType - For any value types we are promoting or expanding, this
1955  /// contains the value type that we are changing to.  For Expanded types, this
1956  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1957  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1958  /// by the system, this holds the same type (e.g. i32 -> i32).
1959  EVT TransformToType[MVT::LAST_VALUETYPE];
1960
1961  /// OpActions - For each operation and each value type, keep a LegalizeAction
1962  /// that indicates how instruction selection should deal with the operation.
1963  /// Most operations are Legal (aka, supported natively by the target), but
1964  /// operations that are not should be described.  Note that operations on
1965  /// non-legal value types are not described here.
1966  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1967
1968  /// LoadExtActions - For each load extension type and each value type,
1969  /// keep a LegalizeAction that indicates how instruction selection should deal
1970  /// with a load of a specific value type and extension type.
1971  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1972
1973  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1974  /// indicates whether a truncating store of a specific value type and
1975  /// truncating type is legal.
1976  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1977
1978  /// IndexedModeActions - For each indexed mode and each value type,
1979  /// keep a pair of LegalizeAction that indicates how instruction
1980  /// selection should deal with the load / store.  The first dimension is the
1981  /// value_type for the reference. The second dimension represents the various
1982  /// modes for load store.
1983  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1984
1985  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1986  /// LegalizeAction that indicates how instruction selection should
1987  /// deal with the condition code.
1988  /// Because each CC action takes up 2 bits, we need to have the array size
1989  /// be large enough to fit all of the value types. This can be done by
1990  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1991  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1992
1993  ValueTypeActionImpl ValueTypeActions;
1994
1995public:
1996  LegalizeKind
1997  getTypeConversion(LLVMContext &Context, EVT VT) const {
1998    // If this is a simple type, use the ComputeRegisterProp mechanism.
1999    if (VT.isSimple()) {
2000      assert((unsigned)VT.getSimpleVT().SimpleTy <
2001             array_lengthof(TransformToType));
2002      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
2003      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
2004
2005      assert(
2006        (!(NVT.isSimple() && LA != TypeLegal) ||
2007         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
2008         && "Promote may not follow Expand or Promote");
2009
2010      if (LA == TypeSplitVector)
2011        NVT = EVT::getVectorVT(Context, VT.getVectorElementType(),
2012                               VT.getVectorNumElements() / 2);
2013      return LegalizeKind(LA, NVT);
2014    }
2015
2016    // Handle Extended Scalar Types.
2017    if (!VT.isVector()) {
2018      assert(VT.isInteger() && "Float types must be simple");
2019      unsigned BitSize = VT.getSizeInBits();
2020      // First promote to a power-of-two size, then expand if necessary.
2021      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
2022        EVT NVT = VT.getRoundIntegerType(Context);
2023        assert(NVT != VT && "Unable to round integer VT");
2024        LegalizeKind NextStep = getTypeConversion(Context, NVT);
2025        // Avoid multi-step promotion.
2026        if (NextStep.first == TypePromoteInteger) return NextStep;
2027        // Return rounded integer type.
2028        return LegalizeKind(TypePromoteInteger, NVT);
2029      }
2030
2031      return LegalizeKind(TypeExpandInteger,
2032                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2033    }
2034
2035    // Handle vector types.
2036    unsigned NumElts = VT.getVectorNumElements();
2037    EVT EltVT = VT.getVectorElementType();
2038
2039    // Vectors with only one element are always scalarized.
2040    if (NumElts == 1)
2041      return LegalizeKind(TypeScalarizeVector, EltVT);
2042
2043    // Try to widen vector elements until a legal type is found.
2044    if (EltVT.isInteger()) {
2045      // Vectors with a number of elements that is not a power of two are always
2046      // widened, for example <3 x float> -> <4 x float>.
2047      if (!VT.isPow2VectorType()) {
2048        NumElts = (unsigned)NextPowerOf2(NumElts);
2049        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2050        return LegalizeKind(TypeWidenVector, NVT);
2051      }
2052
2053      // Examine the element type.
2054      LegalizeKind LK = getTypeConversion(Context, EltVT);
2055
2056      // If type is to be expanded, split the vector.
2057      //  <4 x i140> -> <2 x i140>
2058      if (LK.first == TypeExpandInteger)
2059        return LegalizeKind(TypeSplitVector,
2060                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2061
2062      // Promote the integer element types until a legal vector type is found
2063      // or until the element integer type is too big. If a legal type was not
2064      // found, fallback to the usual mechanism of widening/splitting the
2065      // vector.
2066      while (1) {
2067        // Increase the bitwidth of the element to the next pow-of-two
2068        // (which is greater than 8 bits).
2069        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2070                                 ).getRoundIntegerType(Context);
2071
2072        // Stop trying when getting a non-simple element type.
2073        // Note that vector elements may be greater than legal vector element
2074        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2075        if (!EltVT.isSimple()) break;
2076
2077        // Build a new vector type and check if it is legal.
2078        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2079        // Found a legal promoted vector type.
2080        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2081          return LegalizeKind(TypePromoteInteger,
2082                              EVT::getVectorVT(Context, EltVT, NumElts));
2083      }
2084    }
2085
2086    // Try to widen the vector until a legal type is found.
2087    // If there is no wider legal type, split the vector.
2088    while (1) {
2089      // Round up to the next power of 2.
2090      NumElts = (unsigned)NextPowerOf2(NumElts);
2091
2092      // If there is no simple vector type with this many elements then there
2093      // cannot be a larger legal vector type.  Note that this assumes that
2094      // there are no skipped intermediate vector types in the simple types.
2095      if (!EltVT.isSimple()) break;
2096      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2097      if (LargerVector == MVT()) break;
2098
2099      // If this type is legal then widen the vector.
2100      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2101        return LegalizeKind(TypeWidenVector, LargerVector);
2102    }
2103
2104    // Widen odd vectors to next power of two.
2105    if (!VT.isPow2VectorType()) {
2106      EVT NVT = VT.getPow2VectorType(Context);
2107      return LegalizeKind(TypeWidenVector, NVT);
2108    }
2109
2110    // Vectors with illegal element types are expanded.
2111    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2112    return LegalizeKind(TypeSplitVector, NVT);
2113  }
2114
2115private:
2116  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
2117
2118  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2119  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2120  /// which sets a bit in this array.
2121  unsigned char
2122  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2123
2124  /// PromoteToType - For operations that must be promoted to a specific type,
2125  /// this holds the destination type.  This map should be sparse, so don't hold
2126  /// it as an array.
2127  ///
2128  /// Targets add entries to this map with AddPromotedToType(..), clients access
2129  /// this with getTypeToPromoteTo(..).
2130  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2131    PromoteToType;
2132
2133  /// LibcallRoutineNames - Stores the name each libcall.
2134  ///
2135  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2136
2137  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2138  /// of each of the comparison libcall against zero.
2139  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2140
2141  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2142  /// libcall.
2143  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2144
2145protected:
2146  /// When lowering \@llvm.memset this field specifies the maximum number of
2147  /// store operations that may be substituted for the call to memset. Targets
2148  /// must set this value based on the cost threshold for that target. Targets
2149  /// should assume that the memset will be done using as many of the largest
2150  /// store operations first, followed by smaller ones, if necessary, per
2151  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2152  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2153  /// store.  This only applies to setting a constant array of a constant size.
2154  /// @brief Specify maximum number of store instructions per memset call.
2155  unsigned maxStoresPerMemset;
2156
2157  /// Maximum number of stores operations that may be substituted for the call
2158  /// to memset, used for functions with OptSize attribute.
2159  unsigned maxStoresPerMemsetOptSize;
2160
2161  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2162  /// store operations that may be substituted for a call to memcpy. Targets
2163  /// must set this value based on the cost threshold for that target. Targets
2164  /// should assume that the memcpy will be done using as many of the largest
2165  /// store operations first, followed by smaller ones, if necessary, per
2166  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2167  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2168  /// and one 1-byte store. This only applies to copying a constant array of
2169  /// constant size.
2170  /// @brief Specify maximum bytes of store instructions per memcpy call.
2171  unsigned maxStoresPerMemcpy;
2172
2173  /// Maximum number of store operations that may be substituted for a call
2174  /// to memcpy, used for functions with OptSize attribute.
2175  unsigned maxStoresPerMemcpyOptSize;
2176
2177  /// When lowering \@llvm.memmove this field specifies the maximum number of
2178  /// store instructions that may be substituted for a call to memmove. Targets
2179  /// must set this value based on the cost threshold for that target. Targets
2180  /// should assume that the memmove will be done using as many of the largest
2181  /// store operations first, followed by smaller ones, if necessary, per
2182  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2183  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2184  /// applies to copying a constant array of constant size.
2185  /// @brief Specify maximum bytes of store instructions per memmove call.
2186  unsigned maxStoresPerMemmove;
2187
2188  /// Maximum number of store instructions that may be substituted for a call
2189  /// to memmove, used for functions with OpSize attribute.
2190  unsigned maxStoresPerMemmoveOptSize;
2191
2192  /// This field specifies whether the target can benefit from code placement
2193  /// optimization.
2194  bool benefitFromCodePlacementOpt;
2195
2196  /// predictableSelectIsExpensive - Tells the code generator that select is
2197  /// more expensive than a branch if the branch is usually predicted right.
2198  bool predictableSelectIsExpensive;
2199
2200private:
2201  /// isLegalRC - Return true if the value types that can be represented by the
2202  /// specified register class are all legal.
2203  bool isLegalRC(const TargetRegisterClass *RC) const;
2204};
2205
2206/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2207/// compute the return value EVTs and flags, and optionally also
2208/// the offsets, if the return value is being lowered to memory.
2209void GetReturnInfo(Type* ReturnType, Attributes attr,
2210                   SmallVectorImpl<ISD::OutputArg> &Outs,
2211                   const TargetLowering &TLI);
2212
2213} // end llvm namespace
2214
2215#endif
2216